Skip to main content
Figure 5 | Nano Convergence

Figure 5

From: Interface engineering for high performance graphene electronic devices

Figure 5

h-BN and AlN as supporting substrates for graphene. a, Atomic structure of graphene and hexagonal boron nitride. b, Charge density map of graphene/BN and graphene/SiO2. Reproduced with permission [97]. Copyright 2011, American Chemical Society. c, Histogram of the height distribution (surface roughness) measured by AFM for SiO2 (black triangles), h-BN (red circles) and graphene-on-BN (blue squares). Reproduced with permission [92]. Copyright 2010, Nature Publishing Group. d, Temperature dependences of the resistivity at Vg-VDirac = 10 V for CVD-grown graphene/h-BN, mechanically transferred graphene/h-BN, and graphene on SiO2. Reproduced with permission [98]. Copyright 2013, John Wiley and Sons. e, Resistance versus applied gate voltage for CVD-grown graphene/h-BN, mechanically transferred graphene/h-BN, and graphene on SiO2. Reproduced with permission [98]. Copyright 2013, John Wiley and Sons. f, Normalized change in carrier mobility with temperature for graphene FETs on AlN and SiO2 substrates. Reproduced with permission [99]. Copyright 2014, AIP Publishing LLC.

Back to article page