RESEARCH Open Access # Lead-free perovskite solar cells using Sb and Bi-based A₃B₂X₉ and A₃BX₆ crystals with normal and inverse cell structures Ajay Kumar Baranwal^{1*}, Hideaki Masutani¹, Hidetaka Sugita¹, Hiroyuki Kanda¹, Shusaku Kanaya¹, Naoyuki Shibayama¹, Yoshitaka Sanehira², Masashi Ikegami², Youhei Numata², Kouji Yamada³, Tsutomu Miyasaka², Tomokazu Umeyama⁴, Hiroshi Imahori⁴ and Seigo Ito^{1*} #### **Abstract** Research of CH₃NH₃Pbl₃ perovskite solar cells had significant attention as the candidate of new future energy. Due to the toxicity, however, lead (Pb) free photon harvesting layer should be discovered to replace the present CH₃NH₃Pbl₃ perovskite. In place of lead, we have tried antimony (Sb) and bismuth (Bi) with organic and metal monovalent cations (CH₃NH₃)⁺, Ag⁺ and Cu⁺). Therefore, in this work, lead-free photo-absorber layers of (CH₃NH₃)₃Bi₂l₉, (CH₃NH₃)₃Sb₂l₉, (CH₃NH₃)₃Sb₃Bil₆, Ag₃Bil₆, Ag₃Bil₆, SCN)₃ and Cu₃Bil₆ were processed by solution deposition way to be solar cells. About the structure of solar cells, we have compared the normal (n-i-p: TiO₂-perovskite-spiro OMeTAD) and inverted (p-i-n: NiO-perovskite-PCBM) structures. The normal (n-i-p)-structured solar cells performed better conversion efficiencies, basically. But, these environmental friendly photon absorber layers showed the uneven surface morphology with a particular grow pattern depend on the substrate (TiO₂ or NiO). We have considered that the unevenness of surface morphology can deteriorate the photovoltaic performance and can hinder future prospect of these lead-free photon harvesting layers. However, we found new interesting finding about the progress of devices by the interface of NiO/Sb³⁺ and TiO₂/Cu₃Bil₆, which should be addressed in the future study. **Keywords:** Lead-free perovskite, Solar cells, Antimony, Bismuth #### 1 Introduction Recent advancements of organic–inorganic perovskite (CH₃NH₃PbI₃) thin-film solar cells, which can be fabricated by economical-promising solution process, have marked significant achievements of photoconversion efficiency (PCE) from the initial efficiency of 3.8% to over 22% [1–3]. The PCE progress has been realized due to the excellent ability of CH₃NH₃PbI₃ about light harvesting, charge separation and charge transportation. These excellent properties also realize to fabricate perovskite solar cells in different structural designs as normal (n-i-p) mesoscopic and inverted (p-i-n) planar configurations. However, the working instability had been a profound problem [4–7]. Moreover, the toxicity of lead (Pb) shows big impact on the environment and human being, and then, the quest for such lead-free thin film solar cell has been highly demanded [8, 9]. The first lead-free perovskite solar cells were initially fabricated with the substitution of lead to tin (Sn) for the mesoscopic structure solar cells as <FTO glass/cp-TiO₂/CH₃NH₃SnI₃/Spiro-OMeTAD/Au> [10, 11]. A moderate PCE of 6% was reported, but the rapid oxidation of Sn²⁺ to be Sn⁴⁺ at the ambient condition arised concern. Afterward, however, it was found that tin cation shows higher toxicity than lead [12]. Hence, another elements have been considered for the further ongoing lead-free solar cells. In order to substitute the Pb, another potential, germanium (Ge^{2+}) cation was implemented into the organometal-halide crystal as a harvesting layer, which has the same oxidation state and lower electronegativity and ^{*}Correspondence: ajaybarn@gmail.com; itou@eng.u-hyogo.ac.jp Department of Materials and Synchrotron Radiation Engineering, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan Full list of author information is available at the end of the article resulted in 0.2% PCE [13]. As another divalent, earth abundant and non-toxic element, copper cation was utilized in mesoscopic perovskite solar cell structure with $(CH_3NH_3)_2CuCl_xBr_y$ as a photon harvesting layer [14]. The low PCE of 0.017% was observed due to the low absorption coefficients, the high effective mass of holes and the low intrinsic conductivity of the employed perovskite layer. The other viable opinion towards lead cation (Pb^{2+}) substitution is adaptation of heterovalent (not divalent) cation into the organic-metal-halide crystals. These substitutions have to follow charge neutrality and can alter perovskite structure (ABX₃) to another crystal (A: organic ion; B: metal ion; X: halide ion). Recently, trivalent cations of antimony (Sb) and bismuth (Bi) based organic-metal-halide crystals (A₃B₂X₉ or A₃BX₆) got significant interest as a photon harvesting layer due to their environmentally friendly nature and available inactive outer shell s orbital [15, 16]. Öz et al. proposed (CH₃NH₃)₃Bi₂I₉ based inverted solar cells as <ITO/ PEDOT:PSS/(CH₃NH₃)₃Bi₂I₉/PCBM/Ca/Al. However, the energy mismatch limited the charge extraction, resulting in the low PCE to 0.07%. Hebig et al. proposed <ITO/ PEDOT:PSS/(CH₃NH₃)₃Sb₂I₉)/PCBM/ZnO/Al> tures and reported 0.49% PCE [15, 16]. The trivalent bismuth (Bi³⁺) has utilized for the fabrication of (CH₃NH₃)₃Bi₃I₉ based organic-metal-halide layer, which showed optimal absorption coefficient [17, 18]. This Bibased organic-metal-halide solar cells were reported 0.33% of the low PCE, which was limited by its high exciton binding energy of 300 meV. It was founded that the morphology of (CH₃NH₃)₃Bi₂I₉ was changed by the selection of electron transporting layers (ETL), and that the small amount addition of NMP (N-methyl-2-pyrrolidone) solvent could also attain to grow uniform surface