Skip to main content

Table 1 Photocatalytic hydrogen production from monomeric substrates using visible light sources

From: Photocatalytic hydrogen evolution from biomass conversion

Photocatalyst

Substrate

Power intensity mWcm−2

Production rates mmol h−1gcat−1

Refs.

Pt/TiO2/SiO2

MeOH/H2O

100

(AM 1.5G)

497

Han et al. 2015 [22]

Au/TiO2

MeOH/H2O

–

(Solar Simulator)

1.4–7.0

Serra et al. 2015 [38]

Au/TiO2

EtOH

100

(Solar Simulator)

5–6

Puga et al. 2014 [35]

CuOx/TiO2

EtOH

100

(Solar Simulator equipped with 150 W Xe lamp)

–

(4 mg h−1 g−1cat)

Ampelli et al. 2013 [67]

Fe2O3

EtOH

–

(Solar Simulator)

–

(20 mmol h−1 m−2)

Carraro et al. 2014 [68]

Ag/Fe2O3

EtOH

–

(Solar Simulator)

–

(24.0 mmol h−1 m−2)

Carraro et al. 2014 [68]

Au/Fe2O3

EtOH

–

(Solar Simulator)

–

(45.0 mmol h−1 m−2)

Carraro et al. 2014 [68]

Pt/TiO2-nanotubes

EtOH

–

(Low-power solar lamp, 60 W tungsten)

–

(37.1 μmol h−1 cm−2)

Ampelli et al. 2010 [69]

Cu2O/TiO2-nanorods

Glycerol

–

(Natural sunlight)

50.339

Kumar et al.. 2015 [70]

TiO2-nanorods

Glycerol

–

(Natural sunlight)

2.95

Kumar et al. 2015 [70]

CuO/TiO2-nanotubes

Glycerol

–

(Natural sunlight)

99.823

Kumar et al. 2013 [71]

ZnO/ZnS-nanorods

Glycerol

–

(500 W Xe)

0.3884

Sang et al. 2012 [72]

Cu2O-microcrystals

Formaldehyde

50

(Xe > 420 nm)

–

(82.2 μmol in 3 h)

Gao et al. 2015 [73]

Pt@ZnIn2S4/RGO/BiVO4 (Z-scheme)

Formaldehyde

–

1.687

Zhu et al. 2019 [74]

Ir-Bpy-ENT (Iridium-based bipyridine- and ethenyl-incorporated bifunctional organosilica nanotubes)

Formaldehyde

–

(Vis > 420 nm)

–

(14.9 mL in 5 h)

Zhang et al. 2018 [75]

Cu/TiO2

Acetic acid

100

(AM 1.5 G)

0.036

Imizcoz et al. 2019 [76]

NiS/CdS

Lactic acid (with lignin)

–

(300 W Xe \(\ge\) 400 nm)

1.5124

Li et al. 2018 [50]

Pt/Holey carbon nitride-N-acetylethanolamine (HCN-NEA)

Triethanolamine

–

(300 W Xe)

22.043

Liu et al. 2020 [77]

Poly(3-hexylthiophene)/g-C3N4

Ascorbic acid

334.8

(300 W Xe \(\ge\) 500 nm)

−   (3.045 μmol h−1) 

Zhang et al. 2015 [78]

Poly(3-hexylthiophene)/g-C3N4

Ethylenediamine tetra-acetic acid

6.3

(300 W Xe \(\ge\) 420 nm)

0.044

Zhang et al. 2015 [78]

Poly(3-hexylthiophene)/g-C3N4

Triethanolamine

6.3

(300 W Xe \(\ge\) 500 nm)

− (0.104 μmol h−1)

Zhang et al. 2015 [78]

Pt/C3N4-TiO2

Triethanolamine

–

(250 W visible light source)

1.042

Alcudia-Ramos et al. 2020 [79]

Mn-MOF@Au

Triethylamine

–

(2.02 W white LED)

0.6

Luo et al. 2018 [80]