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Abstract

The near-infrared (NIR) fluorescence probe has better tissue penetration and lower autofluorescence. Indocyanine
green (ICG) is an NIR organic dye for extensive biological application, and it has been clinically approved for human
medical imaging and diagnosis. However, application of this dye is limited by its numerous disadvantageous
properties in aqueous solution, including its concentration-dependent aggregation, poor aqueous stability in vitro,
and low quantum yield. Its use in molecular imaging probes is limited because it loses fluorescence after binding
to nonspecific plasma proteins, leading to rapid elimination from the body with a half-life of 2 — 4 min. In this study,
the multifunctional perfluorocarbon (PFC)/ICG nanoemulsions were investigated with the aim of overcoming these
limitations. The PFC/ICG nanoemulsions as a new type of delivery vehicle for contrast agents have both NIR optical
imaging and '? F-MR imaging moieties. These nanoemulsions exhibited less aggregation, increased fluorescence
intensity, long-term stability, and physicochemical stability against external light and temperature compared to free
aqueous ICG. Also, the PFC/ICG bimodal nanoemulsions allow excellent detection of lymph nodes in vivo through

NIR optical imaging and '® F-MR imaging. This result showed the suitability of the proposed nanoemulsions for
non-invasive lymph node mapping as they enable long-time detection of lymph nodes.
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1 Background

Medical imaging has experienced explosive growth over
the past few decades and now plays a central role in non-
invasive imaging technologies for biomedical research.
Multimodal imaging will allow clinicians not only to see
where a tumor is located in the body but also to visualize
the expression and activity of specific molecules and bio-
logical processes that influence tumor behaviour and/or
its response to therapy. The multimodal imaging probes
with optical imaging dyes and magnetic resonance (MR)
imaging contrast agents have been exploited for targeted
molecular imaging, disease diagnosis, and in vivo animal
studies [1,2]. Targeted magnetic resonance imaging (MRI)
has emerged as a promising diagnostic approach that
offers a high-resolution depiction of pathological anatomy
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and the ability to detect associated disease biomarkers
[3,4]. Fluorophores have long been used as lumines-
cence probes in various biological and biomedical ap-
plications [5-7].

Perfluorocarbons (PFCs) have been widely employed
as " F-MR agents for imaging modalities due to their
biological and chemical inertness. PFCs have been used
clinically as blood substitutes because of their high gas
dissolving capacity for oxygen and carbon-dioxide as well
as their chemical and metabolic stability [8]. The YF in
the PFC nanoparticles have low background biological
abundance and provide excellent signal sensitivity com-
pared with "H [9-11]. The encapsulation or conjugation
of a wide variety of contrast agents onto PFCs for multi-
modal imaging and therapeutics, in combination with
antibodies or other targeting ligands, causes them to accu-
mulate in specific sites, holding great potential for medical
applications. The PFC nanoemulsions have been widely
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explored for various applications, such as ultrasound im-
aging as a vehicle for targeted delivery of contranst agents
and drug delivery [12], partial liquid lung ventilation [13],
and blood substitutes [8,14].

Indocyanine green (ICG) is a water-soluble tricarbo-
cyanine dye with substantial absorption and fluorescence
in the near-infrared region (NIR) [15,16]. The United
States Food and Drug Administration (FDA) [17] has ap-
proved ICG for use in diagnostic applications in clinical
settings including its use as an optical contrast agent in the
imaging of cardiac and hepatic vascular systems [18,19],
the retinal and choroidal vasculature [20], and lymphatic
systems [21-23]. ICG has also been investigated in laser-
mediated therapeutic applications. This dye can transform
from the absorbed NIR light energy into free-oxygen
species and heat, which further expands its therapeutic
application to photothermal and photodynamic therap-
ies [24-26]. Moreover, ICG, a NIR fluorescence probe, has
several advantages over visible optical probes for in vivo im-
aging applications, including improved deep-tissue penetra-
tion, lower absorption and scattering by blood and tissue
components, and minimal autofluorescence [18,27]. How-
ever, ICG has several intrinsic limitations in optical imaging
applications: 1) ICG is rapidly cleared from the circu-
latory system (half-life of 2-4 min) [28,29]; 2) ICG forms
aggregates depending on its concentration and interacts
non-covalently with various proteins such as lipoproteins,
plasma proteins, and human serum albumin via physical
mechanisms due to its amphiphilic properties [30,31];
3) in aqueous solutions, ICG is unstable as the compound
undergoes physicochemical transformations such as thermal
degradation and photodegradation [28,32]. Such changes re-
sult in discoloration, decreased light absorption, decreased
fluorescence, and a shift in the wavelength of maximum
absorption.

