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Challenges in paper‑based fluorogenic 
optical sensing with smartphones
Tiffany‑Heather Ulep and Jeong‑Yeol Yoon* 

Abstract 

Application of optically superior, tunable fluorescent nanotechnologies have long been demonstrated throughout 
many chemical and biological sensing applications. Combined with microfluidics technologies, i.e. on lab-on-a-chip 
platforms, such fluorescent nanotechnologies have often enabled extreme sensitivity, sometimes down to single mol‑
ecule level. Within recent years there has been a peak interest in translating fluorescent nanotechnology onto paper-
based platforms for chemical and biological sensing, as a simple, low-cost, disposable alternative to conventional 
silicone-based microfluidic substrates. On the other hand, smartphone integration as an optical detection system as 
well as user interface and data processing component has been widely attempted, serving as a gateway to on-board 
quantitative processing, enhanced mobility, and interconnectivity with informational networks. Smartphone sensing 
can be integrated to these paper-based fluorogenic assays towards demonstrating extreme sensitivity as well as ease-
of-use and low-cost. However, with these emerging technologies there are always technical limitations that must be 
addressed; for example, paper’s autofluorescence that perturbs fluorogenic sensing; smartphone flash’s limitations 
in fluorescent excitation; smartphone camera’s limitations in detecting narrow-band fluorescent emission, etc. In this 
review, physical optical setups, digital enhancement algorithms, and various fluorescent measurement techniques are 
discussed and pinpointed as areas of opportunities to further improve paper-based fluorogenic optical sensing with 
smartphones.
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1  Introduction
1.1 � Point‑of‑care diagnostics on silicone‑based substrates
Point-of-care (POC) diagnostics are rapid, low-cost, 
mobile tests that can be conducted in resource-limited 
environments by little to non-trained personnel. Con-
ducting tests on site allows for faster response time, 
which in turn increases better opportunities for proper 
and adequate treatment [1, 2]. The incorporation of 
microfluidics with POC tests add complexity and ver-
satility to the assays due to controlled flow in discrete 
spaces, reduction in sample volume, minimized handling 
of reagents, and ability to run parallel comparison analy-
sis [3].

Silicone-based polymers, specifically polydimethyl-
siloxane (PDMS), are widely used in the fabrication of 

microfluidic POC platforms. PDMS provides an optically 
transparent (230–1100 nm), flexible, nontoxic, and low-
cost material. However, when untreated, PDMS surface 
is a relatively hydrophobic material, which can be prob-
lematic in controlling flow especially under low pres-
sure conditions. Also, irreversible protein adsorption to 
PDMS surface can eventually lead to a nonfunctional 
device. Although many surface modification techniques 
have been developed to make PDMS surface hydrophilic, 
induced hydrophilic states are only temporary: PDMS’ 
inherent hydrophobicity will return after a period of time 
[4, 5]. Furthermore, when developing unique infrastruc-
tures such as on-chip pumps and valves, PDMS lithogra-
phy fabrication techniques require a clean room access, 
which in turn can become complex and expensive.

1.2 � POC diagnostics on paper substrates
Alternatively, paper can be used as a microfluidic plat-
form. It is inexpensive, easy to chemically modify (i.e. 

Open Access

*Correspondence:  jyyoon@email.arizona.edu 
Department of Biomedical Engineering, The University of Arizona, Tucson, 
AZ 85721, USA

http://orcid.org/0000-0002-9720-6472
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40580-018-0146-1&domain=pdf


Page 2 of 11Ulep and Yoon ﻿Nano Convergence  (2018) 5:14 

nitrogen functionalized cellulose is commonly used for 
biological samples), easy to fabricate, store, and trans-
port [6]. Inkjet processing is also a well-studied and com-
mercially available method for easy functionalization 
of paper substrates. A widely known and highly used 
paper-based lateral flow assay (LFA) example is the col-
orimetric pregnancy test strip. Sandwich immunoassays 
are the most popularly utilized in paper-based LFAs. 
Immobilized antibodies on a paper substrate binds with 
target antigens if present in the specimen. Following, sec-
ondary antibodies conjugated to gold nanoparticles act 
as a reporter and bind to the immobilized antibodies on 
paper with captured antigens. The resulting positive reac-
tion causes an aggregation-induced pink color appear-
ance [7]. This coloration is due to a spatially dependent 
optical property of gold nanoparticles, known as the sur-
face plasmon resonance band [8].

