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Abstract 

The COVID-19 outbreak caused by SARS-CoV-2 in late 2019 has spread rapidly across the world to form a global 
epidemic of respiratory infectious diseases. Increased investigations on diagnostic tools are currently implemented 
to assist rapid identification of the virus because mass and rapid diagnosis might be the best way to prevent the out-
break of the virus. This critical review discusses the detection principles, fabrication techniques, and applications 
on the rapid detection of SARS-CoV-2 with three categories: rapid nuclear acid augmentation test, rapid immunoas-
say test and biosensors. Special efforts were put on enhancement of nanomaterials on biosensors for rapid, sensitive, 
and low-cost diagnostics of SARS-CoV-2 virus. Future developments are suggested regarding potential candidates 
in hospitals, clinics and laboratories for control and prevention of large-scale epidemic.
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1 Introduction
COVID-19 is an infectious disease caused by the SARS-
CoV-2 coronavirus. The global excess mortality associ-
ated with COVID-19 was estimated to be 14.91 million, 
suggesting 9.49 million more deaths than those globally 
reported as directly attributable to COVID-19 [1]. Pub-
lic health and social measures have been implemented 
across the world to reduce SARS-CoV-2 transmission, 
morbidity, and mortality from COVID-19 and to prevent 
the overburdening of the health systems and other criti-
cal social functions. SARS-CoV-2 primarily affects the 
respiratory system [2] with associated symptoms such 
as fever, cough, expectoration, headache, myalgia, or 
fatigue. Individuals with asymptomatic and atypical clini-
cal manifestations contribute factors to complicate dis-
ease transmission [3]. SARS-CoV-2 also may cause severe 
pneumonia and acute respiratory distress syndrome [4]. 
It is worth noting that in addition to the respiratory sys-
tem, SARS-CoV-2 damages the cardiovascular system, 
the endocrine system, and the reproductive system [5]. 
Previous investigations have suggested that manifesta-
tions of cardiovascular disease are a significant cause of 
mortality [6]. In the reproductive system, extensive stud-
ies have shown that SARS-CoV-2 can affect male serum 
testosterone, fertility, sexual function [7–9] and female 
ovarian function as well as pregnancy [10–12]. Recent 
evidence supported that SARS-CoV-2 could also affect 
the urinary tract [13], and neuropsychiatric symptoms 

[14]. Other reports also implied association of COVID-
19 with digestive disorders [15] and Alzheimer’s dis-
ease [16]. Moreover, patients with COVID-19 may also 
experience eye symptoms such as dry eyes, conjuncti-
val hyperemia, and conjunctival congestion [17]. At the 
same time, the COVID-19 stigmatization also brought 
various long-term complications and sequelae [18], even 
additional pain to patients [19]. It was also observed that 
psychological symptoms including anxiety, depression, 
and post-traumatic stress disorder have an association 
with post-COVID-19 [20, 21]. Despite worldwide efforts 
to contain the spread of SARS-CoV-2, the COVID-19 
pandemic continued as the virus evolved into several 
variants and mutants [22]. When it comes to SARS-
CoV-2 detection, SARS-CoV-2 in wastewater poses a 
high health risk to human beings [23], and wastewater 
surveillance becomes a vital part of the assessment and 
detection of SARS-CoV-2 [24, 25]. Hence, it could be of 
great significance to detect SARS-CoV-2 for assessment 
of risks and epidemiology of infectious diseases as well as 
the development of new responses to combat pathogens 
in the future [26].

To date, there are two general types of rapid tests avail-
able for COVID-19, namely, serological tests and nucleic 
acid-based tests. While serological detection has the 
advantages of being easier to conduct without need for 
sophisticated instruments, they highly depend on anti-
body detection, which requires seroconversion to occur 



Page 3 of 24Liu et al. Nano Convergence            (2024) 11:2  

in patients prior to administration of the test. Amongst 
nucleic acid-based tests, reverse transcription-quanti-
tative polymerase chain reaction (RT-qPCR) is still the 
golden standard for the detection of SARS-CoV-2 with 
limitations such as being time-consuming and causing 
false negatives. Recent evidence suggested that individu-
als tested with typical symptoms but showed negative in 
RT-qPCR results had a high likelihood of actually being 
infected with COVID-19 [27–29]. Countless factors 
influence the detection of SARS-CoV-2 using RT-qPCR, 
such as disease staging, sample collection methodol-
ogy and sample storage, RNA extraction methodologies, 

choice of different SARS-CoV-2 targets, maximum Cycle 
Threshold (Ct), primer–probe dimerization occurrence, 
etc. [30] Furthermore, having a point mutation in the 
SARS-CoV-2 N gene (e.g., G29195T) may result in false-
negative SARS-CoV-2 RT-qPCR results [31]. Therefore, 
diagnostic tools that could rapidly detect COVID-19 play 
critical roles in combating SARS-CoV-2.

We conducted a biometric analysis of articles related 
to the rapid detection of COVID-19 since its emergence 
and searched for articles in the “Web of Science” data-
base using the search formula “(TS = (COVID-19) OR 
TS = (SARS-CoV-2)) AND TS = (rapid detection)”. The 
result was 3566 articles, and 3409 articles were retrieved 
after searching directly for scientific papers. A statisti-
cal analysis based on the timing of these articles revealed 
(Fig.  1) that the number of articles published in 2020 
due to the emergence of the COVID-19 shortly after 
was only 13.79% of the total, after which the amount of 
research exploded in 2021 (39.69%) and 2022 (39.31%). 
Since April of 2023, its relevant research reached only 
less than 1/5 (7.22%) of that in 2022. In addition, the 
titles and keywords of these articles were carefully ana-
lyzed (Fig. 2). When studying the words included in the 
titles, the words “antigen” and “evaluation” appear more 
frequently, followed by “amplification”, “Point-of-Care”, 
“lateral flow”, and “biosensor”, indicating the importance 
of Point-of-Care, nucleic acid amplification, lateral flow, 
and biosensor in rapid detection of COVID-19. Further-
more, the high frequency of the phrases “nanomaterials” 
and “gold nanoparticles” is eye-catching, probably due to 
the use of nanomaterials in rapid detection kits as well as 
biosensors. From the perspective of this review, nanoma-
terials are driving the development of rapid detection and 
their position in the field of detection is gaining ground 

Fig. 1 The pie chart of database “Web of Science” was used 
to analyze recent articles with the theme of rapid detection 
of COVID-19 and the search results with the keywords “biosensors”, 
“nanoparticles” and “PCR”

Fig. 2 Title and keyword analysis of articles on the topic of rapid detection of COVID-19 in the database “Web of Science”
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with each passing day. The keywords “PCR”, “biosen-
sor”, and “nanomaterials” were used and analyzed for all 
the retrieved articles. Figure  1 shows that the reports 
on “nanomaterials” had an increasing trend, unlike the 
other two keywords “biosensors” or “PCR”, indicating 
that nanomaterials with good performance are favored by 
more researchers.

Since the outbreak of COVID-19, many researchers 
have developed plenty of methods for rapid detection 
of SARS-CoV-2 and its variants, most of which rely on 
the development of nanotechnology that makes it pos-
sible to go beyond traditional RT-qPCR. In this article, 
we summarized recent reported methods so far for the 
rapid detection of SARS-CoV-2 based on nucleic acid 
amplification technology (NAAT) and lateral flow assay 
(LFA), and biosensor (Fig. 3). We compared these meth-
ods according to targets, testing principles and analytical 
performance, and provided an outlook on those meth-
ods for the rapid detection of SARS-CoV-2. The goal of 
this review is to explore recent rapid detection develop-
ments that are designed for specific detection of the full 
virus, viral protein, or antibodies against viral antigens 
from viruses. Given the large number of publications in 
this field, each section focuses on different techniques 
associated with rapid detection of specific viruses that 
mostly emerged in the last four years, especially related 
to SARS-CoV-2. This review will improve the manage-
ment of the COVID-19 pandemic by encouraging people 
to self-quarantine, by preventing the spread of the virus, 
and by helping all prepare for future pandemics by allow-
ing for faster response times.