morphology [18, 19]. In order to improve the Bi-based A₃BX₆-structured solar cells, recently, Ag and Cs were composed as A-site monovalent cations to be Cs₂AgBiX₆ structure, due to better optical and electrical properties and its ambient stability [20-23]. The substitution of methylammonium ion with silver can extend the dimension of all inorganic active material maintaining its 3d structure, which can be more suitable for photo harvesting due to its uniform nature. Ag found application in various structural compounds including AgBiI₄ and (CH₃NH₃)₂AgBiBr₆ although, only optical properties are established and the PCE is yet to be demonstrated [24, 25]. Moreover, the Chemical materials Evaluation and REserarch BAse (CEREBA) reported the incorporation of the silver based A-site cation by replacing the methylammonium (CH₃NH₃⁺) ion preserving the Bi and iodine (Ag₃BiI₆) and reported 4.3% PCE [23]. Hence, it can be assumed that the Ag-Bi based photo absorber can perform the lead free organo-metal-halide solar cells with better PCE. In order to improve the photovoltaics of lead free A₃B₂X₉ and A₃BX₆ solar cells, the further morphological and structural study of Sb and Bi-based metal-halide layers and the effect on PCE should be studied. In this study, we have tried A₃B₂X₉ and A₃BX₆-structured crystals for the photo absorber layers of solar cells with several combinations of A site cations (CH₃NH₃⁺, Ag⁺ and Cu⁺) and B site cations (Bi³⁺ and Sb³⁺), which were $(CH_3NH_3)_3Bi_2I_9$, $(CH_3NH_3)_3Sb_2I_9$, $(CH_3NH_3)_3SbBiI_9$, Ag₃BiI₆, Ag₃BiI₃(SCN)₃ and Cu₃BiI₆. The crystal configurations of A₃B₂X₉ and A₃BX₆ were tried to be controlled by the amount of elements in the solutions of source materials. These crystal layers were implemented in normal (n-i-p) and inverted (p-i-n) solar cell architectures (Fig. 1): the normal mesoscopic solar cell <FTO glass/cp TiO₂/mp TiO₂/(Pb-free A₃B₂X₉ and A₃BX₆ layer)/spiro-OMeTAD/Au> and the inverted structure <FTO glass/ NiO layer/(Pb-free A₃B₂X₉ and A₃BX₆ layer)/PCBM/ BCP/Ag>. It was confirmed that the adjacent substrate to A₃B₂X₉ crystal (TiO₂ electron transporting layer (ETL) and NiO hole transporting layer (HTL)) affected on the lead-free A₃B₂X₉ and A₃BX₆ morphology and its effect on PCE are studied. #### 2 Results and discussion ## 2.1 $A_3B_2X_9$ crystals with methyl ammonium cation for the A site The XRD patterns of (CH₃NH₃)₃Bi₂I₉, (CH₃NH₃)₃Sb₂I₉, and (CH₃NH₃)₃SbBiI₉ thin films are similar and possesses the strong preferential growth in c axis direction (Fig. 2a). The observed XRD peaks of thin (CH₂NH₂)₂Bi₂I₀ film at 8.16, 16.34 and 24.62 are well matched to the literature and correspond to the indexed planes (002), (004) and (006) respectively in a P6₃/mmc hexagonal space group where preferential growth direction is in c axis direction [15]. The observed peak of $(CH_3NH_3)_3Sb_2I_9$ film at 8.22, 16.54, 24.88 and 50.98 could be indexed by planes (001), (002), (003) and (402) respectively in P6₃/mmc hexagonal space group and possesses the strong preferential growth in c axis direction similar to the (CH₂NH₂)₂Bi₂I₀ film [16]. The XRD pattern of (CH₃NH₃)₃SbBiI₉ film containing Bi and Sb also shows preference to have the same c axis orientation growth. Due to the multi cation at B site in the crystal, we could not define the exact element at each position. Hence, we should not put the exact index at the peaks. The details analysis is ongoing for the next publication as the future works. Figure 2b shows UV–vis spectra and photographs of $(CH_3NH_3)_3Bi_2I_9$, $(CH_3NH_3)_3Sb_2I_9$, and $(CH_3NH_3)_3SbBiI_9$ thin films. The $(CH_3NH_3)_3Bi_2I_9$ film absorbs with the peak appearing around 500 nm. On the other hand, The **Fig. 1** Structures of fabricated solution processed lead-free $A_3B_2X_9$ and A_3BX_6 crystal (A: monovalent cation; B: trivalent cation; X: halogen anion) solar cells: normal mesoscopic (n-i-p) (**a**) and inverted planar (p-i-n) (**b**) structures UV-vis spectrum of $(CH_3NH_3)_3Sb_2I_9$ shows a shoulder peak around 460 nm and no clear peak. The casted $(CH_3NH_3)_3SbBiI_9$ film shows higher absorption around 500 nm than $(CH_3NH_3)_3Bi_3I_9$ and $(CH_3NH_3)_3Sb_3I_9$ films. tures of (CH₃NH₃)₃Bi₂I₀, (CH₃NH₃)₃Sb₂I₀ and (CH₃NH₃)₃SbBiI₀ films The exact absorption coefficients were not shown in the figure due to the inhomogeneous structures of films, which will be shown later. The $(CH_3NH_3)_3Bi_2I_0$ (CH₃NH₃)₃Sb₂I₉(CH₃NH₃)₃SbBiI₉ layers processed on different substrates (TiO2 or NiO) were observed with scanning electron microscopy (SEM) images (Fig. 3). Due to the crystal structures with hexagonal space group detected by XRD (Fig. 2a), the morphologies became also hexagonal shapes, basically. The (CH₃NH₃)₃Bi₂I₉ film growth morphology on TiO₂ layer is hexagonal (Fig. 3a), but were irregular hexagon and star shape on NiO film (Fig. 3b). Apparently, this observed variation of morphology pattern is attributed to the interface between metal oxides (TiO2 and/or NiO) and A3B2X9 organic-metalhalide crystals. On the other hand, the (CH₃NH₃)₃Sb₂I₉ (Fig. 3c, d) crystals were hexagonal simply, irrespective of substrate (TiO₂ and/or NiO). Additionally, on the NiO substrate, the appearing irregular hexagon shows its polycrystalline nature. About the (CH₃NH₃)₃SbBiI₉ film (Fig. 3e, f), these observed SEM images provide the information of the surface coverage, suggesting polycrystalline growth of hexagonal and irregular hexagonal in nature. Essentially, the inhomogeneity is involved in the growth of film, and the homogeneous