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Abstract 

In the growing area of neuromorphic and in‑memory computing, there are multiple reviews available. Most of them 
cover a broad range of topics, which naturally comes at the cost of details in specific areas. Here, we address the spe‑
cific area of multi‑level resistive switching in hafnium‑oxide‑based devices for neuromorphic applications and sum‑
marize the progress of the most recent years. While the general approach of resistive switching based on hafnium 
oxide thin films has been very busy over the last decade or so, the development of hafnium oxide with a continu‑
ous range of programmable states per device is still at a very early stage and demonstrations are mostly at the level 
of individual devices with limited data provided. On the other hand, it is positive that there are a few demonstrations 
of full network implementations. We summarize the general status of the field, point out open questions, and provide 
recommendations for future work.

1 Introduction
It has been estimated that by 2030, Information and 
Communication Technologies (ICT) will account for up 
to 30–50% of global electricity consumption [1], and a 
large portion of this is due to various inefficiencies with 
respect to power consumption and speed of the memory 
components in these technologies [2]. The large mis-
match between processing and memory speed is often 
called ‘memory wall’, ‘memory bottleneck’, or ‘von Neu-
mann bottleneck’, and to tackle it, new forms of computer 
memory are being heavily researched. Among the most 
mature approaches to such new forms of memory are fer-
roelectric (FE), phase-change (PC), and resistive switch-
ing (RS) memory. While these three technologies can be 
considered as relatively ‘mature’ among emerging mem-
ory technologies, research is still very much ongoing, and 

their maturity is still far from established memory tech-
nologies such as Flash and SRAM/DRAM.

Every year, multiple review papers are being published 
on various aspects of emerging memory and comput-
ing technologies [3–19], all of which cover a wide range 
of ongoing developments. From these reviews, it is 
clear that all emerging memory technologies have their 
strengths and weaknesses, and no single most promising 
new memory technology is yet on the horizon. Because 
of the outstanding challenges, but also because of the 
continuously strong performance and evolution of estab-
lished memory technologies, especially NAND Flash, 
which emerging memories were targeted to replace in 
the early stages of research, a possible market entry of 
emerging memories faces steep thresholds [20]. A recent 
example of this is Intel abandoning their XPoint ‘Optane’ 
PC memory series and effectively merging it into a quad-
level-cell NAND product.

Since replacing conventional memory technologies 
requires a number of high specification targets to be 
met, e.g., retention of more than ten years for Flash 
replacement or extreme endurance performance of 
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>1015 for SRAM/DRAM replacement, research efforts 
on emerging memory technologies are thus also focus-
ing on the ever-faster-increasing areas of machine 
learning and so-called artificial intelligence based on 
neuromorphic computing. In these areas, depending 
on the specific application, some of the specifications 
of conventional memory, e.g., retention and endurance, 
are less tight, even though others are more, e.g., resist-
ance levels need to be controllable gradually rather than 
simply in a binary fashion. Such gradual manipulation 
can critically enable in-memory computing applica-
tions, which removes the von Neumann bottleneck of 
having to move data between memory and processing 
units. Thus, the aim for such devices is mimicking syn-
aptic-like behavior as in the brain, ideally at similarly 
low power levels.

In this review, we add to the aforementioned excellent 
overviews with a more focused summary of multi-level 
RS in hafnium-oxide-based devices. We focus on haf-
nium oxide, because it is firmly established in the CMOS 
industry as a transistor gate dielectric. As the CMOS 
industry is extremely reluctant to adopt new materials 
into their processes, this gives hafnium oxide an edge 
over many other RS materials. In addition, hafnium oxide 
can be used both for RS and for FE applications, which 
presents another possible advantage.

In a RS device, the application of different SET and 
RESET voltages to the device changes its resistance 
from a high resistance state (HRS) to a low resistance 
state (LRS), respectively, and vice versa. Examples of 
the resulting current–voltage (IV) characteristics of 
these processes under continuous voltage sweeps are 

illustrated in the inset of Fig. 1a. The different resistance 
states can then be used to store information.

Curiously, multi-level RS in hafnium oxide seems to be 
divided into two very different states. The vast majority 
of reports on multi-level RS in hafnium oxide are on a 
proof-of-concept level without significant device perfor-
mance statistics. Yet there are a number of reports which 
already demonstrate system-level integration of multi-
level devices and demonstrate complex in-memory com-
puting tasks. Here, we discuss the materials and device 
aspects of gradual RS in hafnium oxide, as well as a brief 
excursion into advanced systems demonstrations.

We limit the review to the past 5 years so as to provide 
a perspective on the most recent developments of the 
field. The vast majority of investigations into RS in haf-
nium oxide have been concerned with synaptic applica-
tions, and so we focus on this aspect. But we also include 
a brief section on neuronal and selector devices. Finally, 
we give a brief overview over some immediate competi-
tors such as multi-level RS in other binary oxides and 
multi-level ferroelectric switching in hafnium oxide.

2  Electrical performance
The dichotomy of proof-of-concept devices and advanced 
systems integration brings about different focus levels in 
the different reports. Naturally, advanced systems dem-
onstrations focus on the system performance without 
reiterating individual device characterizations. However, 
most recent publications are still concerned with individ-
ual devices and the underlying materials. For an appro-
priate reflection of the current state of ongoing work on 
multi-level RS, most of the following discussions are thus 

Fig. 1 Reported device sizes and positive and negative switching voltages for hafnium‑oxide‑based multi‑level RS. a Number of reported devices 
vs. device size. If different device sizes were reported in a publication, we included the smallest one in the figure. The arrow points out the most 
common device size. Inset: Illustration of gradual and abrupt switching. Red and purple, schematic: forming and subsequent switching 
with a positive compliance current as typically observed for filamentary RS. Blue: gradual non‑filamentary switching from a system like [36]. b 
Switching voltages after forming (where necessary). Crosses correspond to individual reports, bubbles to multiple identical values from different 
reports, and the red line indicates symmetry between positive and negative switching voltages. The values in the figure correspond to the voltages 
applied to devices during the IV sweeping. Inset: Illustration of probes (dark gray) and probe pads (light gray) required for high‑speed electrical 
measurements such as for measuring the ultimate device switching speed or switching power consumption
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about devices and materials rather than systems level 
demonstrations.

2.1  Standard performance metrics for emerging memory 
devices

While the main objective of this review is an overview 
over the multi-level RS performance of hafnium oxide 
devices, the fundamental RS performance metrics such 
as switching voltages, endurance, and state retention 
are just as important as indicators of the maturity of the 
technology. Based on these metrics, the vast majority of 
reports on gradual RS in hafnium-oxide-based devices 
is at a proof-of-concept level, because standard figures 
of merit are not reported in statistically significant detail 
to enable a reliable assessment of the performance, and 
devices are much too large to be technically relevant. 
An indication of the various device sizes is provided in 
Fig. 1a, and most devices are larger than a few microm-
eters. At the apparent proof-of-concept level, this is eas-
ily explained by the challenges of the simplest form of UV 
lithography, where the minimum obtainable feature size 
is typically a few micrometers. Moving forward, the dem-
onstration of smaller devices will become increasingly 
important, because large-scale network implementation 
will be futile if the individual devices are too large.