2  Testing principles
Based on the biological structure of the SARS-CoV-2 
(Fig. 4), there are three major methods to detect SARS-
CoV-2: RNA, antigen (Ag) and antibody (Ab) [32]. Anti-
gens include the spike protein (S), the envelope protein 
(E), the membrane protein (M), and the nucleoside pro-
tein (N). Methods that detect the RNA are mostly NAAT 
such as RT-qPCR and reverse transcriptase loop-medi-
ated isothermal amplification (RT-LAMP), both of which 
have excellent sensitivity and selectivity. In comparison 
to RT-qPCR, RT-LAMP, proposed by many researchers, 
does not require use of expensive equipment and an RNA 
extraction step while reducing overall costs by speed-
ing up the detection time in about 30–45  min [33–36]. 
However, RT-LAMP may produce false negatives due to 
improper sampling, transport, or handling. In addition, 
it may not be suitable for detection of mutated viruses. 
Notably, the false negative rate can be reduced by opti-
mizing the NAAT process, such as adding a nucleic 
acid enrichment step, multiplex RT-qPCR, or creating a 
one-pot cyclic probe-mediated isothermal amplification 
protocol that combines the amplification and detection 
processes [37–40]. The rapid antigen test (RAT) targeting 
viral proteins has been shown to be used for the detection 
or monitoring of close contacts and high-risk groups with 
advantages of being easier, faster, and less costly, and dis-
advantages of being less sensitive than nucleic acid-based 
molecular tests [41, 42]. The sensitivity of RAT depends 
on the viral load of the sample based on data from a study 
suggesting that the sensitivity is only achieved when the 
viral load of the sample is high: the sensitivity is 90% for 
the cycle of quantification (Cq) range of 20–25 for RT-
qPCR, and only 10% for the Cq range of 25–30 [43]. Abs 
test differs from other tests because it not only detects 
whether a person is infected but also reflects responses of 
the host after being vaccinated [32]. In summary, highly 
sensitive RNA assays and time-saving antigen assays are 
used to diagnose viruses, while Ab assays are used to aid 
in diagnosis and response to vaccine response.

Besides the above three principles for detection, there 
are other new but not mature testing strategies. For 
example, because patients infected with COVID-19 could 
exhale characteristic volatile organic compounds (VOCs), 
including 2,4-octadiene, 1-chloroheptane, nonanal(1a) 
and methylpent-2-enal (1b), a colorimetric method could 
be used to detect VOCs to determine the infection of 
COVID-19 with the advantages of being rapid, painless 
for asymptomatic infected patients [44]. Another way is 
to detect the main protease  (Mpro) because it is specific 
to SARS-CoV-2 during replication and transcription. 
Jin et  al. [45] created a label-free peptide (ZY7) with 

Fig. 3 The types and methods of rapid detection of SARS-CoV-2 
and the average detection time required for each method
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a net neutral charge that could decompose into posi-
tively charged fragments in the presence of  Mpro, caus-
ing color changes in aggregation of negatively charged 
bis (psulfonatophenyl) phenylphosphine-modified gold 
nanoparticles (AuNPs), which is fast and convenient. 
Gut microbiota-Fusicatenibacter, as a very sensitive bio-
marker during SARS-CoV-2, may also become a new 
diagnostic tool. Hence, there is no relevant report avail-
able [46]. RNA, Ag, and Ab were used as target detectors 
in the method described in this paper.

3  Rapid detection methods
3.1  Methods based on NAAT 
The gold standard method of NAATs, RT-qPCR, has 
evolved towards rapid, convenient, or simple techniques. 
Naranbat et  al. [59] proposed a method characterized 
by the absence of viral (universal) transport medium 

and RNA extraction steps, which could greatly simplify 
the entire process such that test results could be avail-
able within only 1 to 2 h. Lee et al. [60] developed a deep 
learning model using the fluorescence values in each 
cycle of RT-qPCR, making sensitive predictions before 
the RT-qPCR results were available. Delpuech et  al. 
[61] proposed to heat and inactivate SARS-CoV-2 sam-
ples prior to laboratory processing to reduce the overall 
cost, testing time, as well as safety hazard issues with 
less than 1 Cq loss in sensitivity compared to standard 
RT-qPCR. Chen et al. [62] developed a water-bath PCR 
that can quickly achieve thermal cycling and simultane-
ously detect SARS-CoV-2 with fluorescent LFA to make 
the whole process both faster and more sensitive. As an 
emerging detection technique, Digital PCR (dPCR) does 
not rely on a standard curve for the quantification of 
nucleic acid molecules and is highly sensitive for absolute 

Fig. 4 Biological structure and of the SARS-CoV-2 and enhanced biosensor by nanomaterials. a Reprinted with permission from ref. 47.  Copyright 
2022 Elsevier. b Reprinted with permission from ref. 48. Copyright 2022 American Chemical Society. c Reprinted with permission from ref. 
49. Copyright 2022 Royal Society of Chemistry. d Reprinted with permission from ref. 50. Copyright 2022 John Wiley and Sons. e Reprinted 
with permission from ref. 51. Copyright 2022 American Chemical Society. f Reprinted with permission from ref. 52. Copyright 2022 Multidisciplinary 
Digital Publishing Institute. g Reprinted with permission from ref 53. Copyright 2022 American Chemical Society. h Reprinted with permission 
from ref 54. Copyright 2022 Elsevier. i Reprinted with permission from ref. 55. Copyright 2022 Elsevier. j Reprinted with permission from ref 56. 
Copyright 2022 Elsevier. k Reprinted with permission from ref 57. Copyright 2021 Springer Link. l Reprinted with permission from ref 58. Copyright 
2022 Elsevier
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quantification of RNA. It is even more reliable than RT-
qPCR for the detection of SARS-CoV-2 in low viral load 
specimens or in wastewater [63–65]. Yolda-Carr et  al. 
[66] developed a portable, real-time PCR device for the 
detection of SARS-CoV-2 in saliva samples, which con-
sists of the SalivaDirect protocol [67] combined with 
the Ubiquitome Liberty16 system. This device could be 
connected to a smartphone to generate real-time test 
reports, which is more convenient, faster with improved 
sensitivity. For the detection of SARS-CoV-2 variants, 
one common method is to sequence the whole-genome. 
However, sequencing an entire genome requires relatively 
high costs. To address this problem, researchers [68, 69] 
established an RT-qPCR assay using the receptor-binding 
domain RNA of the spike protein of the SARS-CoV-2 
variant as specific primers and probes. Xiong et al. [70] 
found two mutations, C1709A and C56G, that are spe-
cific to the genomes of Alpha and Delta variants. They 
established an amplification refractory mutation system 
combined with quantitative reverse transcription-qPCR 
based on these mutations, being able to complete full 
detection within 2.5 h. Dächert et  al. [71] reported that 
the combination of variant-specific PCR and nanopore-
based full-length genome sequencing enabled not only 
rapid detection of the Omicron but also sensitive identi-
fication of newly emerging variants. Nucleic acid ampli-
fication on a chip is a highly viable potential technique 
for simplifying PT-qPCR while maintaining high sensitiv-
ity, which increases the possibility of rapid and accurate 
molecular diagnostics at home [72]. Another research 
work by Lee’s group [73] designed a multiplex RT-qPCR 
capable of simultaneously detecting SARS-CoV-2 and 

partial variants and integrated a microfluidic chip-based 
as a platform to reduce the detection time by more than 
half. For the RT-qPCR to be further improved, (1) opti-
mization in the thermal cycling with precise temperature 
control and removal or reduction in the RNA extraction 
process are two important ways to shorten the over-
all detection time, (2) updates to the readout method is 
crucial to make RT-qPCR more portable, and (3) incor-
poration of multiplex RT-qPCR is an important means to 
detect mutant strains.