Recently, researchers have proposed nanomaterial-
based ICG probes to overcome the high degradation rate
and the short plasma half-life of ICG [33-35]. Poly-
meric nanoparticles and inorganic nanoparticles con-
taining ICG could increase the stability of ICG and
improve its physicochemical stability [34,35]. Also, nano-
particles with a polymer core and lipid shell provided great
targeting capability [36]. Liposomes have been widely used
as fluorescence probes for in vivo applications. In this
study, we synthesized multifunctional PFC/ICG nanoe-
mulsions as a new type of delivery vehicles for ICG to
overcome the aforementioned limitations. The PFC/ICG
nanoemulsions have both NIR optical imaging and '* F-
MR imaging moieties. We demonstrated the stability and
fluorescence intensity of PFC/ICG nanoemulsions in vivo
and in vitro and their physicochemical stability against
exterior light and temperature. Also, we used multi-modal
PFC/ICG nanoemulsions to indentify sentinel lymph
nodes.
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2 Methods

2.1 Materials

Perfluoro-15-crown ether (PFCE) was obtained from SynQuest
Laboratories Inc. (Alachua, FL). L-a-phosphatidylcholine
(Egg PC), and 1,2-distearoyl-sn-glycero-3-phosphoethano-
lamine-N-[methoxy(polyethylene glycol)2000] (DSPE-
mPEG,gg0) were purchased from Avanti Polar Lipids Inc.
(Alabaster, AL). Indocyanine green, and cholesterol were
obtained from Sigma-Aldrich Co. (St. Louis, MO).

2.2 Preparation of PFC/ICG nanoemulsions

To synthesize the PFC/ICG nanoemulsions, PFCE liq-
uids were emulsified in an aqueous solution using a lipid
mixture. The lipid compositions of the PFC/ICG nanoe-
mulsions were PC/cholesterol/DSPE-mPEG,, in a molar
ratio of 70:20:10, respectively. The lipid mixture was
reacted for 1 h at room temperature by the addition of
2 mg ICG, evaporated with a rotary evaporator to ensure
the production of a thin lipid film, and dried in a vacuum
oven (25°C) for 24 h. The lipid film was rehydrated with
phosphate-buffered saline (PBS), and the resulting solu-
tion was sonicated in a bath sonicator followed by five cy-
cles of freezing and thawing. The rehydrated lipid mixture
(2% w/v) and PFCE solution (20% v/v) were mixed for
4 min using a homogenizer, followed by microfluidisa-
tion [37]. A M-110S microfluidiser (Microfluidics Inc.,
Newton, MA) operating at a liquid pressure of approxi-
mately 20,000 psi was used for nanoemulsion prepara-
tions. The PFC/ICG nanoemulsions were stored at 4°C.

2.3 Characterization of PFC/ICG nanoemulsions
To evaluate the characteristics of the PFC/ICG nanoe-
mulsions, a JEOL FE-TEM (transmission electron micro-
scope) was utilized, and the TEM images were captured
at 200 kV using a device from Tecnai. The PFC/ICG
nanoemulsions were drop-cast onto carbon-coated TEM
grids preliminarily stained with 2% uranyl acetate, and
the solution was dried in a vacuum oven.

The emission and absorption spectra were obtained on
a Perkin-Elmer LS-55 and a Beckman Coulter UV-VIS
spectrophotometer (DU 800). The size of the PFC/ICG
nanoemulsions was analyzed via dynamic light scattering
using an electrophoretic light scattering photometer
(ELS-Z, Otsuka Electronics, Osaka, Japan). The NIR fluor-
escence images of the PFC/ICG nanoemulsions were
obtained using the IVIS Lumina imaging system (Caliper
Life Science, MA) with an ICG filter set.