However, colorimetric LFAs are binary, i.e. yes-or-no 
assays, thus difficult to quantify in a reproducible man-
ner. In addition, they show little potential for multiplex-
ing capabilities since they can conduct only one assay at 
a time. Also, commercially available LFAs require high 
concentration of target of interest in order to obtain a 
reliant signal that may not be within the normal or low 
physiologically relevant levels [7]. As an example, com-
mercially available LFAs for the detection of thyroid 
stimulating hormone (TSH) has a limit of detection 
of > 5  mIU/L, which fails to detect the normal and low 
concentrations of TSH (i.e. hyperthyroidism) in human 
blood serum [9]. Similarly, commercially available nitrite 
LFAs for recognizing Escherichia coli from urine (for 
detecting urinary tract infection), as well as Neisseria 
gonorrhoeae, the most common cause of sexually trans-
mitted disease (STD) infection of the urogenital tract, has 
shown a limit of detection of 106 CFU/mL [10]. Bacteria 
concentration among the urinary tract infection patients 
can be as low as 102–103 CFU/mL in adults [11] and even 
less in children [12]. Also in a thorough analysis of com-
mercial assays for detection of Cryptosporidium in fecal 
samples, the ImmunoCard STAT! LFA platform failed 
to detect all 12 samples with < 175 organisms per 10  μL 
sample and had problems with interpretation due to low 
band intensity [13].

1.3 � Fluorescent nanotechnologies lower limit of detection 
for POC diagnostics

Nanotechnologies combined with fluorescence detec-
tion has demonstrated the lowering of limit of detection 
down to the single cell or picogram protein resolution 
[14–17]. Implementation of fluorescent nanotechnolo-
gies such as quantum dots [18–20] and nanoclusters 
[21–23] have several advantages over more traditional 
colorimetric sensors. Nanoscale sensors can easily be 

tuned to respond to specific excitation wavelengths, 
by varying shape, size, and length. Nanostructures pos-
sess large surface areas for accommodating increased 
amount of bioreceptor immobilization, and this in turn 
results in increased sensitivity and much lower limit of 
detection. Nanoparticles are also highly stable and do 
not photobleach as easily in comparison to traditional 
fluorescent dyes [24, 25]. The resulting emission spec-
trum from these nanoparticles results in increased sen-
sitivity, which in turn shows decreased signal-to-noise 
ratios. Lastly, materials at which these nanotechnologies 
are comprised of, such as carbon [26, 27] and gold [28, 
29] show superior biocompatibility in complex biological 
matrices. Fluorogenics in combination with paper-based 
microfluidic devices, reduces cost, simplifies manufactur-
ability, and improves ease of disposability [30]. Therefore, 
fluorescent nanotechnologies on paper-based platforms 
have become an extremely attractive option in biological 
and chemical sensing [31].

1.4 � Smartphone integration into paper‑based fluorogenic 
optical sensing

Evidently, the next step is to integrate these fluorescent 
nanotechnologies on paper-based platforms in conjunc-
tion with smartphone optical sensing, utilizing its flash 
as a light source, its cameras as an optical detector, and 
potentially its software application for data processing. 
As a result, an easy-to-use, point-of-care, yet extremely 
sensitive handheld platform can be developed. Smart-
phone integration has shown numerous advantages and 
opportunities in its use as a detector and user interface 
platform in POC assays. Smartphones allows for network 
connection and access, on-board processing, and appli-
cation in resource-limited settings [30–34].

As such, the number of publications in smartphone 
sensors have significantly increased over the past 5 years, 
as shown in Fig. 1 (orange line). Expected next steps for 
smartphone sensing include its demonstration on paper-
based platforms, its use in conjunction with fluorescent 
nanotechnologies, and combination of both, towards 
improving ease-of-use and sensitivity. However in 2017, 
the total number of publications in smartphone sensing 
has started to decrease, for the first time, potentially sug-
gesting challenges in advanced smartphone sensing.

The number of publications demonstrating fluorescent 
nanotechnology with smartphone sensing also showed 
a similar trend—slow increase followed by a decrease in 
2017 (Fig.  1; yellow line), suggesting complications and 
challenges in demonstrating fluorescent nanotechnology 
with smartphone sensing. The number of publications 
demonstrating all of the above—smartphone sensing of 
fluorescent nanotechnology on paper-based platform 
is significantly smaller than overall smartphone sensing 
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(Fig. 1; light green line), again demonstrating its compli-
cations, although this number has continued to increase 
over time.

