Skip to main content

Table 1 Overview of properties of synthetic nanowires/nanotubes

From: Synthetic nanowire/nanotube-based solid substrates for controlled cell growth

 

Materials

Diameter

Controllability

Biomedical applications

Polymer nanofibers

Poly (e-caprolactone) (PCL)

0.01 ~ 100 μm

Diameter

Controlled cell growth (adhesion, migration, proliferation, differentiation) [14]–[22]

Polyaniline (PANi)

Structure (aligned, random)

Poly (L-lactic acid) (PLLA)

Surface functionalization

Polyethersulfone (PES)

Degradation

Poly (D,L-lactide-co-glycolide) (PLGA)

Elasticity

Composition

Carbon-based nanostructures

Signle wall carbon nanotube (swCNT) multi wall carbon nanotube (mwCNT)

1 ~ 2/2 ~ 100 nm

Diameter

Controlled cell growth (adhesion, migration, proliferation, differentiation) [26]–[36]

Structure (aligned, random, vertical)

Surface functionalization

Carbon nanofiber (CNF)

3.5 ~ 500 nm

Controlled cell growth (adhesion, migration, proliferation, differentiation) [39]–[41]

Inorganic nanowires/nanotubes

TiO2 nanotube

10 ~ 100 nm

Diameter

Controlled cell growth (adhesion, proliferation, differentiation) [46]–[48]

Orthopaedic implant [46]–[48]

ZnO nanowire

10 ~ 300 nm

Diameter

Controlled cell growth (adhesion, proliferation, differentiation) [55]–[57]

Structure (aligned, random, vertical)

GaP Nanowire

20 ~ 100 nm

Diameter

Controlled cell growth (adhesion, proliferation) [59]

Mechanosensing [58]

Ni nanowire

10 ~ 200 nm

Diameter

Controlled cell growth (adhesion, separation, positioning) [60],[61]

Structure (aligned, random)

Magnetic property

Au nanowire

3 ~ 100 nm

Diameter

Controlled cell growth (adhesion, differentiation) [63]

Surface functionalization

Si nanowire

3 ~ 500 nm

Diameter

Mechanosensing [10]

Electrical sensor [12],[43],[44]

Structure (aligned, random, vertical)

Intracellular delivery [42]

Surface functionalization