2.4 1CG and PFC loading efficiency

The ICG loading efficiency was analyzed using a previously
reported method [29]. The quantity of ICG loaded into the
PFC/ICG nanoemulsions was determined from the free
ICG that was not incorporated into the PFC/ICG nanoe-
mulsions. A 1-mL sample of the PFC/ICG nanoemulsion
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was centrifuged, and the supernatant was removed and
stored in a centrifuge tube; the PFC/ICG nanoemulsion
was dispersed in a PBS solution. The centrifugation was re-
peated, and the collected supernatants were combined.
The ICG concentration was quantified via UV-Vis spec-
troscopy. The quantity of ICG inside the PFC/ICG nanoe-
mulsions was also measured to verify the accuracy of the
method. Selected PFC/ICG nanoemulsion samples were
treated with an HNOj solution to induce capsule disas-
sembly and to release the ICG into the solution. For all
tested samples, the quantity of ICG released and the
unencapsulated ICG equaled the quantity of the ICG pre-
cursor, indicating that the mass balance was conserved.
The loading efficiency was calculated as the mass of ICG
incorporated by the PFC/ICG nanoemulsions divided by
the total ICG mass added to the nanoemulsion aggregate
suspension.

To evaluate the PFC loading efficiency in PFC/ICG
nanoemulsions, 19 F-MR imaging was performed on ser-
ial dilutions (0 — 0.4 ml) of PFCE liquids using a 4.7 T
Bruker scanner (Biospec, Rheinstetten, Germany). The
19 F MR signal intensity was determined from the PFC
signals originating from the PFCE liquids within a region
of interest (ROI). We generated a calibration curve from
the serial dilutions of the PFCE liquids and calculated
the PFC loading efficiency in PFC/ICG nanoemulssions.
The loading efficiency of PFC onto the PFC/ICG nanoe-
mulsions was approximately 75.5 + 3.2%.

2.5 Physicochemical stability of PFC/ICG nanoemulsions
The ICG and PFC/ICG nanoemulsions were diluted with
distilled water to a final concentration of 1 pg/ml and
were loaded onto a 12-well plate. The samples were irra-
diated with 760 nm NIR light from an LED for a prede-
termined time of 10, 20, 30, 60, or 120 min at room
temperature. The effect of the light exposure on the deg-
radation of the PFC/ICG nanoemulsions was determined
with visible light at room temperature. The fluorescence
intensity was measured for up to 6 days. After incubation,
the remaining fluorescence of each sample was measured
using a spectrofluorometer with excitation and emission
wavelengths of 760 nm and 820 nm, respectively. For the
quantitative analysis, we normalized the fluorescence sig-
nal intensity. This processing normalized the signal data
points to the range [0, 1].

Y = (Y_Ymin)/(Ymax_Ymin)

Y denotes the y values of input curve, and Y is the
normalized curve.

2.6 Cell culture
The HeLa (human cervical cancer cells) and Raw264.7
(Murine macrophage cells) cell lines were obtained from
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the American Type Culture Collection (Rockville, MD).
These cell lines were grown and maintained in Dulbecco’s
modified Eagle’s medium (DMEM; Gibco BRL, Grand
Island, NY) supplemented with 10% heat-inactivated fetal
bovine serum (FBS), 50 IU/ml penicillin, and 50 pg/ml
streptomycin. The cultures were maintained at 37°C/5%
CO, in tissue culture plates. The DC2.4 cells, previously
characterized as an immature murine dendritic cell line,
were obtained from Dr. Kenneth L. Rock (Dana-Farber
Cancer Institute, Boston, MA) [38]. This cell line was
grown and maintained in DMEM supplemented with 10%
heat-inactivated FBS, 50 IU/ml penicillin, and 50 pg/ml
streptomycin.