Although there have been many publications and 
reviews attesting to these outlined advantages for paper-
based fluorescent platforms, there has been a scarce 
discussion on the challenges, technical limitations, and 
alternative methods of its fluorescent optical detec-
tion, especially in conjunction with smartphone sensing. 
This paper will review and discuss the problems that are 
involved when combining fluorescent nanotechnologies, 
paper-based platforms, and smartphone sensing, as well 
as the methods that are being developed and practiced to 
address and overcome them.

2 � Digital processing
2.1 � Digital enhancement
Currently, complementary metal oxide semiconductor 
(CMOS) array is the most widespread image sensor for 
smartphones. It utilizes Bayer color filter arrays (CFA) 
that collect red, green, and blue (RGB) values from a 
grid-like structure. The raw data pixel values are pro-
cessed through a demosaicing algorithm, which fill in 
missing RGB values through interpolation techniques, 
resulting in an RGB image. Following a demosaic algo-
rithm, a denoising algorithm is then applied [35, 36]. Data 
image processing widely varies between smartphone 
models and brands. Along with data processing, physi-
cal properties between CMOS image sensors also vary 
by models and brands. Recently, Fontaine [37] released a 
well-organized and detailed publication outlining the dif-
ferent CMOS schematics among smartphone models and 

brands as well as the evolution of the technology over 
the years. Such variances include the spatial resolution 
between metal aperture walls, color filters used, and opti-
cal stacking thickness.

In most paper-based point-of-care assays that utilize 
fluorescence, pixel intensities are extracted and converted 
into a concentration of a target of interest, i.e., molecule 
[38–40], protein [23, 41], whole organism [42], or nucleic 
acid [43, 44]. When trying to control and maintain con-
stant lighting, on-board default camera settings on 
smartphones can be problematic, as they are constantly 
trying to adjust white balance, focus and exposure dur-
ing multiple assays. An especially concerning problem is 
the camera’s ability to resolve very small points of inter-
ests such as the test line on a LFA or fluorophore-loaded 
areas on paper microfluidic devices [30].

To further refine fluorescent images captured, it is also 
common to apply digital filters. With use of digital filters 
there is no physical adjustments required to the overall 
optical setup. This in turn offers a low cost and simple 
method for correcting undesirable flaws. In fluorescence 
imaging, excessive crosstalk, which is the inconsistent 
recognition from left to right views resulting in a blurry 
effect, is a typical correction to address [45, 46].

There has also been numerous publications investi-
gating better extraction and interpretation of measured 
RGB pixel values from the smartphone captured images 
on paper-based platforms. Different color spaces have 
been deployed to enhance paper-based pixel intensi-
ties [34]. In Shen et  al.’s color conversion analysis and 
quantification of colorimetric pH test strips [47], a more 
sensitive and accurate method was developed utilizing 
a 12 region reference chart to account for variability in 
lighting conditions. The group also alluded to its use in 
fluorescence paper microfluidic data, although it has not 
yet been demonstrated. Yetisen et  al.’s image processing 
algorithm of transforming RGB values into non-linear, 
linear, tristimulus, then into 2D CIE 1921 chromatic-
ity space [31] showed improvements in mitigating vari-
ability due to focus, angle, lighting, and sensor type. The 
applied algorithm was also demonstrated using two dif-
ferent model phones, iPhone 5 (8 MP camera) and Sam-
sung I5500 Galaxy 5 (2  MP camera), therefore proving 
interphone adaptability. McCracken et  al. [48] demon-
strated the use of a triple-reference point normalization 
as well as fast-Fourier transform pre-processing using 
two different smartphone models (iPhone 5S and Nexus 
5X). The developed image process reduced spatial vari-
ability due to inconsistent paper surface, shadows, and 
uneven background reflectance for paper-based micro-
fluidic assays using absorbance, quenching, and scatter-
ing measurements.

Fig. 1  The number of research article publications on smartphone 
sensor (orange), those with fluorescent nanotechnology (yellow), 
and above two with paper-based fluorescent (light green) in the past 
5 years. Web of science was used
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2.2 � Ratiometric FRET
Fluorescence resonance energy transfer (FRET) is the 
mechanism in which a fluorescent signal is produced due 
to a transfer of electrons from a donor fluorophore to an 
acceptor fluorophore that is within Angstrom proximal 
distances. As a result, two distinctive wavelength peaks 
are generated and can be measured in a ratiometric man-
ner. In order for this to be efficiently monitored, peak 
excitation and emission wavelengths must be sufficiently 
separated, while having an overlap in donor emission and 
acceptor excitation spectra [49–51].