In addition to RT-qPCR, other methods of NAATs 
were also used for detection of SARS-CoV-2 (Fig.  5), 
among which RT-LAMP is widely used. Compared to 
RT-qPCR, the RT-LAMP assay process is faster in detec-
tion time, simpler in operation, and lower in overall cost. 
Many researchers have developed convenient and visual-
ized assays that utilize RT-LAMP, making the whole pro-
cess from sample to results less time-consuming. Several 
studies have reported LFA for RT-LAMP combined with 
CRISPR-Cas12 for SARS-CoV-2, which does not require 
thermocycling steps for amplification of the specific tar-
geted nucleic acid while maintaining the selectivity and 
sensitivity levels [74, 75]. The advantage of this method 
is less time-consuming and could be visually detected by 
naked eyes. Colbert et al. [76] paired RT-LAMP with par-
ticle diffusometry, a particle imaging technique, to detect 
SARS-CoV-2, which means that just one smartphone 
device can be used for on-site testing. Iijima et  al. [77] 
presented for the first time the detection of the L452R 
spike mutation by RT-LAMP coupled with a biolumines-
cent assay in real-time, which implies that RT-LAMP-
based detection of mutant viruses is possible. In short, 

Fig. 5 Different methods for nucleic acid amplification experiments
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RT-LAMP for isothermal amplification of nucleic acids 
greatly compensates for the time-consuming problem of 
RT-qPCR.

The development of isothermal amplification technol-
ogy has diversified the methods for NAAT-based detec-
tion of RNA. Shanmugakani and Wu [78] developed a 
reverse transcription helicase-dependent amplification 
(RT-HDA)-coupled dipstick technique, which does not 
require thermal cycling or expensive equipment while 
saves time. Researchers also reported detection of SARS-
CoV-2 based on a rapidly integrated recombinase poly-
merase amplification (RPA), which is a novel isothermal 
amplification technique to complete amplification in 
15–20  min [79–81]. Li et  al. [82] used primer exchange 
reaction (PER) to amplify nucleic acids, which was com-
bined with CRISPR-Cas12 for rapid detection of SARS-
CoV-2. Since PER is performed by automatic extension of 
short primers to sequence-specific single-stranded DNA 
after a target-catalyzed hairpin template in the presence 
of a strand displacing polymerase, it is faster and easier 
than reverse transcription-mediated amplification. How-
ever, expensive and heavyweight equipment on nucleic 
acid amplification is still a common problem for NAAT 
assays.

3.2  Rapid diagnostic test kit
3.2.1  Enzyme‑linked immunosorbent assay
Enzyme-linked immunosorbent assay (ELISA) is often 
used for the detection of viral antibodies and has been 
developed as a rapid diagnostic test kit due to its ease of 
operation and use of inexpensive equipment. In ELISA 
of SARS-CoV-2, different structural proteins could be 
used as Ag to detect the corresponding antibodies and 
researchers have developed ELISAs with good sensitivity 
and specificity [83–86]. Using microfluidic technology, 
González-González et  al. [87] developed an automated 
ELISA chip for detecting antibodies to SARS-CoV-2, ena-
bling on-site testing that may only require a smartphone 
with a camera. Kasetsirikul et al. [88] invented a paper-
based ELISA for detection of antibodies to SARS-CoV-2, 
which could significantly reduce costs and make the test 
faster than conventional ELISAs. It could be completed 
within 30  min. Due to the increase in vaccination and 
cured patients, the SARS-CoV-2 Ab test cannot be used 
as a diagnostic tool but only as a diagnostic aid or a way 
for post-vaccination evaluation. Therefore, researchers 
have developed ELISA-based RAT. Domenico et al. [89] 
prepared a rapid test kit for simultaneous detection of 
two antigens using a double antibody sandwich method, 
which has the advantage of being fast at about 30  min, 
simple, and directly observable with the naked eye, but 
it could not detect Ag at low concentrations. To some 
extent, ELISA is able to characterize viruses in a more 

time-efficient and portable way than the gold standard 
while it might not specifically detect the RNA of viruses.

3.2.2  Lateral flow immunoassay
Compared to ELISA, lateral flow immunoassay (LFIA) 
is more stable because of labels, such as AuNPs and 
fluorescein isothiocyanate on a paper-based diagnos-
tic platform, which makes it more suitable for commer-
cialization. The utilization of nanoparticles as labels has 
gained attention in developing rapid diagnostic test kits 
for improved diagnosis and treatment. The conventional 
LFIA device are generally composed of three major parts, 
i.e., substrate based on papers, antibodies or antigens as 
detection element and reporters as signal-transforming 
element (Fig.  6). The fabricated structure, principle and 
detection mechanism of LFIA are also shown in Fig.  6. 
The structure of LFIA generally consists of sample pad, 
conjugated pad, test pad, absorbent pad and backing pad. 
When an assay is carried out on a LFIA, a small volume 
of sample is dropped onto the pad, migrates on the con-
jugated pad, then carries conjugated particles to the test 
pad. Target such as in the given sample are recognized 
and bonded with detection antibodies on reporter sur-
face in conjugated pad, where complexes interact with 
capture antibodies on test line and free reporters bound 
on control line. LFIA with flow-through immunoreactiv-
ity on a Nitrocellulose membrane specifically recognizes 
SARS-CoV-2 antigens and antibodies and produces an 
optical signal visible to the naked eye. The control line is 
designed to improve the specificity of the assay and thus 
avoid false negatives.

The key issue of LFIA is the relatively lower detection 
sensitivity and efficiency that still needs further improve-
ment. Notably, nanomaterials are a decisive factor and 
a significant contributor to improve the performance 
of COVID-19 rapid diagnostic kits [90]. Peng et al. [91] 
enhanced the sensitivity by depositing copper on AuNPs-
labeled LFIA test papers, resulting in a detection limit of 
10 pg/mL for this RAT. Szekely et al. [92] combined car-
boxy gold nanoshells with antibodies to form stable con-
jugates to target low mutation rate ‘N’ to obtain a rapid 
diagnostic test kit with sensitivity comparable to RT-PCR. 
Lee et al. [93] developed an LFIA-based sandwich immu-
noassay for determination of antibodies to SARS-CoV-2, 
using colored cellulose nanobeads to label secondary 
antibodies in the sandwich structure to reflect the pres-
ence of antibodies to neo-coronavirus. Chen et  al. [94] 
successfully labeled ‘N’ with selenium nanoparticles and 
developed a rapid LFIA-based test for detecting antibod-
ies to SARS-CoV-2 with results readable within 10 min. 
Zhang et al. [95] reported two highly sensitive LFIAs for 
the detection of SARS-CoV-2 receptor binding domain 
(RBD) and ‘N’ using AIE luminophores with good optical 
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properties and less susceptibility as a fluorescent label. 
Duan et  al. [96] applied ratiometric fluorescent analy-
sis for dual-detection LFIA for the first time, using car-
boxyl-functionalized Europium chelate nanoparticles to 
label the RBD and set up human angiotensin-converting 
enzyme 2 (hACE2), which can bind to RBD as a calibra-
tion line. Their results showed higher precision and sensi-
tivity with a wider dynamic linear range for Ab detection. 
Dighe et al. [97] used antisense oligonucleotides labeled 
with 6-carboxyfluorescein and biotin to specifically iden-
tify SARS-CoV-2 genes as probes using AuNPs capped 
with cysteamine as control signals to improve the sensi-
tivity of this LFA-based detection of SARS-CoV-2 RNA. 
The possible downside of this approach is lower sensitiv-
ity and false positives [98–100]. Therefore, a top priority 
is to develop highly sensitive LFIA-based rapid detection 
kits. LFIA test strips are considered the economical alter-
native for the instant diagnosis of COVID-19 in public 
health centre [198]. The compositions and properties of 
these components are closely related to the performance 
of paper-based POC immunoassays. (e.g., traditional 
paper and emerging paper materials) and principles (e.g., 
interface). More research is focused on promoting high-
throughput immune-analyzers for mass screening. The 
sensing principle involves detecting analytes (could be an 

Ag or Ab) with the help of secondary antibodies conju-
gated with labels such as gold nanoparticles, fluorescent 
molecules and quantum dots, promoting visual sensing 
of color changes.

The key issue of LFIA is the relatively lower detection 
sensitivity and efficiency that still needs further improve-
ment. The biosensor for SARS-CoV-2 virus or other tar-
gets based on LFIA with lower prices, better stability and 
lower detection limit. There is no doubt about LFIA will 
bring a huge effect to the present POCT market.