2.7 Cell fluorescence imaging

To determine the intracellular delivery capacity of PFC/
ICG nanoemulsions, the HeLa, Raw264.7, and DC2.4
cells were incubated with 10 pl/ml PFC/ICG nanoemul-
sions in p-slide 8-well microscopy chamber at a density
of 1x10* cells per well for 6 h at 37°C. The culture
medium was then carefully aspirated, and the cells were
washed three times. The labeled cells were fixed with 4%
paraformaldehyde and stained with DAPI. The NIR
fluorescence images were obtained on a Deltavision RT
deconvolution microscope (Applied Precision Technolo-
gies, Issaquah, WA) using a filter set (excitation: 775/50,
emission: 845/55; Omega Optical, Brattleboro, VT).

2.8 In vitro " F-MR and NIR fluorescence imaging

HeLa, Raw, or DC2.4 cells (1 x 10°) were seeded on each
well of a 6-well plate and grown for 24 h. The cells were
then incubated with a medium containing 10 pl/ml
PFC/ICG nanoemulsions. After 6 h, the medium was re-
moved, and the cells were washed three times with PBS.
The cell pellets were suspended with a 2% solution of
low-melting agarose. The cells were collected in 0.2-mL
tubes, and the MR and NIR fluorescence signals were
measured. All ' F-MR imaging of the PFC/ICG nanoe-
mulsions was performed with a 4.7 T Bruker scanner
using a double-tuned 'H/'F quadrature birdcage RF
resonator. The ' F-MR image was captured with a
FLASH sequence (128 x 128 matrix; 30 x 30 mm?* FOV;
50 ms TR; 2.6 ms TE; 10 mm slice thickness; 256 NEX).
The NIR fluorescence images were obtained using the
IVIS Lumina imaging system (Caliper Life Science, MA)
with an ICG filter set.

2.9 Cell cytotoxicity assays

The cell cytotoxicity was assessed using a modified 3-
(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium brom-
ide (MTT) assay. Raw, HeLa, or DC2.4 cells were seeded in
a 96-well plate (Corning Costar, Cambridge, MA) at 1 x 10*
cells/well. After incubation for 24 or 48 h, several different
concentrations of the prepared PFC/ICG nanoemulsions
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(0.38 ug/ul of ICG, 0.3 ul/ul of PFC) were poured
into the wells. After incubation for a predetermined
time, the residual nanoemulsions were removed, and
a 2.5 mg/ml MTT solution was added to each well.
The wells were then incubated in a humidified CO,
incubator at 37°C for 2 h. An acidified isopropanol/
10% Triton X-100 solution (100 pl) was then added,
and the plates were shaken to dissolve the formazan
products. The absorbance was measured using a mi-
croplate reader at 570 nm. The cell survival rate in
the control wells without the PFC/ICG nanoemulsions
was considered 100% cell survival. The cytotoxic con-
centration (CCgo) was defined as the concentration of
the compound that reduced the absorbance of the
control samples by 80%.

2.10 In vivo tracking of PFC/ICG nanoemulsions using NIR
fluorescence and '° F-MR imaging
Female hairless mice, 5-6 weeks of age, were purchased
from SLC, Inc. (Japan). The mice were maintained at the
KRIBB animal facility under pathogen-free conditions.
All animal care and experimental procedures were ap-
proved by the Animal Care Committees of the KRIBB.
For the in vivo NIR fluorescence and ** F-MR imaging of
the sentinel lymph nodes, hairless mice were injected with
20 pl (25 pM of ICG, 15 ul/ml of PFC) of the PFC/ICG
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nanoemulsions (n =5) or free ICG solutions (n =5) in the
footpad of the foreleg. Prior to the fluorescence imaging
experiments, the mice were anesthetized with 200 pl of a
2.5% avertin solution (2, 2, 2-tribromoethanol-tert amyl
alcohol, Sigma) throughout the experiments. After a pre-
determined time, the fluorescence intensity was quantita-
tively analyzed using the IVIS Lumina imaging system.
Thereafter, the '* F-MR images of the mice were obtained
with a 4.7 T Bruker scanner using a double-tuned 'H/*°F
Birdcage coil design (inner diameter: 35 mm; length:
78 mm). After acquiring the morphological 'H images,
the resonator was tuned to **F. For the '* F-MR image,
the mouse was imaged with a gradient echo sequence
(128 x 128 matrix; 3 cm FOV; 56.0 ms TR; 2.6 ms TE;
20 mm slice thickness; 60° flip angle; 256 NEX; 30 min
total scan time).