surface coverage is difficult. This characteristics may be attributed to the poor PCE and with polycrystalline growth nature [26]. Figure 4 shows the SEM images of $(CH_3NH_3)_3Bi_2I_9$, $(CH_3NH_3)_3Sb_2I_9$, and $(CH_3NH_3)_3SbBiI_9$ crystals casted on TiO_2 and NiO substrates for the elemental distribution by EDX analysis. In order to reduce the electron charge accumulation on the surface during the EDX **Fig. 3** SEM images of $A_3B_2X_9$ films [(CH₃NH₃)₃Bi₂I₉: (**a, b**); (CH₃NH₃)₃Sb₂I₉: (**c, d**); (CH₃NH₃)₃SbBil₉: (**e, f**)] grown on different substrates [TiO₂: (**a, c, e**); NiO: (**b, d, f**)] measurements, the gold (Au) thin layer was deposited by sputtering system beforehand. Hence the component contribution from Au was observed. The sum of all elemental contribution was set to be 100. The points of elemental analysis were chosen at various particular spot locations and are numbered in Fig. 4. The results of elemental analysis are summarized in Tables 1, 2, 3, 4, 5, 6, which are projected by the numbers in Fig. 4. About (CH₃NH₃)₃Bi₂I₉ film elemental analysis on TiO₂ substrates (Fig. 4a, Table 1), the small amounts of Bi and I out of grain were observed (points 4 and 5). The points on grain (point 1, 2, and 3) show the large amount of Bi and I than those out of grain (points 4 and 5). Hence, It can be confirmed that there was also the thin layer of (CH₃NH₃)₃SbBiI₉ at the points out of the large grain. The ratios of I/Bi at the points 1, 2, 3, 4, and 5 in Fig. 4a were 4.21, 3.91, 3.76, 4.08 and 4.25, respectively. Thinking about the I/Bi stoichiometry ratio (= 4.5) in the (CH₃NH₃)₃Bi₂I₉ crystal, the results of EDX show the reduction of iodide element in the material. Although Bi was distributed on all points of the TiO₂ surface (Table 1), there are missing points of Bi on NiO layer (at the points 2 and 3 in Table 2). The points 2 and 3 out of grain on NiO may possess only CH₃NH₃I. The ratios of I/Bi at the points 1, 4, and 5 in Fig. 4b and Table 2 are 4.92, 4.13, and 4.02, respectively, which are larger than those of grains in Fig. 4a and Table 1. Possibly, the solution of (CH₃NH₃)₃Bi₂I₉ was repelled from the surface of NiO and crystallized on NiO close to the stoichiometry ratio. About (CH₃NH₃)₃Sb₂I₉, it was surprising that **Fig. 4** SEM images observed for elemental analysis of $A_3B_2X_9$ films $[(CH_3NH_3)_3Bi_2]_9$: (\mathbf{a}, \mathbf{b}) ; $(CH_3NH_3)_3Sb_2]_9$: (\mathbf{c}, \mathbf{d}) ; $(CH_3NH_3)_3Sbi_3$: (\mathbf{e}, \mathbf{f})] grown on different substrates $[TiO_2$: $(\mathbf{a}, \mathbf{c}, \mathbf{e})$; NiO: $(\mathbf{b}, \mathbf{d}, \mathbf{f})$]. The marked spots indicate the positions of elemental analysis, which are related to the results shown in Tables 1, 2, 3, 4, 5, and 6 there are missing points of Sb not only on NiO, but also on TiO_2 (Fig. 4c, d, Tables 3, 4). Therefore, the anchoring strength of Sb on to the oxides (TiO_2 or NiO) would be weaker than that of Bi. The elemental ratios (I/Sb) of crystals were 6.17 and 4.79 on TiO_2 (at the points 1 and 3 in Fig. 4c and Table 3) and 3.98, 3.65 and 4.03 on NiO (at the points 1, 3 and 4 in Fig. 4d and Table 4), respectively. The reason was not clear, but the elemental ratios (I/Sb) of crystals were higher on TiO_2 than NiO. About $(\text{CH}_3\text{NH}_3)_3\text{SbBiI}_9$ (Fig. 4e, f, Tables 5, 6), Bi was not observed out of the crystal as $(\text{CH}_3\text{NH}_3)_3\text{Sb}_2\text{I}_9$ (Fig. 4c, d, Tables 3, 4), which was predicted by the weak anchoring Table 1 Elemental distribution (atomic %) of the individual elements observed on particular spot on $(CH_3NH_3)_3Bi_2I_9/TiO_2$ film shown in Fig. 4a | Spot | Bismuth | lodine | Titanium | Gold | |---------|---------|--------|----------|------| | Point 1 | 10.00 | 42.10 | 45.55 | 2.72 | | Point 2 | 12.87 | 50.35 | 34.17 | 2.59 | | Point 3 | 17.25 | 64.87 | 14.49 | 3.11 | | Point 4 | 6.32 | 25.79 | 64.17 | 3.29 | | Point 5 | 2.79 | 11.86 | 80.89 | 4.02 | Table 2 Elemental distribution (atomic %) of the individual elements observed on a particular spot on (CH₃NH₃)₃Bi₂I₉/NiO film shown in Fig. 4b | Spot | Bismuth | lodine | Nickel | Gold | |---------|---------|--------|--------|-------| | Point 1 | 13.92 | 68.52 | 10.88 | 6.95 | | Point 2 | 0.00 | 11.14 | 46.54 | 42.31 | | Point 3 | 0.00 | 12.25 | 45.62 | 42.12 | | Point 4 | 18.07 | 74.56 | 2.33 | 4.64 | | Point 5 | 19.01 | 76.55 | 0.92 | 3.29 | Table 3 Elemental distribution (atomic %) of the individual elements observed on particular spot on (CH₃NH₃)₃Sb₂I₉/TiO₂ film shown in Fig. 4c | Spot | Antimony | lodine | Titanium | Gold | |---------|----------|--------|-------------|------| | | Andinony | louine | IItailiulii | | | Point 1 | 7.71 | 47.59 | 38.97 | 5.71 | | Point 2 | 0.00 | 26.17 | 66.96 | 6.86 | | Point 3 | 13.06 | 62.55 | 22.25 | 2.12 | | Point 4 | 0.00 | 15.55 | 78.85 | 5.37 | | Point 5 | 0.00 | 8.95 | 89.17 | 1.66 | Table 4 Elemental distribution (atomic %) of the individual elements observed on a particular spot on (CH₃NH₃)₃Sb₂I₉/NiO substrate shown in Fig. 4d | Spot | Antimony | lodine | Nickel | Gold | |---------|----------|--------|--------|-------| | Point 1 | 19.54 | 77.83 | 0.26 | 2.35 | | Point 2 | 0.00 | 6.83 | 43.44 | 49.72 | | Point 3 | 20.26 | 73.91 | 0.71 | 5.10 | | Point 4 | 19.64 | 79.22 | 0.20 | 0.93 | | Point 5 | 0.00 | 3.84 | 44.04 | 52.11 | strength between Sb and metal oxides as above. Although the material ratio in the solution of (CH₃NH₃)₃SbBiI₉ was in the stoichiometry, the elemental ratio of Sb/Bi was changed very much to the crystals, which