Out of the ∼50 recent publications on multi-level RS in 
hafnium oxide sampled for this review, only about a third 
report a switching endurance of at least  104 cycles, and 
most do so only for two states.  104 is chosen here as the 
threshold value, because it is the approximate minimum 
of NAND Flash performance [21]. For offline (or ‘ex situ’) 
training of neural networks, where externally computed 
weights are programmed into a network only occasion-
ally, this is thus a reasonably foreseeable required value. 
For online (or ‘in situ’) training, higher endurance num-
bers will be required, because the synaptic weights need 
to be updated much more frequently when adjusting the 
weights ‘live’ during local training. If future reports on RS 
in hafnium oxide devices, which do not explicitly report 
on physics/mechanism studies, do not meet at least the 
minimum performance of existing technology, such as 
Flash endurance, it is arguable whether they are of tech-
nological interest. In particular, given the state of the art, 
it is meaningless to label a few hundred endurance cycles 
as ‘excellent’, as can still be read in some reports.

Out of the one third of reports with endurance ≥104, 
only yet another third (i.e., only about 10% total) report 
any details on device-to-device uniformity, which under-
pins an impression that the realization of multi-level RS 
in hafnium oxide is still in its infancy. To move this and 
any RS area of research forward, we thus reiterate the 
necessity to move away from the demonstration of sin-
gle ‘hero devices’ and to report the variability of various 

devices and samples. As discussed elsewhere before, 
omission of such studies can easily lead to overoptimistic 
outlooks [22].

As will be discussed in Sect. 4.2.1, almost all reported 
multi-level RS in hafnium oxide is based on the reversible 
filamentary dielectric breakdown of the switching layer, 
which typically results in stable state retention. As a con-
sequence, over 40% of the sampled studies reported non-
volatile state retention for at least  104 s without noticeable 
degradation, which is promising. Another ≈15% reported 
retention of at least  103  s, but the remaining reports 
included only insignificant numbers below that or did 
not report any retention data at all. However, out of the 
40% with retention ≥  104  s, less than half reported such 
retention for multiple resistance states and the other half 
only for two states, i.e., the highest and lowest resistance 
state. Similar to the argument that all switching cycles 
need be reported for reliable endurance characteristics 
(as opposed to, e.g., only every 1000th cycle) [22], the 
stable state retention of two resistance states does not 
prove the non-volatility of multiple intermediate states. 
However, inference applications based on the muti-level 
capabilities of emerging RS devices suffer strongly if the 
multiple levels are not stable, as discussed, e.g., in [23]. 
It should also be noted, however, that multi-level devices 
which are not fully non-volatile can still be of interest to 
reservoir computing applications, as demonstrated, e.g., 
in [24], where the volatility provides critical functionality. 
(Note, however, that the final inference layer still needs to 
be non-volatile for long-term usability.)

To comply with one of the main motivations for novel 
memory/computing devices, low power consumption, 
RS devices need to operate at voltages as low as possible, 
ideally at or below the ≈1–2  V of state-of-the-art DDR 
SDRAM [25]. A summary of reported applied switch-
ing voltages is provided in Fig. 1b, and about 2/3 of the 
reported devices fall in the window of ≤ 2  V. However, 
75% of all devices in Fig.  1b still use a compliance cur-
rent during their measurement, including reports which 
present forming-free devices. While this can be accom-
modated in network designs fairly easily by a selector 
transistor, it also precludes any selector-free array inte-
gration. It should be noted that for filamentary devices, 
the switching voltage is sometimes provided as the volt-
age where the ultra-nonlinear current change occurs. 
This ultra-nonlinear increase is illustrated in the inset of 
Fig. 1a. However, these switching voltages are subject to 
fluctuations, which are typically visualized by cumulative 
switching probabilities and these fluctuations are one of 
the main challenges of filamentary cycle-to-cycle vari-
ability. In Fig. 1b we summarized the maximum voltages 
which were applied during the IV sweeps of the devices 
as these are the voltages which guaranteed switching, and 
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such guaranteed voltages will have to be used for reliable 
circuit applications. Alongside the example of an abrupt 
switching curve, the inset of Fig.  1a provides an exam-
ple of a more gradual IV curve which was obtained from 
a device relying on interfacial rather than filamentary 
switching and which may alleviate the challenges of fila-
mentary device-to-device variability [36].

While a majority of the sampled devices switch at 
reasonably low voltages, this does not prove low power 
consumption, as the power also depends on the switch-
ing speed, i.e., the integral of the switching current at the 
switching voltage with respect to the switching time. It is 
understandable that the measured power consumption is 
not reported often, as the fast real-time measurement of 
device currents requires dedicated measurement hard-
ware and probe pad layouts, which hare sketched out in 
the inset of Fig. 1b [26]. However, to prove RS superiority 
over conventional memory and computing architecture, 
the switching energy will have to be reported at some 
point in the process of establishing a new RS-based tech-
nology, and we recommend doing so whenever possible; 
it is a performance metric just like endurance, retention, 
and uniformity. Even if on a device level, RS consumes 
more energy than some of the conventional memory, the 
ability to perform in-memory computing tasks may pro-
vide RS with an edge on a network level. For example, it 
was estimated that face recognition tasks performed by 
a RS network can be 1000 times as energy-efficient as 
the same task carried out by an Intel Xeon Phi processor 
[27], or 17 times as efficient as a dedicated ASIC [28].

In summary of this section, we reiterate the impor-
tance of being thorough in reporting standard figures 
of merit for emerging memory applications such as 
endurance and retention, and of demonstrating small 

(ideally ≤0.1 µm2 [29]) devices as well as device-to-device 
reproducibility [22].

2.2  Multilevel and synaptic performance
With regards to neuromorphic computing, arguably one 
of the biggest promises of RS devices over conventional 
memory is the ability of RS to achieve multiple, gradu-
ally tunable, often quasi-analog resistance states within 
a single device. The most commonly reported way of 
demonstrating multi-level and/or synaptic behavior in 
emerging RS devices is changing the resistance by a num-
ber of consecutive pulses (sometimes with consecutively 
increasing amplitudes), by single pulses with different 
amplitudes, by the compliance current, and by emulat-
ing spike-timing-dependent plasticity (STDP), where 
a ‘pre-’ and a ‘post-synaptic’ voltage profile are applied 
to different sides of a RS device with different temporal 
delays and the subsequent resistance change is analyzed 
as a function of the voltage profile overlaps with different 
delay times. For clarification, this is illustrated in Fig. 2a. 
Often, the observed response to STDP patterns follows 
an exponential relationship with the applied time differ-
ence Δt as provided in Fig. 2b [30–35]. However, near lin-
ear dependencies have been observed, too [36].