2.11 Statistical analysis

The statistical evaluations of the experiments were per-
formed by ANOVA analysis followed by a Newman-
Keuls multiple comparison test.

3 Results and discussion

3.1 Characteristics of PFC/ICG nanoemulsions

To develop suitable MR imaging probes with improved
sensitivity for noninvasive in vivo imaging at the cellular

Lipid mixture/ICG

Evaporation

Lipid film

Sonication
Add PFCE

Rehydrated lipid mixture

Homogenization
Microfluidisation

PFC/ICG nanoemulsion

Indocyanine green
(ICG)

Perfluoro-15-crown ether
(PFCE)

Phosphatidylcholine
Cholesterol

DSPE-PEG2000

PFC/ICG nanoemulsion

Scheme 1 Schematic illustration of the PFC/ICG nanoemulsions having both '° F-MR and NIR optical imaging capabilities.
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and molecular levels, we synthesised multifunctional PFC-
based nanoemulsion containing ICG as a NIR organic
dye, which provides simultaneous '® F-based MR imaging
and NIR optical imaging. ICG has been approved by the
FDA for human medical and diagnosis [17]. Also, PFCs
were developed for use as a blood substitute [8], and no
toxicity, carcinogenicity, or mutagenic effects of PFCs have
been reported for pure fluorocarbons [39]. Our synthesis
strategy for preparing the multifunctional imaging probe is
illustrated in Scheme 1. The bimodal PFC/ICG nanoemul-
sions were prepared via thin film hydration followed by
microfluidisation, as described in the Methods section. The
emission spectra of the PFC/ICG nanoemulsion obtained
using a fluorescence spectrometer peaked at approximately
825 nm, with a full-width-at-half-maximum (FWHM) of
30 - 35 nm (Figure 1B). Compared with the ICG in water,
the absorption and emission spectra of the PFC/ICG
nanoemulsions were bathochromically shifted by approxi-
mately 20 - 30 nm (Figure 1). These shifts of the PFC/ICG
nanoemulsions correspond to the changes in the physico-
chemical environment and are consistent with a specific
interaction of the ICG molecules [16,30]. The red shift
toward longer wavelengths resulted in a dramatic de-
crease of in vivo background signal during detection,
leading to an improved signal-to-noise ratio in vivo [22].
The interaction of the ICG molecules within the PFC/ICG
nanoemulsions leads to a chemical stabilization of the
ICG molecules and can reduce the formation of aggre-
gates [32]. The '’ F-based MR spectroscopy data for the
PFC/ICG nanoemulsions exhibited a singlet peak (at ap-
proximately 36.3 ppm) (Figure 1C). This peak was chosen
as the excitation frequency for the PFC/ICG nanoemul-
sion '” E-MR imaging. The average size and zeta potential
of PFC/ICG nanoemulsions were measured using dynamic
light scattering analysis (Table 1). The mean diameter of
the PFC/ICG nanoemulsions was 119.1 + 25.1 nm with a
polydispersity index of 0.07, and the zeta potential analysis
revealed a surface charge of -15.3+0.58 mV (Table 1).
The loading efficiency of ICG onto the PFC/ICG nano-
emulsions was approximately 95.1 +2.2% (Table 1). For
comparison, ICG liposomes without a PFC solution had
a loading efficiency of 20+ 3.5%. Encapsulation within
the PFC/ICG nanoemulsions resulted in an appro-
ximately 4.7-fold increase. The ICG was almost completely
encapsulated within the PFC-based nanoemulsion. The PFC
nanoparticles core material in PFC/ICG nanoemulsions is
surrounded by a lipid monolayer, because these molecules
have the property of being both lipophobic and hydro-
phobic. The ICG molecules can be carried in the PFC-
based nanoemulsions for NIR optical imaging. The ICG
molecules within these nanoemulsions could successfully
lead to the chemical stabilization of the ICG molecules in
aqueous solution because of the lipophobic/hydrophobic
properties of the PFC molecules.
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Figure 1 Characteristics of the PFC/ICG nanoemulsions.
The excitation (A) and emission (B) spectra of the nanoemulsions.
The emission spectra were measured at Aex = 760 nm. (C) 9F magnetic

resonance spectra and imaging of the PFC/ICG nanoemulsion.