Ratiometric measurement is an attractive property to 
measure due to its inherent ability to correct for envi-
ronmental factors (such as varied lighting conditions 
and/or optical transparency of medium; especially useful 
on paper-based platforms) and to self-calibrate [52, 53]. 
Fluorescent dyes, although have been popularly used to 
demonstrate FRET-based ratiometric assays, can be eas-
ily susceptible to photobleaching [54]. More recently, the 
use of quantum dots [53, 55, 56] and gold nanoclusters 
[21] have been more favorable choices for FRET-based 
sensors due to its photostability and superior intensity 
from background and undesired autofluorescence [57].

With regards to its applications in smartphone-based 
paper platforms, ratiometric fluorescent intensities can 
be easily monitored by simple splitting of red, green, 
and blue channels in a captured image. Wang et al. [40] 
measured 803  nm fluorescent intensity in relation to 
blue emission of upconversion nanoparticles (NaYF4:Yb 
and Tm@NaYF4) on paper to detect organophosphate 
nerve agents. As depicted in Fig. 2, Noor and Krull [52] 

demonstrated the use of a smartphone where associated 
green and red pixel values were measured to monitor a 
nucleic acid hybridization assay. An inversely related 
relationship was shown with correlated FRET-based 
transduction of donor green-emitting quantum dots and 
acceptor Cy3 fluorescent dye acceptor through a R/G 
(red over green) ratio. Yu et al. [58] prepared a ratiomet-
ric fluorescent test paper for visualization and quantifica-
tion of fluoride ions in environmental waters with the use 
of CdTe quantum dots. As shown in Fig. 3 red and blue 
fluorescence intensities were inversely related with the 
addition of fluoride ions.

3 � Hardware
3.1 � Light sources
Paper-based microfluidics has proven the ability to pro-
vide flow without the use of external pumps or high volt-
age–power (necessary in most silicone or PDMS-based 
microfluidic devices), but rather by spontaneous capil-
lary action amongst paper fibers (also known as wicking). 
With the addition of fluorescent detection method for 
an analyte (protein, cell, or nucleic acid), a light source 
is required. When using fluorogenics, specific excitation 
wavelengths are important in order to obtain the desired 
emission spectra. This being the case, most smartphone-
based fluorescent assays incorporate external light 
sources, the most popular being a handheld UV lamp 
or separate LED [52, 59, 60]. Taking this into account, 
various platforms have been designed to accessorize and 
power an external light source with a specific wavelength 
needed for fluorescent sensing on paper platforms.

Fig. 2  Mechanism and process of ratiometric FRET-sensitized emission to detect nucleic acid hybridization (reproduced from [52] with permission, 
© 2014 American Chemical Society)
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3D-printed plastic attachments that are custom-fitted 
to a smartphone are widely used, where a built-in LED 
can be housed along with additional reflectors, collima-
tors, and filters to improve signals [61–63]. Such attached 
enclosure provides a controlled environment in terms of 
lighting and spatial distances to improve reproducibility 
between assays. However, smartphone dimensionality 
and availability vary greatly between manufacturers and 
models (also by the use of protective cases and covers), 
making custom attachments undesirable due to its poor 
adaptability. Along with using an external light source, an 
external power source is also required.

An innovative method of powering an external LED 
with the required excitation wavelength is the integration 
of a galvanic cell, also known as a fluidic battery. Fluidic 
batteries are foldable and stackable hydrophilic paper 
layers with printed hydrophobic wax barriers as shown 
in Fig. 4. With the application of a water droplet, the flu-
idic battery powers an LED until it is run dried. The main 
requirements of a fluidic battery are (1) electrolytes (i.e. 
AgNO3, AgCl3, AgNO2, or MgCl2), (2) electrodes (i.e. sil-
ver metals, aluminum metals, or magnesium foil), (3) salt 
bridges (i.e. containing NaNO3), and (4) conductive con-
nections (i.e. copper tape) [64–66].

Instead of using an external light source, the white on-
board LED flash on a smartphone can be also used as an 
excitation source to create a fully smartphone-integrated 

platform [67–70]. However, band-pass or low-pass fit-
ted filters are often used to separate out exclusive wave-
lengths for excitation, as smartphone flashes generate 
“white” light [69, 71].