LFIA-based rapid diagnostic test kits are now commer-
cially available with the form of rapid diagnostic kits on 
the market, most of which are LFIA-based RATs. Com-
pared to RATs, rapid antibody test kits are inferior as 
a diagnostic tool but they could be used as a screening 
tool [101, 102]. Some investigators evaluated the limits of 
detection (LOD) of different kits and showed that most 
of them are sensitive to detect SARS-CoV-2 [103–106]. 
Many researchers have compared and evaluated these 
kits with PCR and found that almost all kits on the mar-
ket have 100% specificity, but sensitivity varies widely, 
with only a very few having relatively higher sensitivity 
than others [107]. The sensitivity of RAT highly depends 
on the viral load and high viral loads leading a sensitivity 
of over 90% for RAT [108]. Table 1 indicates that several 

Fig. 6 Schematics of a typical LIFA for COVID-19 diagnostics. a Components of a LIFA test kit. b Detection principles of Ag test and Ab tests. c 
Mechanisms for the functioning of LFIA. Reprinted with permission from ref 181.  Copyright 2022 Royal Society of Chemistry
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antigen detection kits are currently available on the mar-
ket: STANDARD Q COVID-19 Ag tests (SD Biosensor 
Inc., Korea),  Panbio™ COVID-19 Ag Rapid Test Device 
(Abbott, Germany), etc. Table 1 also shows that the target 
of the RATs is ‘N’ and the detection time is mostly around 

15 min. It has high sensitivity and meets WHO require-
ments (at least 80% sensitivity and 97% specificity com-
pared to RT-qPCR) in symptomatic patients or exposed 
individuals. However, for asymptomatic populations 
or areas with low infection rates, the sensitivity is not 

Table 1 Evaluation data against commercially available LIFA rapid test kit

Kit Manufacturer Country of 
manufacturer Target Sample type Sensitivity 

%
Specificity

%
Turnaround 

time Subjects Reference 

STANDARD Q 

COVID-19 Ag tests 

SD Biosensor 

Inc. 
Korea N 

nasopharyngeal  

swabs 
81.7 100 15min 

Non-random 

sample in the 

hospital 
[114]

nasal swabs 77.5 100 15min 

nasal swabs 79.84 100 15min 

presence of 

symptoms 

or 

exposure 

[110]

nasopharyngeal  

swabs 
65.3 99.1 15min 

presence of 

symptoms 

or 

exposure 

[111]

nasopharyngeal  

swabs 
68 100 15min 

Non-random 

sample 
[115]

STANDARD F 

COVID-19 Ag FIA 

nasopharyngeal 

swabs
90.6 96.9 30min 

presence of 

symptoms
[116]

nasopharyngeal 

swabs 
67.1 89.3 15min 

presence of 

symptoms 

or 

exposure 

[111]

Panbio™ 

COVID-19 Ag 

Rapid Test Device 

Abbott Germany N 

nasopharyngeal  

swabs 
57.7 100 15min 

random 

samples 
[117]

Panbio COVID-19 

Ag Rapid Test 

Device 

nasal swabs 81.42 99.64 15min 

presence of 

symptoms 

or 

exposure 

[110]

Abbott panbio 
COVID-19 antigen 

rapid test 

device 

nasal swabs 82.1 99.1 15min 
mildly 

symptomatic 
[118]

COVID-19 Ag 

Respir-Strip 

Coris 

Bioconcept 
Belgium N 

nasopharyngeal 

swabs 
62 100 30min Random 

sample in the 

hospital 
[119]

coronavirus antigen 

rapid test cassette 

Healgen 

Scientific 
USA N 

nasopharyngeal  

swabs 
88 100 15min 

SOFIA SARS 

Antigen FIA 

Quidel 

Corporation 
USA N 

nasopharyngeal 

swabs
93.8 96.9 15min 

presence of 

symptoms
[116]

Novel Coronavirus 

2019-nCoV Antigen 

Beijing Hotgen 

Biotech 
China N 

nasal swabs and 

nasopharyngeal 
88.2 100 15min 

presence of 

symptoms 
[120]

Test (Colloidal 

Gold) 

samples 

Finecare TM 2019-

nCOV Anti- 

body test and its 

reader (Model No.: 

FS-1 13) 

Guangzhou 

Wondfo 

Biotech Co. 

China Ab serum samples 92 100 15min 
Non-random 

sample 
[121]

BD Veritor 
Becton-

Dickenson 
USA —— 

anterior nares 

swab 
78 99.5 15min 

Non-random 

sample 
[115]

Biocredit Covid-19 

Ag Detection Kit 
RapiGen Korea 

nasopharyngeal  

swabs 
45.8 100 10~30min 

community-

dwelling 

individuals 
[122]

SARS-CoV-2 Ag 

Test 
Certest Biotec Spain 

nasopharyngeal  

swabs 
64.2 97.7 10~30min 

SARS-CoV-2 Rapid 

Antigen Test 

SD Biosensor 

Inc. 
Korea 

nasopharyngeal  

swabs 
79 100 10~30min 

the COVID-19 Ag-

RDT assay 
YHLO China N 

nasopharyngeal  

swabs 
43.37 100 15min 

Non-

symptomatic 
[123]

Wesail COVID-19 

antigen test kit 
—— China N 

respiratory 

samples
70 100 15min 

Non-random 

sample
[124]

WhistlingTM 2019-

nCoV Saliva Ag 

Easy Test 

Guangzhou 

Decheng 

Biotechnology 

CO. 

China N saliva samples 9.1 100 10min 

presence of 

symptoms 
[125]

V-ChekTM 2019-

nCoV Saliva Rapid 

Test Card (Lollipop 

Test) 

Guangzhou 

Decheng 

Biotechnology 

CO. 

China N saliva samples 7.7 100 10min 
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comparable to that of RT-qPCR [109]. It is worth noting 
that although RAT sensitivity is lower compared to RT-
qPCR, the use of RAT will reduce much of the burden. 
In the near future, RAT may shorten the isolation time 
in the face of a huge number of people needs to be tested 
[110, 111]. The collection of samples from different sites 
(nasopharyngeal swabs, nasal swabs, and saliva) also had 
a greater effect on sensitivity, with nasopharyngeal swabs 
having the best sensitivity and saliva having the worst 
sensitivity. Even though the sensitivity of saliva is poor, it 
can reduce the pain of the subject during sampling, so it 
makes sense to develop a highly sensitive saliva test kit. In 
addition, combinatorial antigen test kits enable the com-
bination of two antigen test kits, which have been shown 
to increase sensitivity [112]. The sensitivity of the avail-
able RATs has been reduced for mutant strains, but they 
are still an irreplaceable screening tool because of their 
high efficiency [113]. In general, commercially available 
RATs are highly variable for various reasons including 
viral load, variant strains, target population, etc. despite 
their outstanding high efficiency.

In the critical context LFIA has been commonly 
used for POCT of SARS-CoV-2 due to its low cost 
and portability, which could be an instrumental fac-
tor in the successful fight against the outbreak [182]. 
Although LFIA-based rapid test kits can fulfill the cri-
teria for POCT, it still confronts some challenges such 
as improved sensitivity, poor stability and inability to 
detect nucleic acids [29]. Similarly, NAAT-based SARS-
CoV-2 POCT tends to be used in healthcare settings 
rather than for self-testing [183]. Accordingly, novel 
ideas for better use in SARS-CoV-2 POCT have been 
proposed. For example, Ran Liu et al. [184] combined a 
CRISPR-Cas12-based assay for nucleic acids and a port-
able meter, and finally have refined the detection of N in 
the system, which enables patients to quantitatively test 
for a wide range of SARS-CoV-2 markers at home with 
a portable device. It is worth noting that SARS-CoV-2 
POCT, centered on biosensing that is free from labora-
tory dependence, is being developed with great enthu-
siasm and has the potential to be generalized in the 
future. The structural design using biosensing and the 
introduction of smartphones can satisfy the demands of 
POCT even more, but its commercialization needs to 
take into account cost, biosafety, data security, and sta-
bility [185]. In addition, microfluidic chip-based POCT 
for SARS-CoV-2 is considered an ideal diagnostic tool 
for pandemic response. Its small dimensions and port-
ability, high detection efficiency and considerable com-
mercialization value have increased its popularity, which 
has led to the development of a variety of microfluidic 
platform-based designs and assays including nucleic acid 
amplification, immunosensors and biosensors [186–188]. 