would be due to the segregation to (CH₃NH₃)₃SbI₉ and (CH₃NH₃)₃BiI₉. Table 5 Elemental distribution (atomic %) of the individual elements observed on (CH₃NH₃)₃SbBil₉/TiO₂ substrate shown in Fig. 4e | Spot | Antimony | Bismuth | lodine | Titanium | Gold | |---------|----------|---------|--------|----------|------| | Point 1 | 2.70 | 3.11 | 23.86 | 68.98 | 1.32 | | Point 2 | 11.18 | 8.04 | 74.57 | 3.18 | 3.00 | | Point 3 | 9.09 | 7.42 | 65.20 | 11.73 | 6.23 | | Point 4 | 0.00 | 3.01 | 29.55 | 60.94 | 6.35 | | Point 5 | 0.00 | 3.76 | 27.73 | 65.99 | 2.50 | Table 6 Elemental distribution (atomic %) of the individual elements observed on (CH₃NH₃)₃SbBil₉/NiO substrate shown in Fig. 4f | Spot | Antimony | Bismuth | lodine | Nickel | Gold | |---------|----------|---------|--------|--------|-------| | Point 1 | 6.36 | 8.85 | 74.85 | 2.55 | 7.36 | | Point 2 | 1.32 | 8.68 | 71.86 | 5.81 | 11.76 | | Point 3 | 0.00 | 0.00 | 3.58 | 38.82 | 57.58 | | Point 4 | 9.54 | 9.71 | 75.48 | 0.12 | 5.13 | | Point 5 | 3.83 | 9.61 | 60.83 | 7.86 | 17.85 | | | | | | | | The elemental ratios (I/(Sb + Bi)) of (CH₃NH₃)₃SbBiI₉ crystals were 4.11, 3.92, and 3.95 on TiO₂ (at points 1, 2, and 3 in Fig. 4e and Table 5) and 4.92, 7186, 3.92, and 4.52 on NiO (at points 1, 2, 4 and 5 in Fig. 4f and Table 6), respectively. The large variation of elemental ratio [I/(Sb + Bi)] would be attributed to the crystal segregations. Anyway, the SEM–EDX analysis suggests the nonuniformity of the crystals of (CH₃NH₃)₃Bi₂I₉, (CH₃NH₃)₃Sb₂I₉, and (CH₃NH₃)₃SbBiI₉. These all results are in contrast to the lab scale established CH₃NH₃PbI₃ perovskite-based solar cells where high efficiencies are achieved with uniform and pin hole free surface morphology [27, 28]. Figure 5 shows the photo I–V characteristics of solar cells with best PCE using the lead-free photo absorbing materials ((CH₃NH₃)₃Bi₂I₉, (CH₃NH₃)₃Sb₂I₉, and (CH₃NH₃)₃SbBiI₉) with different structure (n-i-p and p-i-n, in Fig. 1), measured under the simulated sun light (AM 1.5, 100 mW cm⁻²). The observed PCE parameters are summerized in Table 7 and are significantly lower than the standard perovskite solar cells using CH₃NH₃PbI₃ [1–3], which would be attributed to the uneven surface morphology of lead free perovskite solar cells. Basically, the cells using porous-TiO₂ electrode gave better *FF*s, which is due to the prohibition of short circuiting by porous TiO₂ layer [29]. Actually, the cells without A₃B₂I₉ conformal layers on porous TiO₂ [(CH₃NH₃)₃Sb₂I₉ (Table 3) and (CH₃NH₃)₃SbBiI₉ (Table 5)] also provide better *FF*s. On the other hand, the cells using NiO provide small FFs. Specially, the cells using $(CH_3NH_3)_3Bi_2I_9$ on NiO performed the short circuitting (Fig. 5b, Table 2). However, in spite of the missing points of $(CH_3NH_3)_3Sb_2I_9$ and $(CH_3NH_3)_3SbBiI_9$ on NiO (Tables 4, 6), the I–V curves in Fig. 5d and f show FFs over 0.3. The prohibition of short circuiting would be due to the slight presence of Sb^{3+} on NiO surface, which was not detected by the EDX analysis. It was interesting that the hysteresis of $A_3B_2X_9$ solar cells on NiO layer were smaller than those on TiO_2 layer, as $CH_3NH_3PbI_3$ solar cells [30]. #### 2.2 A₃BX₆ crystals with Ag or Cu cation for the A site Copper and silver are non-toxic material and especially, Cu⁺ is a cheap and earth abundant one. The structure of A₃BX₆ was regulated by the ratio of elemental materials in the DMSO solution. Hence, CuI and BiI₃ were mixed in 3:1 molar ratio to be Cu₃BiI₆. AgI and BiI₃ were mixed in 3:1 molar ratio to be Ag₃BiI₆. In case of Ag₃BiI₃(SCN)₃, AgSCN and BiI₃ were mixed in 3:1 molar ratio. The XRD patterns of Ag₃BiI₆, Ag₃BiI₃(SCN)₃ and Cu₃BiI₆ as casted films are shown in Fig. 6a. The film made by Ag₃BiI₆ signifies the trigonal structure with R $\bar{3}$ m space group [31]. The space group determination of relatively new materials Ag₃BiI₃(SCN)₃ and Cu₃BiI₆ could not be realized. Now, we are analyzing the exact crystal structures of Ag₃BiI₃(SCN)₃ and Cu₃BiI₆ as the further research works. Figure 6b shows the UV-vis absorption spectra observed. The Ag₃BiI₆ and Cu₃BiI₆ films show higher absorption than the Ag₃BiI₃(SCN)₃ one. Due to the absorbance onset of Ag₃BiI₆ and Cu₃BiI₆ at around 680 nm, the films were dark brown. On the other hand, Ag₃BiI₃(SCN)₃ film was pale yellowish. The difference of Ag₃BiI₆ and Cu₃BiI₆ were the variation of spectra at around 580 nm. The exact absorption coefficients were not shown in the figure due to the inhomogeneous structures of films, which will be shown later. Figure 7 shows the surface morphologies of Ag₃BiI₆, Ag₃BiI₃(SCN)₃ and Cu₃BiI₆ films on porous-TiO₂ and planer-NiO substrates which were observed by the SEM. Although the Ag₃BiI₆ films seems to be uniform observed by eyes, the nanoscale morphology in this SEM image scaled at 1 µm was relatively uniform (Fig. 7a). It was noticed that there were 1 µm-sized small grains of Ag₃BiI₆ on porous-TiO₂ (Fig. 7a). However, Ag₃BiI₆ on planer NiO became the flakey layer with cracks, and exact crystals were not observed in the SEM image (Fig. 7b). For the other silver cation and mixed anion based Ag₃BiI₃(SCN)₃ film, the SEM image with 10 μm scale shows the leaf-like crystal pattern on porous-TiO₂ substrate and the grain structure on planer-NiO substrate with space between the crystals as the non-uniform substrate coverage resulting in the limitation in photon harvesting and charge collection (Fig. 7c, d). The morphologies of Cu_3BiI_6 were small grains with around 0.1–0.5 µm which were dispersed