3.2 � Optical filters
Typical means of isolating fluorescence emission include 
the use of optical filters. Using a low-, high-, band-pass, 
or other filters inserted prior to the receiving detec-
tor (i.e. CMOS array sensor, the most common camera 
used for smartphones) increases selectivity of emitted 
fluorescent light. Not only can these filters differentiate 
wavelengths, but can also serve as a mechanical method 
for controlling unwanted scattering and diffracting light. 
Two types of optical filters are commonly used for fluo-
rescence detection. The first type is an absorption fil-
ter, in which absorption at the excitation wavelength is 
desirable and absorption at the emission wavelength is 
undesirable. In contrast, an interference filter has low 
absorption at the excitation wavelength and high absorp-
tion at the emission wavelength.

Interference filters are comprised of multiple thin lay-
ers of dielectric material with different refractive indices. 
Selectivity of wavelength of interest is dictated by the 
mechanistic pathways that light travels at the fabricated 
boundary layers. UV excitation is a very common wave-
length regime that fluorescence nanotechnology utilizes 
(most notably quantum dots). This can be very prob-
lematic since cellulose paper’s autofluorescence is opti-
mally excited with UV. Therefore, numerous UV filters 
have been developed to optimize the use of UV excita-
tion. Other filters include a filter developed by Dattner 
and Yadid-Pecht [72], which is a transparent, poly-
acrylic acid (PAA) emission filter, mounted on a low-light 

Fig. 3  Ratiometric FRET to detect fluoride concentration of water 
samples on paper-based substrates: a test paper preparation; b 
F- detection in DI water; c in tap water; d in lake water  (reproduced 
from [58], published by Royal Society of Chemistry with open access)

Fig. 4  Self-powered paper microfluidic device, utilizing origami 
paper and galvanic cell, for enzymatic (alkaline phosphatase) fluo‑
rescent assay with smartphone detection: a device layout; b paper 
folding; c top and side view of final assembly (reprinted from [64] 
with permission, © 2014 AIP Publishing)
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CMOS array sensor for selecting red fluorescence. Simi-
larly, Richard et  al. [73] fabricated a nine layer interfer-
ence filter to select 650 nm red emission from quantum 
dots with 532  nm excitation wavelength. The final filter 
was integrated into a silicone-based (thus optically trans-
parent) microfluidic device equipped with a CMOS array 
sensor (Fig. 5).

In comparison, absorption filters are comprised of one 
single layer. Absorptivity can be adjusted by the over-
all thickness of the filter and can be modeled using the 
Beer–Lambert law, A = ε × l × c, where ε is the character-
istic molar absorptivity of the filter, l is the path length 
or thickness of the filter, and c is the concentration of the 
absorbing material [72, 74]. Absorption properties can 
also be controlled by the addition of dyes such as Sudan 
II [75, 76], Orasol Red BL, KMPR® 1005 epoxy-based 
photoresist [73], Aptina green1, and Aptina red1 [77].

Other unique filters can also be used to further 
enhance fluorescent images collected. Lee et  al. [78] 
demonstrated the use of a silo-filter comprised of metal 
lattices, which were used as dividends for individual pix-
els and light guides for fluorescent light to penetrate an 
absorptive, thick filter layer. The silo-filter’s metal sur-
faces contributes an enhanced scattering and reflectance 
effect, improving transmittance and overall background 
rejection. Photonic structures is also another widely 
used filtering component for controlling fluorescence 

emission by means of specifically patterned surfaces on 
gold [79] and plastic [80]. In an optofluidic chip devel-
oped by Ricciardi et  al. [81], a fluorescence immunoas-
say was demonstrated for the detection of actin-actin 
antibody complexes with superior repeatability and limit 
of detection. They utilized unique photonic structures 
for controlled light radiation into a fluorescence micro-
scope apparatus. Similarly, Schudel et al. [82] developed 
a silicone-based microfluidic chip array that utilized 
actuate-to-open valve mixing and photonic crystal nano-
structures to detect the binding of IgG to various proteins 
in an immunofluorescent assay using a charge-coupled 
device (CCD) array sensor.

4 � Addressing autofluorescence
It is notoriously known that cellulose-based paper sub-
strates exhibit autofluorescence. Cellulose paper is 
strongly excited with UV, followed by blue, generating 
blue to green emissions [83]. Therefore an unwanted 
background autofluorescence, along with paper’s reflec-
tion (back scattering), must be addressed. Also with the 
use of biological samples, autofluorescence and back 
scattering light from paper surfaces can be even more 
problematic [84, 85].

