Skip to main content
Fig. 6 | Nano Convergence

Fig. 6

From: Graphene impregnated electrospun nanofiber sensing materials: a comprehensive overview on bridging laboratory set-up to industry

Fig. 6

Reproduced with permission from [129] Copyright 2019 Wiley

a Schematic representation of the fabrication of EE2 electrochemical biosensor. b Cyclic voltammetry measurements using a PBS buffer solution (pH 7.4) and scan rate of 100 mV s−1 for PTO, PVP/Chi/rGO ES NFs and PVP/Chi/rGO ES NFs coated with Laccase enzyme. c Nyquist plots of EIS for (a) FTO, (b) PVP nanofibers, (c) PVP/Chi nanofibers, (d) PVP/Chi/rGO nanofibers and (e) PVP/Chi/rGO nanofibers coated with Laccase in a 5 mmol \({\text{L}}^{ - 1} [{\text{Fe}}\left( {{\text{CN}})_{6} } \right]^{3 - /4 - }\) solution with 0.1 mol L−1 KCl. d Amperometric response upon successive additions of EE2 ethanol solution recorded at PVP/Chi/rGO_Laccase coated electrode in a phosphate buffer solution pH 7.0 in concentrations ranging from 0.25 to 20 pmol L−1 at a fixed potential of − 0.3 V. The inset shows the calibration curve with the respective linear fit. a–d reproduced from with permission from [162] Copyright 2018 Elsevier. (E) Schematic of cyclic voltammetry shown the electrochemical behaviour of BSA/BH/PNF/GCE in presence of [Fe(CN)6]3−/4− at different scan rates (20–160 mV/s). It can be revealed that, the increase in the peak to peak voltage difference is also an indication of the progressive immobilization and the anodic peak shifts towards the higher potential value whereas the cathodic peaks shift towards lower potential value with the increase in the scan rate

Back to article page