Overall, POCT has significant implications for pandem-
ics similar to SARS-CoV-2, and despite the development 
of multiple portable devices for POCT in addition to 
LFIA, there are serious challenges in actual commercial 
development.

3.3  Biosensors
3.3.1  Electrochemical biosensor
Electrochemical biosensors are capable of rapidly con-
verting biological signals into electrical signals. They 
can provide enhanced selectivity and sensitivity and are 
widely used in virus detection because of shorter reac-
tion times and use of less sample volume. Even so, there 
is still a huge challenge regarding its signal amplifica-
tion, stability, and commercialization [26, 126]. Among 
the electrochemical biosensors to detect SARS-CoV-2, 
immunoimpedance biosensors for Ag and Ab detection 
are preferred (Fig. 7a). Its sensitivity could be enhanced 
by modifying the electrodes using nanoscale materials 
with good conductivity such as AuNPs and single-walled 
carbon nanotubes [127, 128]. Screen-printed carbon 
electrode (SPCE)-based biosensors are compact, fast, 
and low cost with the value of potential commercializa-
tion [129, 130]. Haghayegh et  al. [53] modified buffer-
based zinc oxide/reduced graphene oxide on the SPCE 
surface to increase the electrical signal, and this RAT was 
able to detect ‘N’ within 15 min. Soto and Orozco [131] 
developed an immunoimpedance biosensor by modify-
ing functionalized processed peptides capable of specifi-
cally recognizing ‘S’ on screen-printed gold electrodes. 
Polypyrrole is favored by researchers for its better sur-
face area, high electrical conductivity and electrochemi-
cal activity, and its synthesized nanotubular form with 
better properties than the spherical form as a substrate 
[47]. Mehmandoust et al. [55] synthesized  SiO2@UiO-66 
nanocomposite as a metal–organic framework and modi-
fied it on SPCE to greatly improve the conductivity of the 
electrode, which is capable of sensitively detecting SARS-
CoV-2 Ag. The road to commercialization is not far away 
with the increasing development of screen-printed, elec-
trode-based impedance immunosensors.

For current and voltage biosensors, biosensor sensitiv-
ity and convenience can also be improved by modifying 
materials with excellent properties or selecting materials 
with better structural properties as substrates. Zhao et al. 
[54] modified colloidal quantum dots with increased sur-
face area and dangling bonds on the electrode to firmly 
adsorb the SARS-CoV-2 Ag, and the electrochemical bio-
sensor was able to detect SARS-CoV-2 antibodies in less 
than one minute. Liv and Kayaba [50] prepared a gold 
cluster and Ag modified on a glassy carbon electrode 
(GCE) for the detection of antibodies to SARS-CoV-2. 
Kim et al. [132] developed a RAT with a LOD of 1.17 fg/
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mL by immobilizing an Ab on a dual-gate oxide semicon-
ductor thin-film transistor that amplifies electrical sig-
nals as a substrate. Whether voltage biosensors, current 
biosensors or impedance biosensors, most of them use 
antigen–antibody specific binding to detect Ag or Ab.

However, the electrochemical biosensor-based 
approach to detect SARS-CoV-2 is not limited to Ag and 
Ab detection and can directly detect RNA without rely-
ing on NAAT. Heo et al. [133] immobilized the reporter 
RNA labeled with methylene blue and biotin labeled 
ends on a SPCE modified with nanocomposites and gold 
nanoflowers to form an electrochemical aptamer biosen-
sor for the detection of SARS-CoV-2 RNA (Fig. 7b). The 
biosensor incorporated CRISPR-Cas13 and formed a 

complex of the target RNA with Cas13a-crRNA, which 
cleaved the reporter RNA immobilized on the electrode 
to produce a change in the electrical signal.

To date, an increasing number of electrochemical bio-
sensors emerged for the detection of SARS-CoV-2. Park 
et  al. [134] applied multiple vertically paired electrodes 
to develop a capacitive biosensor for detection of SARS-
CoV-2 Ag with higher sensitivity than conventional 
capacitive biosensors based on interdigitated electrode. 
Jiang et  al. [135] modified a magnetic capture probe on 
a screen-printed gold electrode and then hybridized 
Ru(bpy)3

2+-labeled signal probe with electrochemilu-
minescence (ECL) signal to the SARS-CoV-2 RNA. The 
obtained biosensor could specifically identify the RNA 
and generate a highly sensitive ECL signal with the detec-
tion range of 0.1 fM to 10  µM. McClements et  al. [48] 
used molecularly imprinted polymer nanoparticles to 
create an imprint of SARS-CoV-2 Ag and modified it on 
a screen-printed electrode to detect the Ag, a molecu-
larly imprinted biosensor that is more stable and reliable 
and can deliver results within 15 min. Yet these biosen-
sors were apparently developed without attention to their 
commercialization possibilities despite their outstanding 
sensitivity and innovation.

Field-effect transistor-based biosensors (BioFETs) are 
highly sensitive, have a wide detection range, and can be 
made ultra-sensitive with high electron mobility transis-
tors. However, they are often limited by their high cost, 
poor reproducibility, and lack of portability [136–138]. 
Researchers have combined BioFET with enzymatic reac-
tions to collect electrical signals generated by changes in 
pH of the solution to detect SARS-CoV-2 Ag or antibod-
ies, and have found that the application of phosphatase 
is more stable than the application of urease [139]. 
Chen et  al. [140] have developed a portable biosensor 
for in situ detection of N in saliva based on an electrical 
double-layer gated BioFET system, which can be read on 
an iPhone through a portable reader. Electromechani-
cal biosensors formed by the combination of microe-
lectromechanical systems and field-effect transistors 
have ultra-high sensitivity. Researchers have developed 
BioFET for the detection of SARS-CoV-2 RNA using car-
bon nanotubes as the substrate and RNA hybridization as 
the signal generator [141]. Wang et  al. [142] created an 
ultra-fast and portable electromechanical aptamer bio-
sensor for ultra-fast detection of SARS-CoV-2 RNA that 
does not require nucleic acid amplification by using flex-
ible single-stranded DNA linked by rigid tetrahedral dou-
ble-stranded DNA as a probe. Because of its important 
entry level among all electrochemical biosensors, devel-
opment of portable and low-cost commercially available 
BioFETs have attracted a lot of researchers.

Fig. 7 Biosensor platforms for detection of SARS-CoV-2. a Biosensors 
for Ag and Ab detection. b One electrochemical biosensor for RNA 
detection. c One colorimetric biosensor for RNA detection
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3.3.2  Optical biosensors
The optical biosensors currently used for rapid detection 
of SARS-CoV-2 are colorimetric and immunofluores-
cent biosensors as well as biosensors based on spectro-
scopic techniques. The biggest advantage of colorimetric 
and immunofluorescence biosensors is that the results 
are usually visible to the naked eye (Fig.  7c). Mohamad 
Mahani et  al. [143] reported the FRET-based aptasen-
sor for interleukin-6 as a biomarker for COVID-19 pro-
gression using nitrogen-doped carbon quantum dots 
and gold nanoparticles. Alhadrami et  al. [144] reported 
a colorimetric biosensor of using a cotton swab as a sub-
strate to collect the detected S through the lactoferrin 
general capture agent, it could specifically bind an orange 
nanopolymer-modified Ab to produce an optical signa-
ture visible to the naked eye, which is available in 5 min 
and suitable for field detection. The label-free detection 
of SARS-CoV-2 spike protein is demonstrated by using 
slightly tapered no-core fiber (ST-NCF) functionalized 
with ACE2.The ACE2-immobilized ST-NCF sensor head 
was exposed to the samples of SARS-CoV-2 spike pro-
tein with concentrations ranging from 1 to 104  ng/mL 
[145]. Kang et al. [146] developed a hairpin structure of 
hACE2 mimetic peptide beacon, which has only a weak 
fluorescence signal due to the fluorescence resonance 
energy transfer effect in the normal state, and the hair-
pin structure is opened to generate a fluorescence signal 
when affected by S. The whole process could be com-
pleted within 3 h. These two types of biosensors are usu-
ally combined with LFIA to form the rapid detection kits 
mentioned in this paper. Feng Long constructed a new 
all-fiber Fresnel reflection microfluidic biosensor which 
was constructed through combining all-fiber optical sys-
tem, microfluidic chip, and multimode fiber bio-probe. 
The limits of detection of SARS-CoV-2IgM and SARS-
CoV-2 IgG were 0.82 ng/mL and 0.45 ng/mL, respectively 
[147].