4.1 � Pulse excitation and time‑resolved detection
Traditional photo-detection instrumentations are 
designed to receive photons continuously during the 
excitation period. As a result, mitigation of unwanted 
background noise (especially autofluorescence) can be 
difficult. Pulse excitation and time-resolved detection are 
methods in which fluorophores are acutely exposed to an 
excitation light. From the collected fluorescent decay, a 
lifetime value can be determined that is unique to a fluo-
rophore of interest. The measured lifetime can be crucial 
in resolving between background autofluorescence and 
detection-related fluorescence. Therefore, designation 
and separation of timed windows, short lifetime decays 
of autofluorescence (delay time) and long lifetime decays 
of fluorophores of interest (gate time), can be easily dis-
tinguished and collected as seen in Fig. 6 [54, 84, 86].

Ju et  al. [86] developed lanthanide (Ln3+) doped GdF3 
nanocrystals that successfully detected avidin protein 
under time-resolved fluorometric measurements with 
promising applications in immunoassays, multiplexing, 
and DNA hybridization. Wang et  al. [54] demonstrated 
the use of time-resolved fluorescence in conjunction 
with ratiometric measurements using a smartphone on a 
paper-based platform to detect dipicolinic acid (DPA), a 
biomarker for anthrax presence. Lanthanide-terbium (Ln-
Tb) and -europium (Ln-Eu) doped fluorescent crystals 
(Tb/DPA@SiO2-Eu/GMP) when exposed to a 254 nm UV 
lamp and DPA, resulted in an indicating red fluorescence, 

Fig. 5  Interference filter added on a microfluidic device: a inter‑
ference filter deposited on glass substrate (left) and patterned 
microfluidic channels on absorbing layer (right); b overall schemat‑
ics (reproduced from [73] with permission, © 2009 Royal Society of 
Chemistry)
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as opposed to a control green fluorescence signal. The 
spectra was further refined by using a delay time of 50 μs 
and gate time of 2  ms to avoid autofluorescence. Simi-
larly, Kim et al. [87] demonstrated the use of time-resolved 
fluorescence measurements to study the enhanced FRET 
efficiency and increased fluorescent lifetime of immobi-
lized quantum dots on a paper platform in comparison 
to a solution assay. The four-fold enhancement in FRET 
rate was concluded and attributed to the decreased aver-
age distance between quantum dot donor and acceptor 
dye for the paper-based platform. Overall, colored digital 
images were captured and analyzed under a 405 nm LED 
to analyze trypsin proteolytic activity and inactivity in the 
presence of aprotinin inhibition. Paterson et  al. [88] uti-
lized a smartphone time-gated imaging application to cap-
ture images at set intervals after pulse excitation to detect 
human chorionic gonadotropin (hCG) with strontium alu-
minate nanoparticles on a LFA (Fig. 7).

4.2 � Autofluorescence indexing
Up until now, what has been discussed were methods 
practiced to avoid, normalize, or subtract the inherent 
autofluorescence of paper matrices. In a recent publica-
tion done by Shah and Yager [89], a systematic “autofluo-
rescence index” was proposed using excitation–emission 
matrices for screening and selecting paper substrates for 
low autofluorescence when developing assays. Conven-
tionally, primarily and solely spectral overlap is consid-
ered between target-induced fluorescence and paper over 
fluorescence. In Shah and Yager study, 12 different paper 
matrices, including nitrocellulose, glass fiber, and cellu-
lose that are commonly used, were measured and evalu-
ated using developed autofluorescence index equations. 
The proposed quantification of autofluorescence was 
further investigated and demonstrated using a quantum 
dot lateral flow immunoassay for detection of influenza A 

nucleoprotein. It was concluded that paper matrices with 
lower calculated autofluorescence indices had lower lim-
its of detections.

4.3 � Use of NIR
Autofluorescence of paper can also be avoided by using 
longer wavelengths, e.g. near infrared (NIR) or infrared 
(IR) [90–93]. Yu and White [94] observed that back-
ground autofluorescence of paper was reduced using 
785  nm excitation in assaying Rhodamine 6G, organo-
phosphate malathion, heroin, and cocaine from a surface-
enhanced Raman spectroscopy dipstick swab. Similarly, 
Ju et  al. [95] found using longer IR or NIR wavelengths 
as the excitation source reduced autofluorescence as well 
as undesired back scattering. Their paper-based platform 
utilizing lanthanide-doped LiYF4 upconversion nano-
particles demonstrated a limit of detection of 3.6  fmol 
of DNA. Doughan et al. [96] used a 980 nm NIR excita-
tion to reduce background noise that usually corresponds 
with UV or visible wavelength excitation.

