Skip to main content

Table 4 Piezoelectric nanogenerator based 3D printed energy harvesting devices, their output energy capacities and applications

From: Additively manufactured nano-mechanical energy harvesting systems: advancements, potential applications, challenges and future perspectives

Energy harvesting devices

Source of excitation

Excitations

Materials

Output

Applications

Piezoelectric ceramics for MEH

Vibrations

–

Photocurable resin

0.301 V

Energy focusing, ultrasonic sensing

Piezoelectric BNNTs nanocomposites

Biomechanical energy

10 Hz

Photocurable resin

24 mV/kPa

Conformal sensors, haptic sensing of robotic hand

3D-printed PVDF-TrFE piezoelectric film

Finger and wrist joints

0.5–4 Hz

PVDF-TrFE

73.5 V

External stress stimulation, tactile sensors, artificial skin

Stretchable kirigami piezoelectric nanogenerator

Vibrations from magnetic shaker

5 Hz

Piezoelectric ink

1.4 μW/cm2

Self-powered gait sensor

Stretchable piezoelectric nanogenerator

Vibrations from magnetic shaker

5 Hz

3D printable ink

0.29 V

Body motion sensor

3DAIS

3D vibration, rotation & human motion

2.5 Hz

Acrylic

0.19 µW

Multi-axis rotation and acceleration inertial sensing, telemedicine applications

Stiffness-tunable soft robotic gripper

Finger bending

1 mm/s

FLX9760, RGD8530

3 V

Anthropomorphic grippers

Ceramic-polymer composite

Universal testing machine

100 Hz

Grid-composite

270 mV

Flexible electronics, force sensors

  1. The references of the research papers cited in this table are provided in the Additional file 1
  2. BNNTs Boron nitride nanotubes, PVDF-TrFE Poly (vinylidene fluoride-co-trifluoroethylene), 3DAIS 3D activity inertial sensor