Skip to main content
Figure 2 | Nano Convergence

Figure 2

From: Interface engineering for high performance graphene electronic devices

Figure 2

Dry transfer using difference of adhesion energy between graphene/metal and graphene/target substrate. a, Illustration of graphene transfer using the mechanical delamination process and high-magnification SEM image of boundary of delamination. Reproduced with permission [53]. Copyright 2012, American Chemical Society. b, Raman spectra of the graphene-delaminated bare copper (the lower spectrum) and of the graphene-covered copper (the upper spectrum). Reproduced with permission [53]. Copyright 2012, American Chemical Society. c, Directly measured adhesion energy of graphene to neighboring materials (SiO2, PVP, and PMMA). Reproduced with permission [54]. Copyright 2013, AIP Publishing LLC. d, Transfer characteristics (IDS-VGS) of the graphene FETs fabricated using conventional wet transfer (black) method and dry transfer with PVP adhesive layer (red). Reproduced with permission [54]. Copyright 2013, AIP Publishing LLC. e, Charge density of the graphene FETs fabricated using conventional wet transfer (black) method and dry transfer with PVP adhesive layer (red). Reproduced with permission [54]. Copyright 2013, AIP Publishing LLC. f, Schematic description of the mechano-electro-thermal (MET) delamination process of graphene. Reproduced with permission [55]. Copyright 2014, John Wiley and Sons. g, Strong mechanical stability of MET graphene via demonstration of LED electrical circuit based on graphene/PET film using repeated detaching of 3M tape. Reproduced with permission [55]. Copyright 2014, John Wiley and Sons.

Back to article page