The use of spectroscopic techniques such as dynamic 
light scattering and surface-enhanced Raman scatter-
ing (SERS), which are faster, more economical, and 
more accurate than traditional detection methods, for 
the detection of SARS-CoV-2 is just around the corner 
[148–150]. Kawasaki et al. [151] used an imprinted pho-
tonic crystal film as a substrate and immobilized anti-
bodies on its surface to identify Ag with high sensitivity, 
and finally performed simple reflectance measurements 
by an optical device equipped with a spectrometer in a 
smartphone. Hadi et  al. [152] combined U-Bent plastic 
optical fiber with nanogold to immobilize the Ab and 
used it as a probe to build a fiber optic biosensor, and 
finally diagnosed the presence of N by the change of the 
biosensor optical intensity. Optical biosensors based on 
surface plasmon resonance are increasingly used for the 

detection of new coronaviruses due to their high sensi-
tivity [153]. Rahmati et  al. [154] reported a new detec-
tion strategy which was used to improve the sensitivity 
of SARS-CoV-2 spike receptor-binding domain based on 
a lateral flow immunoassay platform utilizing a delayed 
hydrophobic barrier fabricated. Zheng et  al. [52] devel-
oped a localized surface plasmon resonance (LSPR) bio-
sensor based on a vertical microcavity with nano-porous 
gold modified on its surface and immobilized with anti-
bodies to the SARS-CoV-2, which generates an optical 
signal when the target Ag is captured by the biosensor. 
Liang et  al. [155] combined the LSPR biosensor with 
optical imaging and artificial intelligence methods to be 
able to detect new coronaviruses within 12  min. These 
types of optical biosensors are moving towards portabil-
ity and commercialization because of their high sensi-
tivity, possibility to save time, and low cost compared to 
electrochemical biosensors.

3.3.3  Nanomaterials for biosensors
3.3.3.1 Variety of  nanomaterials Biosensors tremen-
dously advanced for the detection of virus, pathogens and 
microorganisms [156]. Nanomaterials commonly used 
in the fabrication of biosensors to improve their perfor-
mance [157], where they can improve the true positive 
rate of biosensors and in the green synthesis to make 
biosensors sustainable and environmentally compatible 
[158, 159]. Figure 4 shows various nanomaterials used as 
biosensors for the detection of SARS-CoV-2. Noble metal 
and inorganic metal oxides nanoparticles assume an 
important role in improving sensitivity and accuracy, such 
as nano-gold, nano-silver, and nano-zinc oxide [160–162], 
but bimetallic nanomaterials can greatly increase the per-
formance of biosensors compared to the monometallic 
as excellent signal amplifiers, and some are even called 
nanozyme because of their catalytic properties [163]. The 
stability and high activity of such nanozyme also make it 
convenient to store them for a long time, which makes it 
possible to use them as specific identifiers for the prepa-
ration of biosensors [164]. Nevertheless, low biocompat-
ibility is a fatal drawback for metallic materials, the use 
of carbon-based materials can overcome this limitation 
and it has been shown that the use of carbon materials 
as substrates is a potential area of rapid development for 
biosensors [160, 165, 166].

When it comes to carbon-based materials, carbon 
nanotubes with high specific surface area, good electri-
cal and thermal conductivity have been widely used for 
biosensors [167], especially, graphene nanomaterials 
with excellent biocompatibility have become a new buzz 
with vast attention, and graphene-based electrochemi-
cal biosensors with ultra-precise detection capabilities 
have been heavily worked on [168–172]. Graphene and 
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its derivatives are undoubtedly desirable materials for the 
construction of efficient virus detection biosensors. Wei 
Li Ang et  al. [56] discussed the use of graphene nano-
colloids as electroactive materials to develop an elec-
trochemical biosensor for the detection of SARS-CoV-2 
RNA in the range of  10–10  M to  10–5  M. Furthermore, 
MXenes with unique two-dimensional structure and 
good electrical conductivity and ductility, have become 
attractive materials in the development of biosensors, 
but they have synthetic material waste disposal and mass 
production stability problems still to be solved [173, 174].

3.3.3.2 Application of nanomaterials Nanomaterials are 
applied in the diagnosis of COVID-19 through portable 
colorimetric devices and biosensors with various trans-
duction mechanisms. AuNPs and its complexes have been 
widely used in rapid test kits and colorimetric sensors to 
make the test results visible to the naked eye. Precious 
metals, carbon-based nanomaterials and conductive pol-
ymers with favorable electrical conductivity as well as the 
limitations and accuracy of detection enhance the electro-
chemical activity of electrochemical sensors such as vol-
tammetric and impedance biosensors [201]. For optical 
sensors such as FRET, SERS and LSPR sensors nanoma-
terials with excellent optical properties have great appli-
cations [52, 143, 148]. Besides, nanomaterials have been 
continuously utilized in sensors such as ECL sensors, FET 
sensors, and so on [203]. Notably, magnetic nanomateri-
als were successfully applied to amplifier of genome. S B. 
Somvanshi et al. [206]  report the fabrication and applica-
tion of surface-functionalized magnetic zinc ferrate nano-
particles for the rapid detection of SARS-CoV-2 RNA, and 
the proposed model allows RNA extraction from multiple 
samples. It has to be recognized that nanomaterials are 
being applied to a wider category of biosensors.

3.3.3.3 Function of nanomaterials Five kinds of nanoma-
terials including nanoparticles, nanowires and nanorods, 
carbon nanotubes, and quantum dots have been currently 
well utilized in biosensors to improve sensing efficiency 
and diagnostic sensitivity [167]. Nanomaterials in bio-
sensors mainly take advantage of structural, conductive, 
and optical properties to obtain a larger specific surface 
area as well as to increase the rate of electron transfer, 
similarly, nanoparticles such as AuNPs are often used as 
signal transducers or nano-lanterns to become an impor-
tant component in electrochemical and optical sensors 
[189–192].

With the advancement of nanotechnology, more and 
more functions of nanomaterials are being developed 
for the construction of biosensors and play an even 
more irreplaceable function in the diagnosis of COVID-
19. Nanomaterials with excellent construction can 

contain and modify biomolecules in a superior manner. 
Nanomembrane graphene was synthesized by binding 
AuNPs and nano-islands on reduced graphene oxide, 
which is capable of remarkable binding of S and Ab with 
an affinity constant of 0.93 × 109   M−1 [193]. Andrei Pli-
govka et  al. synthesized complexly structured two-level 
3D cylindrical nanomembranes by stepwise oxidation, 
and the optical properties of this material may have great 
potential for application in label-free optical biosensors 
[194]. Secondly, nanomaterials possessing specificity can 
serve as receptors instead of less stable biomolecules as 
core members of the sensing mechanism. Biosensors 
based on biomimetic nanomaterials as well as molecu-
larly imprinted nano-polymers as recognition systems 
for the detection of SARS-CoV-2 have been developed, 
which opens a new chapter in the integration of nanoma-
terials into biosensors [195, 196]. In addition, nanofiber 
membranes fabricated based on electrostatic textile tech-
nology are fine flexible substrates for wearable sensors for 
diagnosis of COVID-19 [197]. Altogether, nanomaterials 
in future research may act as substrates, receptors, signal 
transducers and powerful bio-binders thus becoming an 
integral part of biosensors.

