Skip to main content

Table 2 Peptide-nanoparticle conjugates for molecular imaging nanoprobes

From: Peptide–nanoparticle conjugates: a next generation of diagnostic and therapeutic platforms?

Imaging

Peptide

Nanoparticle (NP)

Animal studies

Results

Refs.

Modality

Probe

Name

Target or role

Type

Size

NIR

FITC

DEVD peptide sequence

Cleave caspase-3

Biotinylated NP, Acetyl-Asp-Glu-Val-Asp-Cys(StBu)-Lys(Biotin)-CBT

100–300 nm

N/A

Twofold enhanced (fluorescent intensity, vs. SA-FITC)

[80]

Zn2+ coordinated cyclic peptide NP (f-PNP)

RGD

Targets αvβ3 Integrin

Fluorescent cyclic peptide NP (f-PNP, self-assembled)

28 nm

Xenografted EC mouse model

Highly photostable and narrow emission spectrum

[81, 82]

Small-molecule NIR-II organic dye

RM26 peptide

Targets gastrin-releasing peptide receptor

DSPE-mPEG NP

60 nm

U87MG (glioblastoma) tumor bearing mouse model

Highly sensitive and specific to GRPR

[83]

CT

AuNP

RGD

Targets αvβ3 integrin

Dendrimer-entrapped gold nanoparticles (Au DENPs)

4.0 nm (Au core)

N/A

Enhanced X-ray attenuation compared to Omnipaque

[84]

AuNP + IR780 (Fluor)

Angiopep-2

Targets glioma

DTX-loaded PLGA@Au NP

180 nm

U87MG (glioblastoma) tumor bearing mice

4 h (Whitening effect AT the target site)

[85]

AuNP + Cy5.5 (Fluor)

Fibrin-targeting peptide and Thrombin-activatable fluorescent peptide

Targets fibrin and Cleave thrombin

Glycol-chitosan-coated AuNP (GC-AuNP) and SiO2@AuNP

127 nm (Pep-GC-AuNP) and 39.8 nm (Pep-SiO2@AuNP)

C57Bl/6 mouse model

Remained at the target site for up to 3 weeks

[86, 87]

PET

18F

CK and CLPFFD peptides

Targets β-amyloid fiber

AuNP

12 nm (hybrids)

Sprague–Dawley rat model

NPs were trapped by reticuloendothelial system (RES)

[89, 90]

64Cu

RGD

Targets αvβ3 integrin

Au-tripods

10–15 nm

U87MG (glioblastoma) tumor bearing mice

Threefold enhanced (PAI contrast, vs. blocking group)

[91]

125I

76Br

RGD

Targets αvβ3 integrin

PEO dendrimer

12 nm

Unilateral hindlimb ischemia-induced mice

50-fold enhanced (affinity, vs. free peptide)

> twofold enhanced (ischemic to nonischemic hindlimb ratio, vs. nontargeted NP)

[92]

MRI

Iron oxide

RGD

Targets αvβ3 integrin

Iron oxide NP

< 10 nm (NP)

8.4 nm (Hybrid)

U87MG (glioblastoma) tumor bearing mice

42% (tumor MR signal intensity reduction, 15% for free peptide)

[94]

Iron oxide

RGD

Targets αvβ3 integrin

Superparamagnetic polymeric micelles (SPPM): SPIO NPs inside the core of a PEG-PLA co-polymer micelle

9.9 nm (SPIO)

50–75 nm (SPPM)

A549 (lung), MDA-MB-231 (breast), U87MG (Glioblastoma) tumor bearing mice

10−12 mol/L (detection limit)

[95, 96]

Iron oxide

CREKA

Targets fibrin

Amino dextran-coated SPIO

50 nm

Mouse model

NPs accumulates in tumor vessel → self-amplifying tumor homing

[97]

Multi-modal

Hollow Au nanosphere (HAuNS, CT)

64Cu (PET)

RGD

Targets αvβ3 integrin

HAuNS

44.7 nm

VX2 tumor-bearing rabbit model

0.20% (tumor uptake, vs. 0.099% for non-RGD NP)

[98]

Cy5 (Fluor)

Gd (MRI)

Activatable cell penetrating peptides (ACPPs)

Targets active MMP-2 and -9

G5 PAMAM dendrimer

4.6 nm

HT-1080 (fibrosarcoma) tumor-harboring mice

4- to 15-fold enhanced (NP uptake, vs. unconjugated peptides)

[99]