3.2 Physicochemical stability of PFC/ICG nanoemulsions

To investigate the influence of the ICG concentration on
fluorescence in aqueous solutions, the fluorescence intensity
of PFC/ICG nanoemulsions was measured using ICG con-
centrations ranging from 0.4 to 50 pM and comparing
them to that of free ICG dissolved in water (Figure 2A).
The fluorescence intensity increased with increasing ICG
concentration up to a maximum of 625 puM. Further
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Table 1 Summary of the physicochemical properties and cytotoxicity activity of the PFC/ICG nanoemulsions
Sample Emission Diameter Polydispersity Loading CCgo (ul/mi)™

peak (nm) (nm) efficiency (%) DC2.4 Hela Raw264.7
PFC/ICG nanoemulsions 825 119.1+£25.1 0.07 951422 > 100 > 100 > 100
ICG liposome 825 634+156 0.09 20£35 > 100 > 100 > 100

[a] cytotoxicity activity.

increase in the ICG concentration causes a gradual de-
crease in the fluorescence intensity. The PFC/ICG nanoe-
mulsions emitted a 2.3-fold higher fluorescence intensity
than the free-ICG solution. This is due to the increased
aggregation and self-quenching of free-ICG molecules at
high concentration [29]. However, The ICG in PFC/ICG
nanomulsions maintains the chemical stabilization and
reduces the ICG molecular aggregates. The influence
of the external environment on the ICG degradation
in the PFC/ICG nanoemulsions was also investigated. The
thermal stability of the PFC/ICG nanoemulsions in the
dark was determined at 4, 25, and 37°C over 3 months
(Figure 2B). Little decrease was noted in the fluorescence

intensity of the PFC/ICG nanoemulsions stored at 4°C
over the 4-month period (Additional file 1: Figure S2).
However, increasing in temperature significantly enhanced
the rate of ICG degradation in the PFC/ICG nanoemul-
sions stored at 25 and 37°C. The fluorescence intensities
observed in the PFC/ICG nanoemulsions at 25 and 37°C
were approximately 74.6% and 58.9%, respectively. The
fluorescence intensity of free-ICG solutions stored at
4, 25, and 37°C disappeared completely within 10 days.
To examine whether the encapsulation of the ICG within
the PFC/ICG nanoemulsions could enhance the photo-
stability of the ICG fluorescence against external light, the
PFC/ICG nanoemulsions were exposed to a NIR LED
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Figure 2 Physicochemical properties of PFC/ICG nanoemulsions. (A) Plot of fluorescence intensity versus the ICG concentration in the PFC/ICG
nanoemulsions or aqueous free ICG. Influence of temperature (B), visible light exposure (C), and NIR lamp (D) on the ICG degradation in the PFC/ICG
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light at 760 nm or visible light for a predetermined period,
and the fluorescence intensity was analyzed. The PFC/
ICG nanoemulsions exposed to the visible ambient light
maintained their fluorescence intensity over the 6-day
period. However, after 1 day of exposure to visible ambi-
ent light, the fluorescence intensity of the free-ICG solu-
tion was reduced to less than 50% of its initial value and
was 3 times less than that of the PFC/ICG nanoemulsions.
The exposure to visible light did not affect the fluores-
cence of the PFC/ICG nanoemulsions. Figure 2D demon-
strates the influence of exposure to NIR light on the
fluorescence intensity of the PFC/ICG nanoemulsions.
After 1 hour of exposure to NIR light, the fluorescence
emitted by the PFC/ICG nanoemulsions exhibited an ap-
proximately 10.9-fold increase over that of the free-ICG
solutions. At the endpoint, the fluorescence of the PFC/
ICG nanoemulsions decreased slightly approximately
20%, but the fluorescence of the free-ICG solution com-
pletely disappeared. This result suggests that encapsula-
tion of the ICG within PFC/ICG nanoemulsions could
successfully protect the ICG fluorescence signals against
external environments. The degradation of the ICG with
exposure to NIR or visible light is due to the production
of photo-excited ICG molecules [40]. The ICG molecules
in the PFC/ICG nanoemulsions could efficiently prevent
them from aggregating, thus decreasing the fluorescence
self-quenching. Therefore, these nanoemulsions could sig-
nificantly increase the stability and the fluorescence inten-
sity of the ICG and improve its physicochemical stability
against external light and temperature changes.
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3.3 In vitro fluorescence and '° F-MR imaging