homogeneously on porous-TiO₂ and planer-NiO substrates (Fig. 7e, f). The individual elemental distribution (EDX analysis) involved of surface morphology of Ag₃BiI₆, Ag₃BiI₃(SCN)₃ and Cu₃BiI₆ films are shown in Tables 8, 9, 10, 11, 12 and 13. The analyses spots were chosen randomly and are shown on its SEM images in Fig. 7. Although A₃BX₆ crystals of Ag₃BiI₆, Ag₃BiI₃(SCN)₃ and Cu₃BiI₆ distributed relatively homogeneously than A₃B₂X₉ ones using CH₃NH₃⁺ cations (Fig. 3 and Tables 1, 2, 3, 4, 5, 6), still the materials were dispersed with inhomogeneity about the elemental ratio (Tables 8, 9, 10, 11, 12, 13). It can be noticed that the amount of Bi was smaller than A site monovalent cations (Ag⁺ and Cu⁺). Specially, it was prominent that the amount of Ag⁺ was quite higher than that of Bi³⁺, which should be improved for the further progress. The photo I–V characteristics of these A₃BX₆ (Ag₃BiI₆, Ag₃BiI₃(SCN)₃ and Cu₃BiI₆) solar cells with different structure (n-i-p and p-i-n, in Fig. 1) under simulated irradiation of 1 SUN are shown in Fig. 8, which were the I–V curves for the best PCE in the series. The photovoltaic parameters were summarized in Table 14. Basically, Voc using porous-TiO2 layer were higher than using planer-NiO one. The effect of hysteresis on NiO layer was larger, which were different from A₃B₂X₉ [(CH₃NH₃)₃Bi₂I₉, $(CH_3NH_3)_3Sb_2I_9$, and $(CH_3NH_3)_3SbBiI_9$] solar cells (Fig. 5). But, specially, the cells using Ag₃BiI₆ on NiO and Ag₃BiI₃(SCN)₃ on TiO₂ perform the strong hysteresis and large overshooting at the reverse voltage scanning, which is the overestimation of photovoltaic results. The best J_{SC} and PCE in this work using trivalent B-site cation crystals are shown in Fig. 8a with the cell configuration <FTO/cp-TiO₂/mp-TiO₂/Ag₃BiI₆/spiro-OMeTAD/ Au>. Although there was the hysteresis, the variation was not large as other combinations. The observed PCE (reverse scan) of Ag₃BiI₆ based photon harvesting layer attained 1.08% (Fig. 8a, Table 14), which is comparable of reported PCE using AgBi₂I₇ based photo absorber [32]. This relatively-high PCE would be due to the pinhole-less surface morphology. However, the association of Ag₂BiI₆ layer in inverted architecture could result in only 0.32% PCE (Fig. 8b and Table 14). The IPCE of the Ag₂BiI₆ based mesoscopic solar cell is shown in Fig. 8g, the close matching of Jsc of 1.78 mA cm⁻² is observed. We tried to measure the IPCE of other lead free solar cell, but IPCE measurements could not be managed due to the low J_{SC} values. It was interesting that there was negligible hysteresis at the photo I-V measurements of <FTO/cp-TiO₂/mp-TiO₂/Cu₃BiI₆/spiro-OMeTAD/Au> cells, which would have the significance for the further research efforts in the future. **Fig. 5** Photo I–V curves of lead-free $A_3B_2X_9$ -crystal solar cells measured under simulated irradiation (AM 1.5, 100 mW cm⁻²) as normal mesoscopic and inverted architectures respectively. The photoabsorption layers were (CH₃NH₃)₃Bi₂l₉ (**a**, **b**), (CH₃NH₃)₃Sb₂l₉ (**c**, **d**), and (CH₃NH₃)₃SbBil₉ (**e**, **f**) crystal films. The photovoltaic characteristics were summarized in Table 7 Table 7 Photovoltaic performance of (CH₃NH₃)₃Bi₂I₉, (CH₃NH₃)₃Sb₂I₉, (CH₃NH₃)₃SbBiI₉ photon harvesting layer based mesoscopic normal and inverted planar architecture solar cells | Photo-layer | Architecture | Scan direction | Efficiency/% | Jsc/mAcm ⁻² | Voc/V | FF | |--------------------------------------------------------------------------------|--------------|----------------|---------------|------------------------|-------------|-------------| | (CH ₃ NH ₃) ₃ Bi ₂ l ₉ | Normal | Rev | 0.21 (0.22) | 0.40 (0.38) | 0.64 (0.68) | 0.81 (0.88) | | | | Fwd | 0.07 (0.06) | 0.29 (0.26) | 0.53 (0.53) | 0.45 (0.43) | | (CH ₃ NH ₃) ₃ Bi ₂ I ₉ | Inverted | Rev | 0.00 (0.00) | 0.27 (0.30) | 0.00 (0.00) | - | | | | Fwd | 0.00 (0.00) | 0.22 (0.25) | 0.00 (0.00) | - | | (CH ₃ NH ₃) ₃ Sb ₂ l ₉ | Normal | Rev | 0.080 (0.095) | 0.25 (0.30) | 0.45 (0.45) | 0.70 (0.69) | | | | Fwd | 0.057 (0.07) | 0.21 (0.26) | 0.43 (0.42) | 0.62 (0.61) | | (CH ₃ NH ₃) ₃ Sb ₂ l ₉ | Inverted | Rev | 0.058 (0.061) | 0.45 (0.43) | 0.38 (0.38) | 0.36 (0.37) | | | | Fwd | 0.057 (0.055) | 0.45 (0.42) | 0.36 (0.35) | 0.35 (0.35) | | (CH ₃ NH ₃) ₃ SbBil ₉ | Normal | Rev | 0.099 (0.11) | 0.27 (0.31) | 0.59 (0.57) | 0.64 (0.62) | | | | Fwd | 0.067 (0.084) | 0.23 (0.29) | 0.55 (0.54) | 0.55 (0.52) | | (CH ₃ NH ₃) ₃ SbBil ₉ | Inverted | Rev | 0.05 (0.10) | 0.44 (0.46) | 0.32 (0.50) | 0.34 (0.44) | | | | Fwd | 0.06 (0.11) | 0.44 (0.46) | 0.34 (0.52) | 0.35 (0.47) | Data shown here represent the average of three independent solar cell parameters. Best representative photovoltaic parameters are shown in the bracket **Fig. 6** XRD patterns (**a**) and UV–vis absorption spectra (**b**) of Ag₃Bil₆ Ag₃Bil₃(SCN)₃ and Cu₃Bil₆ casted on the glass substrates. The insets were the pictures of Ag₃Bil₆, Ag₃Bil₃(SCN)₃ and Cu₃Bil₆ films #### 3 Conclusions In summary, we fabricated the lead-free hybrid solar cells in standard mesoscopic and inverted architecture incorporating various solution processed photon harvesting layer of (CH₃NH₃)₃Bi₂I₉, (CH₃NH₃)₃Sb₂I₉, (CH₃NH₃)₃SbBiI₉, Ag₃BiI₆, Ag₃BiI₃(SCN)₃ and Cu₃BiI₆. The best PCE results was obtained using <FTO/cp-TiO $_2$ /mp-TiO $_2$ /Ag $_3$ BiI $_6$ /spiro-OMeTAD/Au> structure with 1.08% of power conversion efficiency (PCE). The grown morphology of A $_3$ B $_2$ X $_9$ and A $_3$ BX $_6$ crystals can be different on the substrates (porous TiO $_2$ or planar NiO