Besides a continuous range of states, for the interpre-
tation of the efficacy of different demonstrations, their 
applicability to network integrations needs to be kept in 
mind. This is because different from device-level dem-
onstrations, in larger networks, the pulse patterns will 
have to be applied by peripheral circuitry rather than a 
source measure unit or parameter analyzer. With this in 
mind, the easiest circuit implementation to achieve syn-
aptic behavior is by varying the numbers of pulses with 
constant amplitudes and pulse widths, as this can be 

Fig. 2 Illustration of spike‑timing‑dependent plasticity (STDP) and pulse timing. a STDP voltage profiles applied to a device. Δt is shifted 
consecutively for each data point in b. In the case of a two‑terminal device, one of the profiles can be inverted, added to the other, and applied 
on only one of the electrodes instead of the two separate electrodes. In some demonstrations, the voltage profile was applied continuously, 
in others as a series of pulses, in yet others only as two rectangular pulses (one positive, one negative). b Schematic relative change of the device 
conductance G as a function of the time shift Δt in a. Often, ΔG is modelled according to the equations in the inset of b. c Timing illustration 
of filamentary switching as measured in [51]. After an initial delay Δtdelay after voltage application, the current increases rapidly during Δttrans until it 
reaches the compliance value. To achieve controlled filamentary multi‑level RS, the timing and amplitude of the applied voltage pulse has to be 
such that it stops during the rapid current transition
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implemented simply by gating a selector transistor and 
subjecting the RS device to a constant supply voltage. It is 
less desirable to achieve the same effect by varying pulse 
widths or amplitudes, as these all require additional cir-
cuit elements. Ideally, an artificial synapse should thus 
be programmable by a series of equal consecutive volt-
age pulses and the following discussion will focus on this 
programming scheme and its difficulties.

Specifically, unfortunately, applying a train of consecu-
tive voltage pulses does not seem to be very effective for 
resistance modulation, which seems to be largely due to 
the complex and fast dynamics of filamentary switching, 
which underlies the majority (>90%) of recent reports on 
multi-level RS in hafnium oxide. Only three of the sam-
pled reports demonstrated resistance variations of more 
than an order of magnitude when applying such a pro-
gramming scheme [37–39]. In addition, only one of them 
was on a simple two-terminal device, whereas the oth-
ers were transistors with an RS element on top or as part 
of their gate contact. Furthermore, for the two-terminal 
device, the consecutive pulses required increasing ampli-
tudes [37], one of the transistors required high voltages of 
5–10 V [38], and the other employed consecutive pulses 
of increasing widths [39]. In all other sampled demon-
strations, the resistance modulation was less than one 
order of magnitude when programmed by consecutive 
pulses. This relative inefficacy of pulse trains is especially 
evident for devices which achieve ON/OFF ratios >10 in 
their IV/endurance/retention characteristics, but much 
lower resistance modulation when subjected to a number 
of identical pulses [30–33, 40–48]. While the total range 
of resistance modulation was not high in the sampled 
reports, the spacing of multiple resistance states was typ-
ically fairly tight, which implies potential for the afore-
mentioned quasi-analog programming of these devices. 
Quantitatively, for almost all devices which demonstrated 
multi-level programming by consecutive pulses, the 
resistance ‘state density’ was at least 10 states per order 
of magnitude. (Note that in accordance with the previ-
ous discussion, this does not mean that the states cov-
ered a full order of magnitude. We opted to express a 
‘state density’ because reported values appeared in vastly 
varying orders of magnitude and units, e.g., values were 
reported in units of microampere, millisiemens, kilo-
ohm, …) Based on results from a network demonstration 
(more in Sect. 3), a minimum of about 10 distinguishable 
resistance levels can lead to close-to-baseline recognition 
accuracy for simple inference tasks [23], but more com-
plex tasks may benefit from more states [28, 49].

Even though voltage pulses are not very effective for 
controlling resistance states over more than an order 
of magnitude, they can provide some insight into the 
switching mechanisms and dynamics of the devices. As 

filamentary switching is largely current- and tempera-
ture-driven [50], it makes sense that voltage pulses may 
not be the most appropriate means of controlling the 
dimensions of filaments. This is because of the complex 
and fast filamentary dynamics which underly the major-
ity of RS devices (see Sect. 4.2 for further discussion) and 
which were resolved e.g. in [51]. In brief, for a well-con-
trolled analog modulation of filamentary switching, the 
timing of the programming pulse width needs to include 
an initial transition delay time plus a fraction of the state 
transition time. If the pulse width is too short, there will 
only be a negligible conductance change, and if it is too 
long, switching will become binary. This is illustrated in 
Fig. 2c in accordance with the findings of [51]. The wait 
and transition times depend on the initial conductance 
state, where a higher initial conductance state leads to 
a shorter switching delay time, and they depend on the 
voltage pulse amplitude, where intuitively, a larger ampli-
tude leads to shorter switching times. Out of the sam-
pled publications which reported the used pulse widths, 
about 60% used pulse widths >1  µs. As typical filament 
transition times seem to be faster than that, in almost all 
of these reports, the used pulse amplitudes were smaller 
than the maximum values of the measured IV curves, 
i.e., the ‘too long’ pulses were balanced to some extent 
by lowering the switching voltage. This balance is nicely 
illustrated in several reports which plot pulsed resistance 
change measurements with different pulse widths and 
amplitudes in the same figures [31, 42, 47, 52]. In some 
instances of two-state endurance measurements with fast 
pulses (as opposed to a gradual tuning of multiple resist-
ance states), the opposite effect could be observed, too, 
where the pulse amplitude had to be increased to main-
tain a sizeable memory window when decreasing the 
pulse width [53–55].

The qualitative consequence of the discussed filament 
dynamics can be observed in many other reports, too, 
where for a number of pulses to change the conductance, 
the first SET pulse often has a much larger effect on the 
conductance than any of the following pulses [31, 41–44, 
47, 56–58]. And even without a disproportionately large 
change due to the initial pulse, RS weight update curves 
tend to be highly non-linear. In terms of the (normal-
ized) conductance G, this non-linearity can often be 
described analytically as G = Bp[1−exp(−n/α)] + Gmin for 
potentiation, and as G = − Bd[1−exp((n−nmax)/α)] + Gmax 
for depression, where n is the number of pulses, B and 
α are fitting parameters, where α indicates the degree of 
non-linearity and for linear weight updates, α = 0 [58]. 
Subscripts p, d, min, and max indicate potentiation, 
depression, minimum, and maximum values, respec-
tively. While only a handful of the sampled reports pro-
vided a value for α, more than 70% of the reported weight 
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update curves followed this exponential dependence at 
least qualitatively. The remaining reports achieved (near-)
linear [33, 58, 59] weight updates or exhibited exponen-
tial or unclear dependencies on the pulse number.

The origin of the initially discussed discrepancy in 
memory window between many IV/endurance/retention 
figures and pulsed resistance modulation is thus clear. 
Measurements which produce a large memory window 
tend to cross the timing threshold of the fast filamentary 
switching, either by effectively applying slow consecu-
tive pulses with increasing amplitudes during IV sweeps, 
or by employing sufficiently long and strong pulses to 
induce larger switching transitions. In contrast, pulsed 
resistance modulations often do not employ the optimum 
pulse shape and are consequently not able to induce simi-
larly large conductance changes and memory windows, 
even after repeated pulse applications.