4  Conclusion and future perspectives
To date, methods for rapid detection of SARS-CoV-2 
fall into three broad categories: NAATs, rapid diagnos-
tic test kits, and biosensors. NAAT based methods were 
mainly used to detect SARS-CoV-2 RNA by reducing 
the required time to improve PCR or using more rapid 
nucleic acid amplification techniques such as LAMP, RT-
HDA, and RPA. There are two types of rapid diagnostic 
test kits, one that utilizes ELISA (which usually requires 
labeling with enzymes) and another that uses LFIA 
(which tends to use more stable chemical labels). While 
ELISA is only suitable for detection of SARS-CoV-2 anti-
gens and antibodies, LFIA is dominated by RAT although 
it is also proposed for RNA detection. For detection of 
variants, in contrast, researchers tend to use less muta-
ble N as the target of RAT thus avoiding false negatives. 
Biosensors are the preferred detection platform for 
researchers due to their good sensitivity and selectivity as 
well as the short detection period. They could be divided 
into electrochemical biosensors and optical biosensors 
depending on the output signal. Their targets could be 
Ag, antibodies, and RNA. With the continuous develop-
ment of biosensors, a variety of biosensor platforms have 
emerged for the detection of SARS-CoV-2, among which 
BioFET, screen-printed sensors, and optical biosensors 
based on SPR are more favorable and generally used.

The performance of biosensors could be affected by 
different sensing methods and modification materi-
als. First of all, receptors such as antigens, antibodies, 
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aptamers, and molecularly imprinted polymers as recog-
nition systems targeting SARS-CoV-2 play a decisive role 
in the performance of the sensors. Although immune 
response-based sensors have been developed and are well 
established for the diagnosis of COVID-19, the inability 
to detect RNA as well as poorly stabilized antigens and 
antibodies has been a hindrance to development. In con-
trast, more stable aptamer sensors are robust in detect-
ing different types of SARS-CoV-2 biomarkers (RNA and 
Ag) and have excellent specificity to reduce false positives 
[199]. Table 2 shows the advantages and disadvantages of 
the two bioreceptors. The advantages of aptamers as bio-
receptors are the ability to target a variety of biomarkers, 
easily synthesized in large quantities and great stability, 
whereas high specificity and short time-consumption are 
the benefits of recognition based on immune response 
[198]. Different from the above bioreceptors, easily syn-
thesized polymers containing specific molecular imprints 
for targeting SARS-CoV-2 are less susceptible to environ-
mental factors and thus greatly improve sensor stability, 
yet such asynchronous sensors have not been extensively 
investigated [200]. The biosensors need to compensate 
for the disadvantages and develop further research direc-
tions to develop cost-effective POCT for the diagnosis of 
COVID-19. For another, nanotechnology is a common 
means to improve biosensor performance. For example, 
AuNPs are often used as labels in optical biosensors to 
improve biosensor sensitivity [176–179]. Nanomaterials 
in future research may function as substrates, receptors, 
signal transducers and powerful bio-binders thus becom-
ing an integral part of biosensors. For portability, the 
combination of microfluidics and screen-printing tech-
nology make the biosensor detection platform smaller 
and more reliable even using a smartphone, making it 
more suitable for rapid detection in the field.

We have compared the above rapid detection methods 
for SARS-CoV-2 and the performance of the different 
biosensors (Table 3). For the detection of RNA, we found 
that NAAT-based methods were more sensitive with 

lower detection limits, but the biosensor-based method 
has the shortest time of 4  min, while for the detec-
tion of Ag and antibodies, the biosensor platform has 
both higher sensitivity and much shorter time (1  min). 
Therefore, the biosensor platform is far ahead of other 
methods in terms of time. In addition, many of the bio-
sensor-based assays are capable of quantitative analysis 
of COVID-19, which is impossible with rapid diagnostic 
test kits.

Among the methods for rapid detection of SARS-
CoV-2, the biosensor platform is a promising diagnostic 
method for future applications because it can accurately 
detect SARS-CoV-2 and variants in very short time and 
does not require expensive instrumentation and special-
ized technicians. Despite superior performance of the 
biosensor in all aspects, the problem of commercializa-
tion still exists. The cost of biosensor fabrication, the dif-
ficulty of mass production, and stability in use all need 
to be considered for widespread commercialization. 
Advances in nanotechnology within the last few decades 
have resulted in major improvements in electrochemi-
cal biosensing making them simple and efficient tools 
to measure the concentration of analytes and the detec-
tion of pathogens. Moreover, further work has been 
performed to miniaturize biosensors and make them 
portable, cost-effective, and reduce the sample size. These 
improvements have made electrochemical biosensors 
more and more attractive for developing POC tools with 
the help of development of nanotechnology [180]. More 
efforts have been put on improving sensitivity, enhancing 
portability, and reducing costs.

Compared with related categories [201–203], we focus 
on biosensors for rapid detection of SARS-CoV-2 based 
on nucleic acid amplification and LFIA to find novel 
directions from already established diagnostic technolo-
gies. The innovation of this review is the application, 
development and perspectives of nanomaterials in the 
rapid detection of biosensors. In particular, our perspec-
tive is more oriented towards the pragmatic application 

Table 2 The advantages and disadvantages analysis of Ag/Ab and aptamers as bioreceptors

Bioreceptor Principle Target LOD Advantages Disadvantages POC References

Aptamers Specificity of DNA 
aptamers

RNA and Ag RNA: 44 ag/mL
Ag: 37.5 pg/mL

Simplicity, flexibil-
ity, strong stability, 
and easily syn-
thesized in large 
quantities

False positives, 
commercialized 
kits still need 
development

Clinics and labora-
tories

[133, 141, 142, 198, 
199]

Ag or Ab Immune response Ab or Ag Ab: 9.3 ag/mL
Ag: 3.9 fg/mL

Simplicity, flexibil-
ity, speed, and high 
specificity

False positives, 
poor stability 
and commercial-
ized kits still need 
development

Public, clinics 
and laboratories

[32, 43, 48, 50, 132, 
153]
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Table 3 Comparing the performance of rapid detection methods for SARS-CoV-2

Types Methods Target Details LOD and ROD Duration References

Based on NAAT RT-qPCR RNA DrectDetect (Absence 
of RNA extraction)

LOD: 1.67 copies/μL 1 ~ 2 h [59]

RT-qPCR RNA Integration with Big Data – 3 ~ 4 h [60]

RT-qPCR RNA Water bath PCR and LFA LOD: 8.44 copies/μL 45 min [62]

RT-qPCR RNA The SalivaDirect protocol 
and the Ubiquitome 
Liberty16 system

LOD: 12 copies/μL 1 h [66]

RT-qPCR Variants RNA Integration with ARMS LOD: 1 copy/μL 2.5 h [70]

RT-qPCR Variants RNA Microfluidic chip-based LOD: 10 copies/reaction 40 min [73]

RT-LAMP RNA Combined with CRISPR-
Cas12

LOD: 1 copy/μL 32 min [74]

RT-LAMP RNA Particle imaging tech-
nique

LOD: 350 particles/ mL 35 min [76]

RT-HDA RNA Does not require thermal 
cycling

LOD: 6 copies/μL 2 h [78]

RPA RNA Integrated microdroplet 
array detection platform

LOD: 0.42 copy/μL 6–12 min [80]

PER RNA Combined with CRISPR-
Cas12

LOD: 1.3 pM 40 min [82]

Rapid diagnostic test kit ELISA Ab Using microfluidic tech-
nology

– – [87]

ELISA Ab Paper-based LOD: 9 ng/µL
ROD: 1 ng/µL-100 ng/µL

30 min [88]

ELISA Ag Double antibody sand-
wich method

LOD: 5 pg/µL 30 min [89]

LFIA Ag Depositing copper 
on the AuNPs-labeled 
LIFA test paper

LOD: 10 pg/mL  < 20 min [91]

LFIA Ag(N) Carboxy Gold Nanoshell-
labeled

LOD: 156 pg/mL  < 15 min [92]

