Skip to main content
Fig. 2 | Nano Convergence

Fig. 2

From: Laser digital patterning of conductive electrodes using metal oxide nanomaterials

Fig. 2

a Variation of the electrical resistivity (sheet resistance) of the laser-irradiated ITO film depending on the laser fluence of a single pulse. b Optical image to compare the transparency of thin films after the laser process (i: bare PET; ii: ITO film only; iii: ITO film after a single laser pulse at 80 mJ cm−2; iv: ITO film after a single laser pulse at 140 mJ cm−2) (a and b reproduced with the permission from Ref. [30]. Copyright Elsevier, 2015). c Optical transmission spectra of ITO thin films with different incident laser fluences. d Photographic image of a gravure-printed ITO film irradiated within the areas indicated by the black lines at different laser fluences (i: 0.49 J m−2; ii: 0.56 J m−2; iii: 0.65 Jm−2). Paper with millimeter squares was used as a background (Figures c and d reproduced with permission from Ref. [33], Copyright Nature Publishing Group, 2019). e Dependence of the sheet resistance of the laser-annealed ITO NP thin film on air–Ar mixed background gas in a quartz enclosure. f Transmittance data for a laser-annealed ITO NP thin film measured under different air flows with a fixed Ar flow at 8000 mL/min (e and f reproduced with permission from Ref. [29]. Copyright Springer, 2011)

Back to article page