Qualitatively, the commonly observed non-linearity 
can be explained by the filament dynamics, too [58], 
and may in fact be a fundamental roadblock to achiev-
ing linear resistance updates in filamentary devices with 
equal subsequent pulses. For the SET process, the largest 
resistance changes occur when the filament changes from 
disconnected to connected, while the subsequent fur-
ther strengthening of the filament causes smaller incre-
mental changes. For the RESET process with opposite 
voltage polarity, the initially high current and consequen-
tially high local temperature cause high ionic mobil-
ity which result in relatively large resistance changes. 
As the current, temperature, and thus ionic mobility 
decrease with the progressing RESET process, the resist-
ance changes decrease, too. To achieve similar resistance 
changes at different filament configurations, different 
pulse shapes may thus be required, rather than simply 
equal subsequent ones, or the switching dynamics have 
to be controlled for more linear switching dynamics. In 
a promising example for this, a  TaOx “electro-thermal 
modulation layer” was used to slow down the abrupt 
filamentary dynamics, which enabled continuous linear 
weight updates between states separated by a factor 5–10 
[58].

Often, weight update linearity is cited as an important 
factor for reliable neuromorphic training of networks. It 
may seem intuitive that programming a network is sim-
plified if each programming pulse has the same effect on 
the device state. However, this seems to be more impor-
tant for ex situ training, where each device has to be pro-
grammed to a specific conductivity to comply with the ex 
situ training outcome, or it may even be an artifact of a 
von-Neumann-like deterministic conceptualization. For 
in situ (or online) training, where a network finds its own 
training solution, networks are much more robust against 
non-linearity and faulty devices [60]. In some instances, 

so-called non-idealities such as non-linearity have even 
been shown to benefit neuromorphic network operation 
[61], and it has further been demonstrated that the non-
linearity can be accommodated by dedicated program-
ming schemes [62].

The few cases of devices with gradual IV curves (as 
opposed to clearly filamentary) reported much more lin-
ear conductance changes as a function of the number of 
programming pulses [33, 63, 64] but typically, the mem-
ory window in the IV curves is lower than for filamentary 
switching to begin with, so the dynamic range is simi-
larly low as for many multi-level filamentary devices. The 
improved linearity can be explained in two ways. The first 
case is true interface switching, e.g., by the modulation of 
interfacial oxygen vacancy concentrations (more details 
in Sect.  4.2.2). Here, the process does not rely on the 
same self-accelerating current increase as in filamentary 
switching and may be more linear in time. The second 
case is the introduction of an effective series resistance 
into the switching stack by additional material layers. 
This series resistance may slow down the ultra-nonlinear 
switching process and improve the timing window for 
more accurate conductance control.

Different from the reports of controlling the conduct-
ance by a number of pulses, virtually all reports of STDP 
in hafnium-oxide-based devices only ever reported the 
normalized conductance change, which makes it difficult 
to compare these results. We are only aware of one recent 
publication which reports the absolute resistance change 
together with the normalized change [36]. Here, STDP 
led to up to three orders of magnitude resistance change.

Based on the reviewed results, the main challenge for 
hafnium oxide synapses is achieving a continuous range 
of resistances states over a large (e.g., ratio >10) memory 
window when programmed with subsequent pulses. The 
two aspects are there on their own, but rarely in combina-
tion. The key aspect is controlling the switching dynamics 
by careful materials design (more in Sect. 4) and/or get-
ting the programming pulse timing right. For filamentary 
devices, as the pulse timing seems to depend dynamically 
on the state of the filament, a simple sequence of equal 
pulses may not be possible to use without engineering 
the switching dynamics to fit the programming scheme. 
Ideally, the route forward would thus be controlling the 
switching dynamics by materials engineering rather than 
by finding more elaborate programming schemes. Lin-
ear resistance updates are advantageous, but not strictly 
necessary.

3  Systems demonstrations
Before taking a closer look at the materials and possible 
explanations for multi-level RS mechanisms in hafnium-
oxide-based devices, we will present a brief summary 
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of recent system-level demonstrations based on such 
devices. The impressive performance of such systems 
begs the question of whether fundamental demonstra-
tions of multi-level RS on a device level are still of interest 
to further this research field. With a fully application-
oriented perspective, the answer might be no, but from a 
perspective of research and understanding, there are still 
open questions about the functioning of the underlying 
devices, which will become clear in the mechanism dis-
cussions in Sect. 4.2.

While there are still ongoing discussions about selec-
tor-less devices for RS networks or about which selector 
might be most suitable, the reality of recent system-level 
publications is that almost all of them used a ‘1T1R’ 
configuration, i.e., a selector transistor (1T) to address 
individual RS devices (1R) [23, 27, 28, 49, 60, 65–67]. 
An illustration of such a 1T1R network is provided in 
Fig. 3a. In the absence of a promising different approach, 
this may well be a hint as to how the next steps in this 
area will be realized. In addition, as far as can be con-
cluded from the publications, just as for the majority of 
single-device demonstrations, the majority of these sys-
tems demonstrations are based on filamentary switching. 
In a similar line of argument as for the selector discus-
sion, this partially rebuts the common argument that 
filamentary devices are not a viable way forward because 
of their switching non-uniformity. While the detrimen-
tal effects of a certain level of non-uniformity have been 
demonstrated many times (e.g., [68]), the demonstration 
of complex systems based on filamentary switching also 
proves beyond doubt that ‘it can be done’, and the results 
are spectacular.

The demonstrated systems comprise several 1000 
devices with excellent switching uniformity and repro-
ducibility integrated into large crossbar arrays, typically 

based on a commercial CMOS process in the 130 nm to 
2  µm nodes. Simulations of the network sizes indicate 
that these large amounts of integrated devices are nec-
essary as the recognition accuracy seems to be a strong 
function of the layer size [67]. In addition, the impor-
tance of the demonstration of device statistics is con-
firmed again by network simulations which reveal that 
the network accuracy is also a strong function of unre-
sponsive devices. However, in  situ training seems to be 
more robust to unresponsive devices than ex situ train-
ing, and networks with multiple layers more robust 
than single layer networks [60]. The demonstrated net-
work architectures ranged from a single  layer to 8-level 
3D-integrated and fully convolutional networks including 
monolithic integration [67].

In most of the reports, a single thin (3.5–8  nm) layer 
of hafnium oxide [23, 28, 60, 65, 67, 69] or aluminum 
hafnium oxide [65] was used as the switching layer, as 
opposed to the various multi-layers and compounds in 
single-device demonstrations discussed in the materi-
als overview below, and only in two reports a thicker (up 
to 47 nm) additional layer of tantalum oxide was used in 
addition to the thinner hafnium oxide or aluminum haf-
nium oxide [27, 49]. For the reports where the informa-
tion was provided, all switching stacks were deposited by 
atomic layer deposition (ALD) at temperatures between 
200 and 300 °C. TiN was the most commonly used elec-
trode material [23, 27, 49, 65–67], often with a thin Ti 
interlayer on one side [23, 65–67], most likely to facilitate 
a switching redox reaction between electrode and oxide 
(see Sect. 4 for further discussion), and in some cases, Ta 
was used as one of the electrodes with Pt [60, 69] or Pd 
[28] as the other electrode.