NIR fluorescence and ' F-MR imaging were performed
on PFC/ICG nanoemulsions containing ICG and PFC using
IVIS Lumina imaging system (Caliper Life Science, MA)
and 4.7 T MR scanner (Biospec, Rheinstetten, Germany),
respectively. Figure 3A and B shows the '* E-MR and NIR
fluorescence images of three cell lines (Raw264.7, HelLa,
and DC2.4) loaded with the PFC/ICG nanoemulsions.
The three cell lines were incubated with the PFC/ICG
nanoemulsions for 6 h at 37°C, and the NIR fluores-
cence and '"F-MR images were obtained using IVIS
Lumina imaging system and 4.7 T MR scanner, respect-
ively. The NIR fluorescence signals and ' F-MR signals
were observed for the three pelleted cell lines. We per-
formed the regions of interest (ROI) analysis to confirm
the ' F-MR and NIR fluorescence signals and observed
the variations in intensity among the cells (Figure 3C
and 3D). These data indicated that the PFC/ICG nanoe-
mulsions could efficiently monitor the intracellular uptake
in two phagocytic cell lines (Raw264.7 and DC2.4) sug-
gesting that the PFC/ICG nanoemulsions accumulated in
the lymph nodes because they were phagocytosed by
phagocytic cells. To evaluate the cell cytotoxicity of the
PFC/ICG nanoemulsion, three cell lines were exposed
to various concentrations of the PFC/ICG nanoemul-
sion ranging from 0 to 100 pl/ml for 24 h or 48 h
and were evaluated using an MTT assay (Additional
file 1: Figure S3). The data revealed that the labeling
of the three cell lines with the PFC/ICG nanoemul-
sion was nontoxic over a broad concentration range,
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Figure 3 In vitro " F-MR and NIR fluorescence imaging. YEMR images (A) and NIR fluorescence images (B) of three cell lines (Raw264.7,
Hela, and DC24) after incubation with the PFC/ICG nanoemulsions. (C) Signal-to-noise ratio for in vitro '* F-MR images in Figure 3A. (D) The
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with a CCgy of >100 pl/ml (Table 1), indicating that
these nanoemulsions are suitable for in vivo animal
studies, clinical applications, and biological applications.
To determine the intracellular localization of the PFC/
ICG nanoemulsions, three cell lines were incubated
with the PFC/ICG nanoemulsions for 6 h at 37°C and
then stained with a DAPI solution to observe the nuclei.
The NIR signals inside the cell membrane exhibited the
intracellular uptake of the PFC/ICG nanoemulsions
(Figure 4).

3.4 Lymph node mapping

The use of PFC/ICG nanoemulsion-based bimodal im-
aging contrast agents was investigated for lymph-node
mapping using an IVIS Lumina imaging system and a
4.7 T MRI scanner. For the NIR fluorescence imaging
and the in vivo 'F-MR imaging of sentinel lymph
nodes, the PFC/ICG nanoemulsions (20 pl of 25 pM)
were injected into the footpad of the foreleg of hairless
mice. As shown in Figure 5, the ICG NIR signal and the
PEC " F-MR signal were observed in the lymph nodes
(red circles). Ex vivo NIR images were obtained of the
lymph nodes dissected from the PFC/ICG nanoemulsions-
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injected mice (Figure 5D), confirming the in vivo imaging
results. We performed the ROI analysis to confirm the
NIR fluorescence signals (Additional file 1: Figure S4). The
NIR fluorescence signal of the PFC/ICG nanoemulsions in
the lymph nodes was significantly prolonged compared
with that of the free-ICG solution. The PFC/ICG nano-
emulsions presented significant NIR fluorescence signals
even at 72 h post-injection. In contrast, no detectable sig-
nal was recorded in the lymph nodes from the free-ICG
solution at 6 h post-injection. The relatively short in vivo
fluorescence of the free-ICG is attributed to the fluo-
rescence quenching of the free-ICG in physiological en-
vironments and its rapid aggregation and clearance
from the body [16,30,41]. Because ICG is amphiphilic
properties, it can bind to lipoprotein and plasmatic
proteins. This binding leads to its removal by hepatic
parenchymal cells and its secreted into the bile [41].
However, the ICG molecules encapsulated inside the
PFC/ICG nanoemulsions were protected from the
physicochemical environment, suggesting that the
lymph node mapping could be tracked effectively
using PFC/ICG nanoemulsions as bimodal imaging
contrast agents.