layers). The unevenness can be the hindrance for the improvement of photovoltaic effects. Hence, it is advisable to use lead-free element which can show uniform coverage of the substrate. Other interesting findings in this report were the prohibition of short circuiting of solar cells using Sb deposition on NiO layer and the diminishment of photo I–V hysteresis using porous- TiO_2/Cu_3BiI_6 combination, which can be considered for the further progresses. #### 4 Experimental details All chemicals were of reagent grade quality and used without any further processing. Antimony iodide (SbI $_3$) was purchased from Yanagishima Pharmaceutical Co. Ltd. Bismuth iodide (BiI $_3$), Silver iodide (AgI), Nickel (II) acetylacetonate, Phenyl-C61-butyric acid methyl ester (PCBM) and bathocuproine (BCP) were purchased from Aldrich. Copper(I) iodide (CuI) from Kanto Chemical Ltd., Silver thiocyanate (AgSCN) from Wako Pure Chemical Industries Ltd., and Methylammonium iodide was purchased from TCI respectively. Dimethyl sulfoxide (DMSO), Chlorobenzene, and Methanol were purchased from Wako. γ -Butyrolactone (GBL) and Acetonitrile were procured from Chameleon Reagent and Kanto Chemical Co. Inc. respectively. FTO glass (TEC-15, t=2.1 mm), purchased from Pilkington were cut in an appropriate size and cleaned ultrasonically with detergent water, distilled water and ethanol, respectively each for 15 min. The cleaned FTO **Fig. 7** SEM images observed for elemental analysis of A₃BX₆ films [Ag₃Bil₆: (**a, b**); Ag₃Bil₃(SCN)₃: (**c, d**); Cu₃Bil₆: (**e, f**)] grown on different substrates [TiO₂: (**a, c, e**); NiO: (**b, d, f**)]. The marked spots indicate the positions of elemental analysis, which is related to the results shown in Tables 8, 9, 10, 11, 12 and 13 Table 8 Elemental distribution (atomic %) of the individual elements observed on a particular spot on Ag_3Bil_6/TiO_2 substrate shown in Fig. 8a | Spot | Bismuth | Silver | lodine | Titanium | Oxygen | Silicon | |---------|---------|--------|--------|----------|--------|---------| | Point 1 | 4.75 | 32.89 | 33.54 | 11.97 | 9.11 | 7.75 | | Point 2 | 2.01 | 65.52 | 16.29 | 7.19 | 5.76 | 3.24 | | Point 3 | 2.73 | 20.47 | 19.50 | 15.86 | 19.65 | 21.79 | | Point 4 | 1.80 | 53.99 | 18.38 | 10.09 | 11.56 | 4.18 | | Point 5 | 5.03 | 43.57 | 26.93 | 15.62 | 3.98 | 4.87 | Table 9 Elemental distribution (atomic %) of the individual elements observed on a particular spot on Ag_3Bil_6/NiO substrate shown in Fig. 8b | Spot | Bismuth | Silver | lodine | Nickel | Oxygen | Silicon | |---------|---------|--------|--------|--------|--------|---------| | Point 1 | 2.00 | 32.49 | 10.34 | 1.06 | 14.54 | 39.57 | | Point 2 | 4.88 | 40.11 | 20.99 | 1.04 | 6.98 | 25.99 | | Point 3 | 2.87 | 45.38 | 23.67 | 1.10 | 6.98 | 19.99 | | Point 4 | 0.83 | 29.68 | 5.36 | 0.69 | 24.20 | 39.25 | | Point 5 | 0.58 | 89.08 | 4.83 | 0.30 | 3.55 | 1.65 | Table 10 Elemental distribution (atomic %) of the individual elements observed on $Ag_3Bil_3(SCN)_3/TiO_2$ substrate shown in Fig. 8c | Spot | Bismuth | Silver | lodine | Sulphur | Carbon | Nitrogen | Titanium | Oxygen | Silicon | |---------|---------|--------|--------|---------|--------|----------|----------|--------|---------| | Point 1 | 3.10 | 20.88 | 10.24 | 2.54 | 7.94 | 3.40 | 12.17 | 19.97 | 21.76 | | Point 2 | 3.31 | 45.94 | 15.54 | 2.72 | 6.08 | _ | 11.52 | 8.57 | 6.33 | | Point 3 | 3.71 | 29.29 | 12.62 | 2.97 | 8.06 | 0.84 | 13.16 | 12.64 | 16.71 | | Point 4 | 3.98 | 26.85 | 8.77 | 3.29 | 7.04 | 4.89 | 13.25 | 18.52 | 13.40 | Table 11 Elemental distribution (atomic %) of the individual elements observed on Ag₃Bil₃(SCN)₃/NiO substrate shown in Fig. 8d | Spot | Bismuth | Silver | lodine | Sulfur | Carbon | Nitrogen | Nickel | Oxygen | Silicon | |---------|---------|--------|--------|--------|--------|----------|--------|--------|---------| | Point 1 | 3.23 | 7.19 | 13.82 | 5.35 | 19.35 | 4.71 | 0.48 | 25.38 | 20.50 | | Point 2 | 2.40 | 41.86 | 13.76 | 2.61 | 8.85 | - | 0.65 | 11.82 | 18.04 | | Point 3 | 0.58 | 16.57 | 0.91 | 0.71 | 10.50 | - | 0.79 | 42.75 | 27.19 | | Point 4 | 0.60 | 16.75 | 0.84 | 0.78 | 11.19 | - | 0.85 | 39.73 | 19.26 | Table 12 Elemental distribution (atomic %) of the individual elements observed on Cu_3Bil_6/TiO_2 substrate shown in Fig. 8e | Spot | Copper | Bismuth | Iodine | Titanium | Oxygen | Silicon | |---------|--------|---------|--------|----------|--------|---------| | Point 1 | 16.38 | 1.59 | 22.26 | 8.54 | 32.17 | 19.06 | | Point 2 | 9.18 | 1.65 | 17.42 | 9.76 | 37.88 | 24.11 | | Point 3 | 6.21 | 1.48 | 13.18 | 8.04 | 42.66 | 28.44 | | Point 4 | 3.20 | 1.90 | 9.40 | 8.35 | 47.70 | 29.45 | Table 13 Elemental distribution (atomic %) of the individual elements observed on Cu₃Bil₆/NiO substrate shown in Fig. 8f | Spot | Copper | Bismuth | lodine | Nickel | Oxygen | Silicon | |---------|--------|---------|--------|--------|--------|---------| | Point 1 | 2.19 | 0.46 | 3.75 | 0.57 | 56.42 | 36.61 | | Point 2 | 4.18 | 1.03 | 12.15 | 0.71 | 48.00 | 33.92 | | Point 3 | 1.94 | 0.48 | 3.77 | 0.66 | 51.91 | 41.23 | | Point 4 | 3.29 | 1.84 | 7.70 | 0.52 | 52.41 | 34.24 | **Fig. 8** Photo I–V curves of lead-free A_3BX_6 -crystal solar cells measured under simulated irradiation (AM 1.5, 100 mW cm⁻²) as normal mesoscopic and inverted architectures respectively. The photoabsorption layers are Ag_3Bil_6 (**a, b**), $Ag_3Bil_3(SCN)_3$ (**c, d**), and Cu_3Bil_6 (**e, f**) crystal films, and IPCE spectrum of the mesoscopic structure with the Ag_3Bil_6 layer (**g**). The photovoltaic characteristics