Arguably, the greatest challenge to realize any sys-
tems demonstration at a university level comes after the 

Fig. 3 Illustration of system‑level RS networks with a 1T1R configuration, which almost all systems demonstrations used. a Schematic to illustrate 
the configuration. At each intersection of one word line with the two perpendicular lines (bit line and source line), a synaptic/memory cell 
comprises a selector transistor and a RS element. b Example of an experimental demonstration, reproduced with permission from [28]. It is clear 
that the chip contains a considerable amount of peripheral circuitry besides the actual RS network
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materials optimization and even multi-layer network 
integration. While it is relatively straightforward to vary 
parameters in different deposition techniques to opti-
mize a material, only few research groups will have the 
capabilities or collaborations to take the next step of inte-
grating a materials system with the required peripheral 
circuitry to operate a network consisting of thousands of 
devices. Thus, there are only a handful of research groups 
who managed to demonstrate such complex systems and 
even among the nine examples included here, several of 
them involve the same groups of researchers. While this 
steep threshold inhibits rapid progress in the field, it 
makes the achieved demonstrations by just a few groups 
all the more impressive.

Demonstrated functionalities based on these net-
work integrations include heart arrhythmia [23] and 
melanoma detection [70], the widely used recognition 
of handwritten digits from the MNIST database [49, 60, 
65, 66, 69], facial and general image recognition, con-
volution, compression, and decoding [27, 28], and even 
video processing [69]. MNIST recognition accuracies 
were typically in the high 90% range close to the digital 
baselines and image and video processing yielded com-
parable (although not quantified) results as conventional 
software, but in real time without the processing time 
required for software. This includes deconvoluting com-
pressed images [28] and edge detection in real-time vid-
eos [69]. Estimations for the improved energy efficiency 
of RS systems implementations ranged from 17 times as 
efficient as dedicated ASICs [28] to 1000 times as effi-
cient as an Intel Xeon processor [27].

With these successful results, an important remaining 
question is what is limiting a wider adoption of such sys-
tems by industry. One obvious reason is that these dem-
onstrations are fairly recent, and it takes time for such 
results to advance to the next level. In addition, based on 
the reviewed literature, two more probable reasons are 
the abovementioned difficulty of constructing complex 
peripheral circuitry and the still unresolved challenge of 
really good device-to-device uniformity. The latter is dis-
cussed in some of the reports on systems demonstrations 
themselves and is further supported by the earlier discus-
sion of missing statistics in device level demonstrations 
(Sect. 2). While the summarized systems demonstrations 
seem to have overcome this problem for their specific 
materials systems, it remains a general problem of RS 
even after decades of research. We discuss some possible 
mitigations in Sect. 4.2.2.

4  Materials and mechanism models
Here, we provide a summary of recent materials practices 
and proposed switching models. Despite recent systems 
demonstrations being based mostly on single-layer pure 

hafnium oxide or hafnium aluminum oxide, still a large 
number of alternative switching stack combinations are 
under investigation with additional materials besides haf-
nium oxide. Experimentally, there is little evidence for 
the exact switching mechanism for gradually switching 
hafnium oxide devices.

4.1  Materials
About 50% of multi-level RS demonstrations based on 
hafnium oxide were implemented with pure hafnium 
oxide [30, 37, 38, 42, 44–47, 52, 54, 56, 57, 59, 71–81], 
another about 20% used hafnium oxide and aluminum 
oxide in various combinations such as bi-/multi-layers 
or aluminum hafnium oxide [31, 33, 47, 48, 64, 82–85], 
and the rest combined hafnium oxide with various other 
materials such as tantalum oxide [34, 55, 58, 86, 87], 
titanium oxide [35, 40, 51, 88, 89], tungsten oxide [53, 
63, 90], molybdenum oxide [90], zirconium oxide [91], 
hafnium oxynitride [39], titanium oxynitride [32], or Pt 
nanoparticles [43], Ti [56, 92], Ni [41], or Ba [36] inter-
spersed in hafnium oxide or aluminum oxide.

In more than 80% of the sampled reports, atomic layer 
deposition (ALD) or plasma-enhanced ALD was used 
to deposit the switching films at temperatures typically 
between 200 and 300  °C. In one instance, promising 
results were achieved by ALD at as low as 100  °C [47]. 
More than one third of the ALD reports did not pro-
vide the deposition temperature, which is not recom-
mendable. Another ca. 20% of reports used (reactive/
magnetron) sputtering, one report was based on e-beam 
evaporation [78], one on pulsed laser deposition at 400 °C 
[36], and one on chemical solution [77].

For about 60% of reports, at least one of the elec-
trodes was a noble metal such as Au, Pt, or Ag, which is 
not ideal for CMOS compatibility, because they create 
deep-level traps in Si (Au), are hard to etch (Pt), or are 
mobile and reactive (Ag). Other than that, the most com-
mon electrode materials were Ti (ca. 50%), W (20%), and 
TiN (40%), where the latter was often used in combina-
tion with Ti (which is why the percentages do not add 
up to 100%). Amongst these, Ti stands out, as it seems 
to play an important role in the switching mechanism, 
namely facilitating the generation of oxygen vacancies in 
the adjacent switching layer. We discuss more on this as 
well as on the effects of different added layers, dopants, 
or particles in the following section. Already at this point, 
we encourage more systematic materials design studies 
to understand better the fundamental materials proper-
ties in the context of resistive switching.

4.2  Proposed switching mechanisms—general discussion
Curiously, almost all (ca. 90%) demonstrations of multi-
level RS in hafnia are based on filamentary switching. 
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This is curious at first, because filamentary switching 
typically follows ultra-non-linear and thus very rapid and 
abrupt switching, intuitively at odds with the concept of 
gradually controlled multi-level switching. The filamen-
tary nature of a device is often clear from the character-
istic rapid current increase during the SET transition, i.e., 
from the high (HRS) to the low resistance (LRS) state, 
cf. inset Fig. 1a. Generally, in such a filamentary RS pro-
cess, a highly conductive filament of oxygen vacancies is 
formed through the otherwise highly resistive switching 
layer, and the abruptness of the transition is caused by a 
self-accelerating effect, whereby the increasing current 
during initial voltage application leads to increasing local 
temperatures due to Joule heating, which in turn drasti-
cally accelerates the filament formation due to the expo-
nential dependence of the oxygen vacancy mobility on 
the temperature [50, 93]. Often, the inherent stochastic-
ity of filamentary RS is drawn upon as an argument for 
a need to find alternative mechanisms such as interfacial 
switching.