DAPI

Bar, 15 pm.

ICG

Figure 4 Cell fluorescence imaging with the PFC/ICG nanoemulsions. Fluorescence images of Hela (A to C), DC2.4 (D to F), and Raw264.7
(G to 1) cells after incubation with the PFC/ICG nanoemulsions. The PFC/ICG nanoemulsions are red, and the DAPI-stained nuclei are blue.

Merged
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lymph node at 1 h post-injection.

R A e (2
Y i : LN =
rd ¢

Figure 5 In vivo NIR image and '® F-MR image of the sentinel lymph nodes. NIR fluorescence images at the indicated time following
intradermal injection of PFC/ICG nanoemulsions (A) and free-ICG solution (B) into the right paw of a mouse. (C) "H-MR (left) and 'Y F-MR (right)
image following intradermal injection of PFC/ICG nanoemulsions into right paw of a mouse. (D) Ex vivo NIR fluorescence images of dissected

PFC/ICG

4 Conclusion

In summary, we encapsulated ICG molecules inside the
PFC/ICG nanoemulsions as a novel bimodal imaging
probe to allow for simultaneous '° F-MR imaging and
NIR optical imaging. The conjugation chemistry of ICG
molecules is difficult due to their amphiphilicity and
few functional groups. However, ICG molecules were
encapsulated through a simple method to improve their
properties. The ICG molecules protected the PFC/ICG
nanoemulsions from aggregation and thus decreased
the fluorescence self-quench. Therefore, these nanoe-
mulsions could significantly increase the in vivo and
in vitro stability and fluorescence intensity of ICG and
improve its physicochemical stability against external
light and temperature. Also, we used multi-modal PFC/
ICG nanoemulsions to indentify the sentinel lymph
nodes. Lymph nodes were detected by NIR optical im-
aging and '” F-MR imaging. For sentinel lymph node
biopsy, the incision procedure of sentinel nodes should
be performed within short time (~30 min) because of
the easy diffusion of free ICG and the decrease of fluo-
rescence signal. The accuracy of sentinel lymph node bi-
opsy depends upon the detection of sentinel nodes with
high sensitivity and long-lasting vital dye. This result
showed the suitability of the proposed nanoemulsions
for noninvasive lymph node mapping as they enable
long-time detection of lymph nodes. In the future, mo-
lecular probes in combination with various imaging

modalities will provide more effective image-guided
therapeutic tools for diagnostics, prognostics, and the
treatment of diseases in diverse clinical settings.

Additional file

Additional file 1: Figure S1. TEM image of PFC/ICG nanoemulsion.
Figure S2. Fluorescence intensity of the PFC/ICG nanoemulsions or free
ICG at varying incubation times. Samples were excited at 760 nm. The
emission spectra of the PFC/ICG nanoemulsions and free ICG solutions
were collected at 825 nm or 805 nm, respectively. (mean + SD, n =6).
Figure S3. In vitro cytotoxicity of the PFC/ICG nanoemulsions in Hela,
DC2.4, and Raw264.7 cells. The cells were incubated with the PFC/ICG
nanoemulsion for 24 and 48 h at 37°C and the viability of the cells were
evaluated with increasing concentrations of the nanoemulsions ranging
from 041 to 100 pL mL" using an MTT assay (mean = SD, n = 6). Figure S4.
The quantitative analysis of the fluorescence intensity after intradermal
injection of either the PFC/ICG nanoemulsions or free-ICG solution into the
foodpad of the foreleg. A) foot, B) Lymph node.
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