were summarized in Table 14 Table 14 Photovoltaic performance of Ag₃Bil₆, Ag₃Bil₃(SCN)₃ photon harvesting layer based mesoscopic normal and inverted planar architecture solar cells (Fig. 8g) | Photo-layer | Architecture | Scan direction | Efficiency/% | Jsc/mAcm ⁻² | Voc/V | FF | |-----------------------------------------------------|--------------|----------------|---------------|------------------------|-------------|-------------| | Ag ₃ Bil ₆ | Normal | Rev | 0.91 (1.08) | 1.92 (2.36) | 0.63 (0.65) | 0.75 (0.70) | | | | Fwd | 0.58 (0.88) | 1.92 (2.81) | 0.52 (0.56) | 0.56 (0.55) | | Ag ₃ Bil ₆ | Inverted | Rev | 0.14 (0.32) | 0.99 (1.29) | 0.25 (0.41) | 0.42 (0.59) | | | | Fwd | 0.02 (0.02) | 0.39 (0.40) | 0.14 (0.16) | 0.31 (0.32) | | $Ag_3Bil_3(SCN)_3$ | Normal | Rev | 0.14 (0.18) | 0.32 (0.27) | 0.63 (0.63) | 0.72 (1.00) | | | | Fwd | 0.02 (0.03) | 0.21 (0.16) | 0.40 (0.50) | 0.30 (0.35) | | Ag ₃ Bil ₃ (SCN) ₃ | Inverted | Rev | 0.007 (0.02) | 0.12 (0.12) | 0.17 (0.55) | 0.34 (0.36) | | | | Fwd | 0.02 (0.01) | 0.11 (0.13) | 0.46 (0.17) | 0.42 (0.46) | | Cu ₃ Bil ₆ | Normal | Rev | 0.19 (0.23) | 0.69 (0.83) | 0.45 (0.46) | 0.59 (0.60) | | | | Fwd | 0.19 (0.23) | 0.71 (0.86) | 0.46 (0.46) | 0.57 (0.59) | | Cu ₃ Bil ₆ | Inverted | Rev | 0.028 (0.03) | 1.70 (1.24) | 0.06 (0.08) | 0.27 (0.29) | | | | Fwd | 0.016 (0.017) | 0.32 (0.28) | 0.13 (0.13) | 0.39 (0.45) | Data shown here represent the average of three independent solar cell parameters. Best representative photovoltaic parameters are shown in the bracket glass was passed through UV-O $_3$ treatment for 10 min to remove the organic impurities. To fabricate the standard mesoscopic n-i-p solar cell, diluted TAA solution (Titanium di isopropoxide bis(acetylacetonate)/ Sigma-Aldrich) of (200 μL in 7.5 mL ethanol) was aerosol spray coated maintaining the substrate temperature 500 °C. After arriving the ambient temperature the coated FTO glass was passed through the UV-O $_3$ treatment and, diluted PST-30NRD TiO $_2$ solution (1:3.5 wt/ wt) was coated by spinning process at 5000 rpm for 30 s. The mesoporous TiO $_2$ coated substrate was dried out at 120 °C for 5 min and again baked at 500 °C for 30 min in a furnace. To make the perovskite layer, the substrate was treated for 5 min for UV-O₃ treatment and transferred inside N₂ filled glove box. To prepare the (CH₃NH₃)₃Sb₂I₉ film, SbI₃ and methylammonium iodide was mixed in DMSO:GBL (1:1) solvent and 0.25 M concentration of (CH₃NH₃)₃Sb₂I₉ was maintained by keeping the molar ratio as $CH_3NH_3I:SbI_3 = 3:2$ molar ratio. To prepare the (CH₃NH₃)₃Bi₂I₉ film, BiI₃ and methylammonium iodide was mixed to maintain the 0.25 M concentration of (CH₃NH₃)₃Bi₂I₉ in DMSO:GBL (1:1) by keeping the molar ratio as $CH_3NH_3I:BiI_3 = 3:2$. To prepare the (CH₃NH₃)₃SbBiI₉ film, SbI₃, BiI₃ and methylammonium iodide was mixed to maintain the 0.25 M concentration of (CH₃NH₃)₃SbBiI₉ in DMSO:GBL (1:1) by keeping the molar ratio as $CH_3NH_3I:SbI_3:BiI_3 = 3:1:1$. Semiconductor Ag₃BiI₆ layer overcoated TiO₂ mp substrate was prepared by making a 0.5 M solution of AgI and BiI₃ in DMSO solvent with 0.5 M concentration of Ag₃BiI₆ by keeping the molar ratio as $AgI:BiI_3 = 3:1$. To fabricate and explore the photon harvesting properties of Ag₃BiI₃(SCN)₃, BiI₃ and Silver thiocyanate (AgSCN) was mixed in 1:3 molar ratio to maintain the 0.5 M concentration in DMSO solvent. Copper based photon harvesting layer (Cu_3BiI_6) was prepared by mixing the CuI and BiI_3 in DMSO solvent with 0.4 M concentration of Cu_3BiI_6 by keeping the molar ratio as $CuI:BiI_3 = 3:1$. In all cases, the solution temperature was maintained at 80 °C and the heated solution was spun on mp ${\rm TiO_2}$ substrate with 2000 rpm for 30 s and preserved on a hot plate at 80 °C for 30 min to grow the respective photo absorber layer. To collect the holes smoothly a hole selective layer spiro-OMeTAD (2,2,7,7-Tetrakis(N,Ndi-p-methoxy phenylamine)-9,9-spirobifluorene)of 28.9 mg in 400 μ L chlorobenzene, with additives [11.5 μ L t-butyl pyridine (Sigma-Aldrich), 7 μ L Li-TFSI (520 mg in 1 mL acetonitrile) and 8.8 μ L Co Complex (40 mg in 0.1 mL acetonitrile)] was spun on a cold substrate of lead-free prepared semiconducting layer at 4000 rpm for 20 s and stored for drying under dark. Finally, gold layer was thermally evaporated and deposited to maintain 80 nm thickness, which works as a metal back contact layer. The inverted structure hybrid solar cell was fabricated by coating Nickel (II) acetylacetonate in acetonitrile (0.04 M) solution by spray process while maintaining the UV- $\mathrm{O_3}$ treated FTO glass temperature at 500 °C. After reaching the ambient temperature the coated NiO substrate was transferred to $\mathrm{N_2}$ filled glove box for leadfree semiconductor layer preparation. The preparation of individual photo harvesting layer was followed as described previously. On top of the lead-free photo absorber layer, a 20 mg/mL PCBM in chlorobenzene was spun at 1000 rpm for 60 s and kept under ambient $\mathrm{N_2}$ for 30 min to dry it out. Subsequently, a BCP solution of 1 mg/mL in methanol was spun at 1000 rpm for 60 s. Finally, a silver metal contact was prepared by thermally evaporation process maintaining its thickness 80 nm. The I–V characteristics were measured by an AM 1.5G solar simulator equipped with a 500 W Xe lamp (YSS-80A, Yamashita Denso) by placing a black 0.09 cm² mask area. A reference Si photodiode (Bunkou keiki co. ltd., Japan) was used to calibrate the power of the solar simulator light. The