Skip to main content

Table 2 Comparison of oxygen ion-based ECRAM for in-memory computing

From: Electrochemical random-access memory: recent advances in materials, devices, and systems towards neuromorphic computing

Mobile

ions

Channel

Electrolyte

Reservoir

Effective size

Min

Write time (operation V)

Retention

@RT

Max

G Range

On/off ratio

Linearity

Multilevel

Endur

Ref

O

WO3

HfO2

Metal oxide

L: 4 μm

W: 10 μm

10 ns

(± 4 V)

 > 14 h

5.4% drop

1.5–16 μS

10.67

–

1000

2 × 107

[56]

O

Pr0.7Ca0.3MnO3

HfOx

GdOx

L: 50 μm

W: 20 μm

1 s

(+ 3 V/-3.75 V)

100 s

5–200 nS

40

0.58/-0.86

100

3200

[57]

O

TiO2

YSZ

TiO2-x

L: 100 nm

W: 100 nm

2 μs @ 160 ℃

(± 1.5 V)

105 s

100–450 nS

4

–

125

3 × 108

[61]

O

WO3

YSZ

–

L: 5 μm

W: 10 μm

10 ms

(± 1 V)

103 s

495–580 nS

1.17

1.6/0.25

100

1000

[60]

O

WO3-x

HfO2

MoOy

L: 100 μm

W: 100 μm

200 μs

(+ 8 V/-6 V)

–

0.05–5.6 μS

112

-0.09/0.16

100

2000

[62]

O

WO3

HfOx

GdOx

L: 10 μm

W: 4 μm

0.5 s

(± 0.5 V)

–

1 nS–679 nS

679

1.8/-0.3

100

1000

[63]

O

Pr0.7Ca0.3MnO3

HfOx

GdOx

L: 20 μm

W: 10 μm

100 ms

(± 5 V)

108 s

200 n–2.5 μS

12.5

1.1/-0.9

500

15 × 103

[64]

O

WO2.7

HfO1.7

GdOx

L: 20 μm

W: 20 μm

0.5 s

(+ 4 V/-3 V)

900 s

10–80 μS

8

1.3/-2.1

30

420

[65]

O

WO2.7

ZrO1.7

GdOx

L: 50 μm

W: 50 μm

100 ms

(± 2 V)

1000 s

400 n—1μS

2.5

1.3/-1.4

500

1000

[66]

O

WO3-x

HfO2

MoOy

L: 85 nm

W: -

10 ms

(+ V/-2.5 V)

-

100 n—mS

27,000

–

100

5 × 104

[67]