The systems integrations discussed before, however, 
demonstrate clearly that filamentary RS itself does not 
pose a fundamental roadblock. As only a handful of 
research groups have been able to demonstrate such 
systems, however, it seems just as clear how challenging 
it is to ‘get it right’. A similar argument applies to non-
filamentary RS, because while there are reports on how 
to improve uniformity compared with filamentary RS, 
such improvements are clearly not strong enough either 
to catapult any of the candidates into a commanding lead. 
Thus, it is still of great importance to understand the 
physical details of the different switching mechanisms to 
improve them to a truly outstanding level.

Before taking a closer look at possible explanations 
of switching mechanisms, we wish to advise care about 
how to explain or claim the presence of a certain switch-
ing mechanism. Often, such explanations seem to hit 
an unfortunate middle ground between claiming strong 
confidence about a certain mechanism explanation, but 
doing so only by literature analogy (of varying detail) and 
without much experimental evidence or theoretical sup-
port. While it is clear that the comparison with results 
from the literature is a key element of scientific publica-
tions, such comparisons have to occur between appropri-
ate results. For illustration purposes, if report X shows IV 
curves with a certain shape and relates it to a measured 
concentration change of oxygen vacancies at a certain 
interface, there is a logical gap if report Y observes simi-
lar IV curves and thus concludes the same concentra-
tion change during switching, but without the respective 
appropriate measurement to compare with. The similar 
IV curves could be caused by very different mechanisms. 
In short, there often needs to be more evidence for a 

certain mechanism besides literature comparison. This 
should be acquired experimentally or theoretically in the 
form of a quantitative model with analytic equations to 
back it up where possible, or ideally both by experiment 
and theory.

Further on the discussion of IV curves, they are one of 
the most easily accessible starting points for mechanism 
investigations when supported by analytic expressions. 
However, we advise that the sole exercise of fitting IV 
curves with a certain transport model, which is observed 
regularly in the literature for hafnium oxide devices 
among others [33–35, 40, 53, 63, 64, 91], is not sufficient 
to identify unambiguously a certain switching and/or 
transport mechanism, despite the existence of analytic 
expressions. It should be self-evident that this is not suf-
ficient especially if the IV characteristics are measured 
over several Volts, but the subsequent fitting is only car-
ried out in a small voltage range with a few data points. 
An illustration of why such fitting is not sufficient is 
provided in Fig.  4, where different sections of the same 
IV curve could be fitted equally well by several differ-
ent transport models. This is because several different 
analytic expressions have similar exponential dependen-
cies on the voltage and in the case of the oft-cited space-
charge-limited transport model, any region can be made 
to look linear in a double-logarithmic plot if only zoomed 
in close enough. If IV curve fitting is employed to under-
stand switching/conduction mechanisms, it should be 
accompanied by supporting measurements, e.g., at least 
by temperature-dependent measurements, and/or a dis-
cussion of the physical meaningfulness of the proposed 
mechanism. Alternatively, any conclusion based solely on 
IV curve fitting should be kept to a general level such as 
the current being controlled by an energy barrier (which 
is true for, e.g., all four of Schottky and Poole–Frenkel 
emission as well as Fowler–Nordheim tunneling and 
trap-assisted tunneling). In addition, the fitted linearized 
regions as well as the original IV curves with overlaid cal-
culated fits should be provided so that readers can judge 
for themselves how reliable the results are. Schematic 
diagrams of atomistic switching models without underly-
ing modelling (e.g., density functional theory) should be 
avoided, too, as they easily suggest a detailed understand-
ing of the mechanism, which may not be given.

In general, we recommend clarity about the intention 
of mechanism explanations. For a confident conclu-
sion, several complementary measurements and ideally 
a quantitative model are required. If no such measure-
ments or quantitative estimations are carried out, a com-
parison with literature results should be brief and not 
overclaim a certain mechanism.
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4.2.1  Filamentary switching
The vast majority (ca. 90%) of sampled reports are based 
on filamentary switching, and the basic mechanism of 
reversible dielectric breakdown was summarized above. 
In the model of filamentary switching, different inter-
mediate resistance states in a device can be explained 
by different shapes of the filaments, such as the filament 
diameter and/or length and the resulting resistive gap 
between the tip of the filament and the opposite elec-
trode. In slightly different interpretations, the conduc-
tion path is assumed to consist of various smaller parallel 
filaments or dendrite-like structures [75], but resistance 
control by one dominant conical filament is a much more 

common explanation. In addition, recent findings indi-
cate that additional weaker conduction paths in parallel 
with a ‘main’ filament are rather disadvantageous as they 
lead to noise in the current level of a targeted resistance 
state and thus reduce the accuracy of multi-level states 
[92].

It is established that oxygen vacancies play a major 
role in RS and in the case of filamentary switching this 
is forming the conductive filament. Among the sampled 
reports, only four relied on metal filaments through the 
switching layer [28, 57, 59, 94] where instead of oxygen 
vacancies, metal atoms form the filament.

Fig. 4 Examples of how different commonly used transport mechanisms can be fitted convincingly to the same measured IV curve and several 
regions overlap to the extent that it is impossible to make a conclusion only based on the curve fitting. The equations underlying the fits are 
the standard textbook equations for the respective models and the measured IV curve is from a system like [36]. a, b Schottky emission model, 
linearized fits and actual IV curve with overlaid fits. c, d Same for Poole–Frenkel emission. Note that for the x‑axis for c, the negative values are −|V|1/2. 
The fitted areas fit just as well as with the Schottky emission model. e, f Linearized piece‑wise fits for the space‑charge‑limited conduction (SCLC) 
model and g for the trap‑assisted tunnelling (TAT) model. The TAT fits for the negative voltages are not shown due to limited figure space. h, i 
Measured IV curves with overlaid fitting results from e–g 
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As mentioned above, Ti and TiN were among the most 
commonly used electrodes and in almost 90% of these 
cases, the RS SET process occurred when a relative posi-
tive voltage was applied to the Ti or TiN side. Based on 
the relatively similar free energy of formation of hafnium 
oxide and titanium oxide [95], a Ti or TiN electrode or 
dedicated titanium oxide interlayer can act as a redox 
facilitator for the switching layer or as an oxygen reser-
voir. This is because thermodynamically, and supported 
by an electric field and potential temperature increase 
due to Joule heating, some of the oxygen from hafnium 
oxide in the interface region can be scavenged reversibly 
by Ti to form titanium oxide, leaving behind an increased 
concentration of oxygen vacancies and free electrons for 
charge compensation. This interaction between hafnium 
oxide and a reactive electrode or interlayer is further sup-
ported by the observation of an aluminum oxide inter-
layer suppressing the RS effect [33, 83].

In approaches similar to oxygen scavenging from the 
film by an electrode, gradients of oxygen vacancies were 
created in the switching layer(s) by varying conditions 
during deposition [45] or by depositing two oxide layers, 
one of which intentionally sub-stoichiometric. Examples 
include hafnium oxide bilayers [42, 46], or hafnium oxide 
combined with tantalum oxide [34] or tungsten oxide 
[63]. Alternatively, additional layers were introduced to 
act as a series resistance to slow down the self-accelerated 
runaway during the SET operation and allow for tuning 
of the filament more gradually [51, 54, 58, 64]. Hafnium 
oxide itself has also been used as such a series resistance 
with switching occurring in tantalum oxide instead [55, 
86].