I–V characteristics were obtained by applying an external bias to the fabricated solar cell and measurement of generated photocurrent was performed with a DC voltage current source (Agilent, B2901A). SEM images were obtained by HITACHI Microscope TE3030 and EDX analysis was performed with Oxford Instruments, X-stream-2. #### Authors' contributions HM, HS performed the experiments. AKB, HM, NS analysed the data. AKB, HK, NS, and SI designed the experiments. AKB, HM, HS, HK, SK, NS, YS, MI, YN, KY, TM, TU, and HI provided an equal contribution in useful discussion and modification. AKB and SI wrote the manuscript. All authors read and approved the final manuscript. #### **Author details** ¹ Department of Materials and Synchrotron Radiation Engineering, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan. ² Graduate School of Engineering, Toin University of Yokohama, Yokohama, Kanagawa 225-8503, Japan. ³ Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, 1-2-1, Izumi-Chou, Narashino-Shi, Chiba 275-8575, Japan. ⁴ Department of Molecular Engineering, Graduate School of Engineering and Institute for Integrated Cell Materials Sciences (WPI-iCeMS), Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan. #### **Competing interests** The authors declare that they have no competing interests. #### Availability of data and materials The authors have no any more data to share. #### Consent to publication Not applicable. #### Ethics approval and consent to participate Not applicable. #### **Funding and Acknowledgements** We would like to express sincere thanks to the Advanced Low Carbon Technology Research and Development Program (ALCA-JST), Japan. #### **Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Received: 15 June 2017 Accepted: 17 September 2017 Published online: 22 September 2017 #### References A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009) - 2. S. Ito, APL Mater. 4, 91504 (2016) - W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S. Il Seok, Science 356, 1376 (2017) - 4. T.A.N. Peiris, A.K. Baranwal, H. Kanda, S. Fukumoto, S. Kanaya, L. Cojocaru, T. Bessho, T. Miyasaka, H. Segawa, S. Ito, Nanoscale **9**, 5475 (2017) - A.K. Baranwal, S. Kanaya, T.A.N. Peiris, G. Mizuta, T. Nishina, H. Kanda, T. Miyasaka, H. Segawa, S. Ito, Chemsuschem 9, 2604 (2016) - S. Ito, G. Mizuta, S. Kanaya, H. Kanda, T. Nishina, S. Nakashima, H. Fujisawa, M. Shimizu, Y. Haruyama, H. Nishino, Phys. Chem. Chem. Phys. 18, 27102 (2016) - S. Bae, S. Kim, S.-W. Lee, K.J. Cho, S. Park, S. Lee, Y. Kang, H.-S. Lee, D. Kim, J. Phys. Chem. Lett. 7, 3091 (2016) - 8. A. Babayigit, A. Ethirajan, M. Muller, B. Conings, Nat. Mater. 15, 247 (2016) - 9. S.F. Hoefler, G. Trimmel, T. Rath, Monatsh. Chem. **148**, 795 (2017) - E.S. Parrott, R.L. Milot, T. Stergiopoulos, H.J. Snaith, M.B. Johnston, L.M. Herz, J. Phys. Chem. Lett. 7, 1321 (2016) - 11. F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Nat. Photonics **8**, 489 (2014) - A. Babayigit, D. Duy Thanh, A. Ethirajan, J. Manca, M. Muller, H.-G. Boyen, B. Conings, Sci. Rep. 6, 18721 (2016) - T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, S.G. Mhaisalkar, J. Mater. Chem. A 3, 23829 (2015) - D. Cortecchia, H.A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P.P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci, N. Mathews, Inorg. Chem. 55, 1044 (2016) - S. Öz, J.-C. Hebig, E. Jung, T. Singh, A. Lepcha, S. Olthof, F. Jan, Y. Gao, R. German, P.H.M. van Loosdrecht, K. Meerholz, T. Kirchartz, S. Mathur, Sol. Energy Mater. Sol. Cells 158, 195 (2016) - 16. J.-C. Hebig, I. Kühn, J. Flohre, T. Kirchartz, A.C.S. Energ, Lett. 1, 309 (2016) - B.W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, E.M.J. Johansson, Adv. Mater. 27, 6806 (2015) - 18. A. Kulkarni, T. Singh, M. Ikegami, T. Miyasaka, RSC Adv. 7, 9456 (2017) - T. Singh, Y. Udagawa, M. Ikegami, H. Kunugita, K. Ema, T. Miyasaka, APL Mater. 5, 16103 (2017) - G. Volonakis, A.A. Haghighirad, R.L. Milot, W.H. Sio, M.R. Filip, B. Wenger, M.B. Johnston, L.M. Herz, H.J. Snaith, F. Giustino, J. Phys. Chem. Lett. 8, 772 (2017) - 21. G. Volonakis, M.R. Filip, A.A. Haghighirad, N. Sakai, B. Wenger, H.J. Snaith, F. Giustino, J. Phys. Chem. Lett. **7**, 1254 (2016) - E.T. McClure, M.R. Ball, W. Windl, P.M. Woodward, Chem. Mater. 28, 1348 (2016) - I. Turkevych, S. Kazaoui, E. Ito, T. Urano, K. Yamada, H. Tomiyasu, H. Yamagishi, M. Kondo, S. Aramaki, Chemsuschem 8575, 1 (2017) - H.C. Sansom, G.F.S. Whitehead, M.S. Dyer, M. Zanella, T.D. Manning, M.J. Pitcher, T.J. Whittles, V.R. Dhanak, J. Alaria, J.B. Claridge, M.J. Rosseinsky, Chem. Mater. 29, 1538 (2017) - F. Wei, Z. Deng, S. Sun, F. Zhang, D.M. Evans, G. Kieslich, S. Tominaka, M.A. Carpenter, J. Zhang, P.D. Bristowe, A.K. Cheetham, Chem. Mater. 29, 1089 (2017) - 26. H.-S. Kim, J.-Y. Seo, N.-G. Park, J. Phys. Chem. C 120, 27840 (2016) - 27. H.-S. Kim, J.-Y. Seo, N.-G. Park, Chemsuschem 9, 2528 (2016) - 28. M. Saliba, J.-P. Correa-Baena, M. Graetzel, A. Hagfeldt, A. Abate, Angew. Chemie Int. Ed. (2017). doi:10.1002/anie.201703226 - G. Murugadoss, G. Mizuta, S. Tanaka, H. Nishino, T. Umeyama, H. Imahori, S. Ito, APL Mater. 2, 81511 (2014) - H.-S. Kim, I.-H. Jang, N. Ahn, M. Choi, A. Guerrero, J. Bisquert, N.-G. Park, J. Phys. Chem. Lett. 6, 4633 (2015) - 31. T. Oldag, T. Aussieker, H.-L. Keller, C. Preitschaft, A. Pfitzner, ChemInform **36**, 44227 (2005) - Y. Kim, Z. Yang, A. Jain, O. Voznyy, G.-H. Kim, M. Liu, L.N. Quan, F.P. García de Arquer, R. Comin, J.Z. Fan, E.H. Sargent, Angew. Chemie Int. Ed. 55, 9586 (2016)