5 � FUTURE OUTLOOK: Contact CMOS fluorescence 
imager

In more recent years, topics revolving fluorescence-
based detection discuss the options of totally bypassing 
the use of a smartphone detectors and leaning towards 
more conventional optical equipment. This can be done 
by using a contact CMOS fluorescence imager integrated 
into biosensors [97–100]. With manufacturing costs and 
overall prices of CMOS imaging sensors low enough, the 
manufactured parts have become recyclable or dispos-
able components. Therefore, the timeliness of integrating 
it as a detector in point-of-care assays is ideal. A contact 
CMOS fluorescence imager is made of a CMOS image 

Fig. 6  Mechanism of time-resolved fluorescence as a means of elimi‑
nating short lifetime background and autofluorescence (reproduced 
from [86] with permission, (C) 2011 John Wiley & Sons)

Fig. 7  Smartphone attachment utilizing the onboard “white” LED 
flash as a light source, using pulse excitation to address the paper’s 
autofluorescence, for detecting human chorionic gonadotropin 
(hCG) on LFA strip: a smartphone’s flash is turned on for short excita‑
tion; b flash is turned off showing luminescence imaging (repro‑
duced from [88] with permission, © 2017 Royal Society of Chemistry)
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sensor chip, a thin-film absorption filter, and a fiber optic 
plate. When mounted underneath an ultra-thin transpar-
ent material such as a glass or PDMS chip (Fig. 8), weak 
fluorescence signals can be efficiently collected [84]. 
However, its demonstration on paper-based platform is 
yet to be seen.

Such systems have been demonstrated to resolve highly 
comparable fluorescent images of live cells [102–104] 
(Fig. 9). Salama et al. [45] compared commercially availa-
ble digital fluorescence readers to CMOS-based technol-
ogies and determine a three times lower detection limit 
in a pyrosequencing DNA assay. Zheng et al. [105] dem-
onstrated a 660 nm resolution ePetri dish prototype con-
structed out of Lego blocks (holder), a smartphone (not 
as a detector but as a light source) and a CMOS imager. 
More recently, Seo et al. [101] developed a CMOS-based 
sensor that resulted in fluorescent lifetime images of 
cells labeled with DAPI fluorescent dye and quantum 

dots. Jain et al. [106] evaluated the use of a digital CMOS 
imaging system in a quantum dot immunofluorescent 
assay capable of multiplexing. The portable, commer-
cially available ArrayCAM™ was used to demonstrate the 
quantification of three different fluorophores labeled for 
IgG, IgA, and IgM due to the discrete emission quantum 
dot spectra.

However, its implementation in paper-based assays is 
uncertain due to the spatial limitation between sample 
and CMOS sensor—how can we maintain precise dis-
tance between paper and CMOS sensor? In addition, the 
platform must be transparent or have efficient transmit-
tance, while paper is obviously not. Overall, the CMOS 
imager technology shows promising wide field of view, 
lens-free translation for automation, and downsizing of 
traditional fluorescent optical setups. In addition, auto-
matic correction, focus, and white balance variability that 
is normally associated with smartphones can be finely 
controlled or completely bypassed with the use of contact 
CMOS technology [79, 84]. However, such demonstra-
tion on paper platforms is yet to be seen, leaving smart-
phone sensing as a better choice for the time being.

6 � Conclusion
Overall, fluorogenic-based detection, especially in con-
junction with nanotechnology, has shown increasing 
trends in translation to low-cost and easy-to-use paper-
based platforms due to its superior emission intensi-
ties, assay specificity, time-dependent resolvement, and 
superior storage life. Smartphone-based optical sensing 
of fluorescence emission is of recent development and 
has shown numerous technical and physical limitations, 
especially on paper platforms. However, recent imple-
mentation of filters, advanced image processing, and 
unique platform development show improved results 
to better address such challenges. Hopefully in the near 
future, the benefits of contact CMOS imagers could also 
be incorporated into smartphone-based fluorescence 
sensing on paper-based platforms.
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