Skip to main content
Fig. 6 | Nano Convergence

Fig. 6

From: Organ-on-a-chip technology for nanoparticle research

Fig. 6

Toxicity of nonmetal nanoparticles. a A human breathing lung-on-a-chip was created by culturing human alveolar epithelial cells and pulmonary microvascular endothelial cells on opposite sides of a porous membrane. Vacuum chambers allowed for physiological mechanical breathing stresses to be applied. b Introduction of silica nanoparticles in the presence of mechanical cues resulted in significant oxidative stress responses. c Mechanical strain also significantly increased the expression of ICAM-1 and neutrophil adhesion to the endothelial side of the device, Scale bar, 50 µm, d and increased the translocation of nanoparticles from the alveolar to vascular compartments. e A microfluidic device coated with endothelial cells was used to assess the toxicity of silica particles. Mechanical stimulation through shear stresses resulted in lower cell viabilities. f A liver and gastrointestinal system body-on-a-chip was created to study the liver injury potential of carboxylated polystyrene nanoparticles. Introduction of the nanoparticles to the apical side of the gastrointestinal (GI) component resulted in a dose-dependent increase in enzymes indicating liver injury

Back to article page