Also in the absence of an oxygen vacancy concentra-
tion gradient, it was demonstrated repeatedly that a con-
trolled oxygen vacancy concentration is important to 
improve the RS characteristics of a film. This was dem-
onstrated for example by the addition of Ti [56], Ni [41], 
or Ba  [36] to the switching films, all of which increased 
the oxygen vacancy concentration and/or reduced their 
(bulk) migration activation energy. However, it should be 
noted that the migration barrier for oxygen inside of an 
oxygen-deficient filament did not change in the presence 
of Ti doping [56].

Besides the control of oxygen vacancy concentrations/
gradients, some approaches additionally confined the for-
mation of filaments and the movement of oxygen vacan-
cies spatially; for example, by imbedding Pt nanoparticles 
inside the hafnium oxide [43] or by creating nanoin-
dentations in the film surface [44], both to enhance the 
electric field, or by inducing a vertical orientation in the 
switching thin films to provide preferential paths for the 
formation of enhanced conduction channels [36, 96]. The 
latter was inspired by earlier complex oxide vertically 

aligned nanocomposite structures in which vertical inter-
faces acted as pre-formed electronic channels with sep-
arate ionic conduction inside the materials [97, 98]. An 
illustration of these approaches is provided in Fig. 5.

While the importance of oxygen vacancies seems fairly 
clear in most publications, open questions remain about 
the exact physical process of gradual RS in hafnium oxide 
as well as in other materials systems, and sometimes this 
leads to speculation or overinterpretation. For example, 
some explanations claim that for a conical filament, its 
base is closer to the reservoir side, i.e., in the case of an 
oxygen vacancy filament, the filament base is closer to 
the reactive electrode or vacancy-rich layer [33, 37, 45, 
56, 88], yet other explanations claim that it is the oppo-
site [31, 34, 40], and most of the conclusions are drawn 
only from electrical data.

Consequently, a similar situation presents itself with 
respect to explaining which aspect of the filament leads 
to multi-level RS in hafnium oxide. In some explanations, 
it is concluded that the filament gradually ruptures and 
recombines close to the inactive electrode [31, 37, 42, 56], 
in others at the interface between two different oxides in 
the switching layer [34, 40, 53], and in yet other cases the 
varying diameter of the filament is assumed to determine 
the multi-level resistance states [30, 33]. In some cases, 
it has been investigated systematically, how additional 
layers or dopants affect the electrical data or the switch-
ing dynamics, but often, it is also just concluded vaguely 
that the additional components improve the switching 
somehow.

It is not at all unlikely that different materials com-
binations result in different mechanisms or filament 
shapes, but this only stresses how important it is to 
back up detailed claims about a certain mechanism with 
appropriate thorough experiments or theoretical sup-
port. Among the sampled reports, examples of what 
such support could look like include [51, 56, 80, 99]. In 
particular, we encourage more systematic and detailed 
materials design studies to understand better the switch-
ing mechanisms and their effects on the electrical device 
performance.

4.2.2  Alternatives to filamentary switching—interfacial, 
hybrid, and transistors

Different from filamentary RS, where the switching and 
conduction processes are confined to the nanometer-
sized filament, in interfacial switching, the resistance 
states are controlled by some form of interface energy 
barrier and electronic conduction occurs through the 
‘bulk’ of the oxide. As such, the hallmark of interfacial 
switching is the dependence of current levels on the 
size of the device electrodes. In addition, the IV curves 
lack the characteristic sharp current increase due to 
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the filament formation. In recent years, there have been 
scarcely few demonstrations of interfacial RS based on 
hafnium oxide which actually demonstrate area (or diam-
eter) scaling [36, 63], although there are several reports 
which observe gradual IV curves [30, 33, 34, 47, 53, 54, 
76, 91]. As discussed above, most commonly it is still 
filamentary switching at their foundation, but limited 
by a series resistance, even if sometimes they are called 
interfacial, though without providing area-dependent 
data. In the few presented interfacial switching devices, 
the mechanism is concluded to be a result of an interfa-
cial Schottky-like energy barrier which can be tuned by 
the variable concentration of oxygen (vacancies) in its 
vicinity. Driven by the applied electric field, when oxy-
gen vacancies accumulate near the interface, they lower 
the barrier height, which leads to the low resistance state. 
Conversely, if oxygen vacancies are depleted from the 
interface by the electric field, the barrier height increases 
to restore the high resistance state. A straightforward 
model explanation for this is provided, e.g., in [77].

Similar to many of the explanations for filamentary 
switching, a direct observation of this mechanism in haf-
nium oxide is missing. Also, as reported in other interfa-
cial switching materials systems, the two demonstrations 
[36] and [63] suffer from poor state retention, so clearly, 

improvements are required to make them suitable for 
long-term inference applications. Alternatively, as men-
tioned before, the volatility could be used for reservoir 
computing applications [24].

Besides purely interfacial or filamentary switching, a 
hybrid approach was proposed recently to use only par-
tial filaments as effective electrodes and to restrict the 
switching process to the interface [36]. In this approach, 
high levels of doping were used to control the oxygen 
vacancy concentration in hafnium oxide and to cause 
self-assembled phase separation in amorphous thin 
films. This phase separation led to the formation of ver-
tically aligned nanopillars with very narrow (nanometer) 
lateral spacing through the upper part of the film thick-
ness. Notably, this was achieved in amorphous films at 
the CMOS-friendly deposition temperature of 400  °C. 
The nanopillars acted as preferred paths for enhanced 
conduction, but because they did not reach all the way 
through the film thickness, they did not cause a full fila-
mentary dielectric breakdown. Instead, they acted as the 
effective top electrode and restricted the switching to the 
bottom interface of the device stack. The combination 
of guided filaments with narrow spacing and interface 
confinement led to improved device-to-device uniform-
ity and nanosecond switching times. An illustration of 

Fig. 5 Illustrations of different proposed approaches to explain or control switching mechanisms. Such schematics should be avoided 
without detailed underlying understanding. Gray at the top and bottom indicate electrodes, pale yellow is the switching layer, plussed squares 
indicate oxygen vacancies. a In many publications, an oxygen‑vacancy‑rich layer (shaded red), either by oxygen scavenging from an electrode 
or a dedicated oxide layer (e.g.,  TiOx), is used to enhance switching properties. However, there are different explanations as to the shape 
of the filament and its change during filamentary switching. b In [43], Pt nanoparticles embedded in the switching layer were used 
to enhance the electric field and guide the formation of filaments. c In [44], nanoindentations in the top electrode enhanced the electric field 
underneath the indentation to guide the formation of filaments. d In [96], vertically aligned nanocomposite films of two different materials  (HfOx 
and  CeOx) were used to guide filament formation along the resulting grain boundaries. e In [36], in a hybrid approach, vertically oriented phase 
separation in amorphous films was used to form effective top electrodes and restrict the switching process to the interface region (shaded green). 
f In [39], a RS element was integrated on top of a MOSFET gate contact, and the voltage division due to the RS caused large effective threshold 
voltage shifts and thus different source‑drain currents
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this hybrid system together with the aforementioned 
approaches to confine the filament formation is provided 
in Fig. 5.

