Skip to main content

Table 1 Surface engineering of immune cells with nanomaterials for delivery

From: Nanotechnology-enabled immunoengineering approaches to advance therapeutic applications

Cell Source

Cargo

Size

Functionalization

Strategy

Application

References

T cell

Multilamellar liposomes

 ~ 300 nm

Maleimide-cell surface thiol

B16F10 melanoma lung and bone marrow tumors

[79]

Lipid-coated PLGA

 ~ 230 nm

Maleimide-cell surface thiol

B16F10 melanoma lung and bone marrow tumors

[79]

Liposomes

 ~ 200 nm

Maleimide-cell surface thiol

Prostate tumor

[80]

Lipid nanocapsules

 ~ 340 nm

Maleimide-cell surface thiol

Lymphoma cells

[83]

Liposomes

 ~ 83 nm

CD45 antibody conjugation

B16F10 melanoma

[81]

Cytokine nanogels

 ~ 100 nm

Covalent conjugation via crosslinker/ electrostatic interaction

B16F10 melanoma

[82]

Lipid nanocapsules

 ~ 240 nm*

Maleimide-cell surface thiol

Functional modification of CTLs

[84]

CAR T-cell

Cytokine nanogels

 ~ 80–130 nm

CD45 antibody conjugation/ electrostatic interaction

B16F10 melanoma

[78]

Multilamellar liposomes

 ~ 160 nm*

Maleimid-cell surface thiol

SKOV 3 ovarian cancer and leukemia

[85]

NK cell

Liposomes

 ~ 138 nm

NK1.1 antibody conjugation

SW620 colon cancer cells

[86]

Graphene oxide-PEG nanoclusters

 ~ 50–300 nm

CD16 antibody conjugation

Activation of NK cells

[87]

CAR NK- cell

Liposomes

 ~ 220 nm*

Maleimide-cell surface thiol

SKOV 3 Ovarian cancer

[88]

Leukocyte

Liposomes

 ~ 118 nm

Binding between E-selectin receptor and apoptosis inducing ligand TRAIL

Circulating colon cancer cells (COLO 205)

[89]

B cell

Multilamellar Liposomes

 ~ 300 nm

Maleimide-cell surface thiol

B16F10 melanoma lung and bone marrow tumors

[79]

HSC

Multilamellar Liposomes

 ~ 300 nm

Maleimide-cell surface thiol

B16F10 melanoma lung and bone marrow tumors

[79]

  1. *Size values taken from previously reported literature sources [90, 91]