LFIA Ag(N) Colored cellulose 
nanobeads-labeled, dou-
ble antibody sandwich 
method

LOD: 1 ng/mL 15 min [93]

LFIA Ab Selenium nanoparticles-
labeled

LOD: 20 ng/mL 10 min [94]

LFIA Ag(N) AIE luminophores-labeled LOD: 7.2 ng/mL  < 20 min [95]

LFIA Ab Ratiometric fluorescent 
analysis, Carboxyl-
functionalized Europium 
chelate nanoparticles

LOD: 7.6 IU/mL
ROD: 12.5-1000 IU/mL

15 min [96]

LFA RNA 6-carboxyfluorescein-
labeled, AuNPs capped 
with cysteamine as a con-
trol signal

LOD: 0.02 copy/μL  < 30 min [97]



Page 16 of 24Liu et al. Nano Convergence            (2024) 11:2 

Table 3 (continued)

Types Methods Target Details LOD and ROD Duration References

Electrochemical biosen-
sors

Immunoimpedance 
biosensor

Ag(S) Substrate: polyethylene 
terephthalate
Modifiers: single-walled 
carbon nanotubes

LOD: 350 genome equiva-
lents/mL

15 min [128]

Immunoimpedance 
biosensor

Ag(N) Substrate: SPCE
Modifiers: zinc oxide/
reducedgraphene oxide

LOD: 21 fg/mL
ROD: 1–104 pg/mL

 < 15 min [53]

Immunoimpedance 
biosensor

Ag(S) Substrate: SPGE
functionalized processed 
peptides as a reporter

LOD: 18.2 ng/mL
ROD: 0.05–3 µg/mL

15 min [131]

Immunoimpedance 
biosensor

Ab Modifiers: PPy-NTs/AuNPs LOD: 0.386 ng/mL
ROD: 0.4–8 ng/mL

 < 1 h [47]

Immunoimpedance 
biosensor

Ag(S) Substrate: SPCE
Modifiers: SiO2@UiO-66

LOD: 100 fg/mL
ROD: 100 fg/mL -10 ng/
mL

 < 5 min [55]

Electrochemical biosensor Ab Modifiers: colloidal quan-
tum dots

LOD: 7.73 ng/mL
ROD: 50–1250 ng/mL

 < 1 min [54]

electrochemical biosensor Ab Substrate: GCE
Modifiers: gold cluster

LOD: 9.3 ag/mL
ROD: 0.1 fg-10 pg/mL

 < 20 min [50]

Electrochemical biosensor Ag(S) Substrate: dual-gate oxide 
semiconductor thin-film 
transistor

LOD: 1.17 fg/mL
ROD: 1 fg/mL -1 ng/mL

1 min [132]

Electrochemical biosensor RNA Substrate: SPCE
Modifiers: gold nano-
flowers
combined with CRISPR-
Cas13a

LOD: 4.4 ×  10–2 fg/mL
ROD:  10–1-105 fg/mL

1.5 h [133]

ECL biosensor RNA Substrate: SPCE
Ru(bpy)32 + -labeled

LOD: 0.1 fM
ROD: 0.1 fM-10 µM

 < 30 min [135]

Molecularly imprinted 
biosensor

Ag(RBD) Substrate: SPCE
Modifiers: molecularly 
imprinted polymer nano-
particles

LOD: 3.9 fg/mL
ROD: 1 fg/mL-10 pg/mL

 < 15 min [48]

BioFET Ag(N) based on an electrical 
double-layer gated BioFET 
system

LOD: 0.14 ng/mL
ROD: 0.4–400 ng/mL

 < 30 min [140]

BioFET RNA using flexible single-
stranded DNA linked 
byrigid tetrahedral 
double-stranded DNA 
as a probe

LOD: 0.02 copy/μL  < 4 min [142]
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in the context of the COVID-19 pandemic, i.e., we com-
pare and discuss already commercialized rapid test kits 
and describe emerging rapid tests with strong potential 
for commercialization. The application and development 
of diagnostic techniques in the context of a COVID-19 
pandemic may provide a reliable reference for respira-
tory-transmitted viruses such as influenza virus, measles 
virus, and varicella-zoster virus. In fact, sensor plat-
forms, which are considered to have great potential, have 
already been applied to the rapid detection of a variety 
of viruses other than SARS-CoV-2 [204, 205], and the 
novel sensing methods brought about by SARS-CoV-2 
may provide new insights into the diagnosis of other dis-
eases. We expect to accumulate experience in diagnostic 
techniques in the context of the COVID-19 pandemic in 
order to cope with future epidemics or outbreaks of novel 
viruses. Moreover, with the advancements in nanomate-
rial science and techniques, the novel coronavirus diag-
nosis will be updated in the coming time. The scope of 
development of a robust and rapid sensor for infectious 
diseases should be with successful commercialization 
and mass-scale production. In addition, the rapid assays 
of virus test results of patients could be recorded and 

researcher can monitor the health patients in real-time 
and take measures if necessary. It is conceivable that 
these biosensors will play a crucial role in controlling 
infectious diseases and public health. With this trend, the 
future will witness more breakthroughs and pioneering 
detection methods in attacking different viruses such as 
SARS-CoV-2.

Abbreviations
RT-qPCR  Reverse transcription-quantitative polymerase chain reaction
Ct  Cycle threshold
NAATs  Nucleic acid amplification technologies
LFA  Lateral flow assay
Ag  Antigen
Ab  Antibody
S  Spike protein
E  Envelope protein
M  Membrane protein
N  Nucleoside protein
RT-LAMP  Reverse transcriptase loop-mediated isothermal amplification
RAT   Rapid antigen test
Cq  Cycle of quantification
VOCs  Volatile organic compounds
Mpro  Main protease
AuNPs  Gold nanoparticles
dPCR  Digital PCR
RT-HAD  Reverse transcription helicase-dependent amplification

Table 3 (continued)

Types Methods Target Details LOD and ROD Duration References

Optical biosensors Colorimetric biosensor RNA AuNPs as a reporter, does 
not require sophisticated 
equipment

LOD: 0.5 ng  < 30 min [175]

Colorimetric biosensor Ag(S) Substrate: cotton swab 
orange nanopolymer-
labeled

LOD: 100 pfu/mL
ROD:  103–108 pfu/mL

5 min [144]

Colorimetric biosensor Mpro bivalent peptide as a rec-
ognizer and AuNPs 
as a reporter

LOD: 18.9 nM 10 min [51]

Immunofluorescence 
biosensor

Ag(S) hairpin structure of hACE2 
mimetic peptide beacon 
as a reporter

LOD: 4.0 ×  103 pfu /test  < 3 h [146]

Optical biosensor Ag(S) Substrate: imprinted pho-
tonic crystal film low cost 
(approximately USD 1)

LOD: 429 fg/mL
ROD: 1 pg/mL-100 ng/mL

 < 15 min [151]

Optical biosensor Ag(N) Combined U-Bent plastic 
optical fiber with nano-
gold to immobilize the Ab

–  < 15 min [152]

SPR biosensor Ag(S) Using laser external 
differential feedback inter-
ferometry

LOD: 0.08 pg/ mL
ROD:  10–2-103 ng/mL

 < 1 min [153]

LSPR biosensor Ag(S) Substrate: vertical micro-
cavity
Modifiers: nano-porous 
gold

LOD: 319 copies/mL  < 30 min [52]

LSPR biosensor Ag(RBD) Combined with optical 
imaging and artificial 
intelligence methods

LOD: 100 vp/mL
ROD: 125.28-106 vp/mL

 < 12 min [155]
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PER  Primer exchange reaction
ELISA  Enzyme-linked immunosorbent assay
LFIA  Lateral flow immunoassay
RBD  Receptor binding domain
hACE2  Human angiotensin-converting enzyme 2
LOD  Limits of detection
SPCE  Screen-printed carbon electrode
GCE  Glassy carbon electrode
ECL  Electrochemiluminescence
BioFETs  Field-effect transistor-based biosensors
ST-NCF  Slightly tapered no-core fiber
SERS  Surface-enhanced Raman scattering
LSPR  Localized surface plasmon resonance
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