Another alternative approach was to integrate a RS 
element with or on top of the gate of a metal–oxide–
semiconductor field-effect transistor  (MOSFET). In two 
cases, the explanation for RS of the source-drain current 
was oxygen vacancies being pushed into and out of the 
MOSFET channel by the electric field applied over the 
gate dielectric stack [38, 90]. As before, however, a direct 
observation of this mechanism seems to be missing. In 
one case, with a 65-nm-thick  HfO2-x gate dielectric and 
an indium zinc oxide channel, this enabled source-drain 
current modulations of several orders of magnitude even 
by subsequent pulses [38], which otherwise showed poor 
efficacy in two-terminal devices as discussed before. 
However, due to the thick gate dielectric, this required 
relatively large voltages of up to -10 V. In the other case 
of a  MoOy/HfO2 gate stack with a  WO3-x channel, this 
approach resulted in very poor source-drain current 
modulation by subsequent pulse numbers and either, it 
required pulse widths of 1 s, or the modulation was less 
than 10% with 10 ms pulses [90].

By far the most promising transistor RS performance 
was demonstrated by integrating a filamentary switch-
ing element on top of the gate stack through a via contact 
[39]. In this approach, filamentary switching in the addi-
tional gate element was the explanation for stable multi-
level retention (>106  s measured without degradation) 
with good endurance  (105 measured without degrada-
tion) and almost six orders of magnitude gradual source-
drain current modulation by subsequent pulses. The only 
potential drawback was that the pulse schemes employed 
increasing widths (10-70 ns) or amplitudes (up to 4.5 V). 
A schematic of this approach is provided in Fig. 5f.

In general, these alternative approaches face the same 
challenges as the filamentary demonstrations of multi-
level RS in hafnium oxide. To pose as viable competitors, 
they will have to provide more performance statistics, 
smaller devices, and a better fundamental understanding 
of the underlying switching physics.

5  Neurons and selectors
While in hafnium oxide, multi-level RS is mostly being 
investigated for (non-volatile) synaptic behavior, the 
material also exhibits the flexibility to enable volatile 
threshold switching (TS), which is highly promising for 
a device-(rather than circuit-)level implementation of 
neuronal functionality, and it holds promise for selec-
tor devices to suppress parasitic sneak paths in crossbar 
arrays. Different from the bipolar RS curves illustrated in 
the inset of Fig. 1a, TS follows a unipolar pattern and not 
only the current, but also the device conductivity returns 
to a very low level together with the voltage. This is illus-
trated in Fig. 6a. For neurons, TS is promising to realize 
an integrate-and-fire model, whereby a neuron device 
only ‘fires’ (sends out or transmits a signal spike) if a cer-
tain threshold is overcome [100]. This is illustrated in 
Fig. 6b, c, where Fig. 6b illustrates a simple integrate-and-
fire neuron circuit, and Fig.  6c illustrates schematically 
the membrane potential Vm on the membrane capacitor 
Cm and the current transmitted by the TS device. For an 
arbitrary voltage input signal, once Vm exceeds Vswitching, 
the TS element will become conductive. This transmits 
a current output and at the same time discharges Cm to 
reset the TS element to a resistive state.

While there have been fewer demonstrations of reli-
able TS than of non-volatile multi-level RS, the results 
are very encouraging. The most promising mechanism 
for TS seems to be the percolation of Ag from one of the 

Fig. 6 Illustration of threshold switching (TS) and neuronal functionality. a TS is unipolar and volatile. At a certain voltage, the current increases 
rapidly from the HRS to the LRS, but when the voltage is reduced, the current and the conductivity decrease back to the HRS. This could be 
used to implement a selector functionality to suppress sneak paths in crossbar arrays. b It could also be used to implement neuronal (as 
opposed to synaptic) functionality in this simple circuit for an integrate‑and‑fire neuron based on a TS device. Subsequent input pulses charge 
the ‘membrane’ capacitor Cm. When its potential reaches the threshold Vswitching of the TS element, the signal is transmitted and Cm discharges 
through the LRS TS element and Rdischarge. c Schematic membrane voltage Vm on Cm for an arbitrary input signal. As long as the potential on Cm 
remains below the switching threshold Vswitching, the TS device will remain insulating. Only when the switching threshold is surpassed, will a signal, 
such as a current to emulate neuronal firing, be possible
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electrodes through the hafnium oxide layer under a com-
pliance current ≤100  µA, which leads to the formation 
of a conductive filament to switch to the LRS, but which 
dissolves spontaneously when the voltage is removed. As 
suggested by DFT calculations, the dissolution happens 
because the compliance-current-limited filament is not 
strong enough to be thermodynamically stable. Based 
on DFT calculations as well, the initial Ag percolation 
occurs favorably along paths of oxygen vacancies. In a 
demonstration where devices could be switched between 
non-volatile RS and TS [59], a measured TS endurance of 
 104 cycles with a memory window >102 at a low switch-
ing voltage of about 0.15  V was achieved. In a similar 
materials system [101], >106 TS endurance cycles were 
demonstrated with a memory window of  103 at a switch-
ing voltage of about 0.2  V. Based on DFT results, this 
was achieved by nitrogen doping in the hafnium oxide 
stabilizing the formation of Ag pathways along oxygen 
vacancy sites. Similarly, the importance of the Ag-oxy-
gen-vacancy interactions was concluded in [102], where 
a TS endurance of  108 cycles was demonstrated for Ag as 
the active electrode with a switching voltage of 0.3 V, and 
an endurance of >109 for an AgTe electrode with a switch-
ing voltage of 0.7 V and a memory window of ≈104.

6  The ‘competition’
While hafnium oxide has the advantage over other RS 
materials that it is already established in CMOS industry, 
its performance still has to stand up to competition from 
other CMOS-compatible materials. Thus, in the final sec-
tions of the paper, we provide a brief overview over RS in 
other binary oxides as well as devices based on the omni-
present ferroelectric hafnium oxide.

6.1  Gradual RS in other binary oxides
RS in general, but also gradual and multi-level RS, is com-
monly observed in many other materials systems besides 
hafnium oxide. Besides binary oxides, this also includes, 
e.g., perovskites and 2D materials, but to stay within the 
scope of this review, we will only provide a brief sum-
mary of multi-level RS in binary oxides. The binary 
composition itself can be a potential benefit over other 
more complex materials. Some of these oxides already 
appeared in the discussion above when they were com-
bined with hafnium oxide, but gradual RS has also been 
observed in standalone aluminum oxide [103], tantalum 
oxide [104], titanium oxide [105, 106], tungsten oxide 
[107], and various combinations thereof [108–110]. Fur-
ther recent examples include silicon oxide [111], manga-
nese oxide [112], cobalt oxide [113, 114], zinc oxide [115, 
116], yttrium oxide [117], and nickel oxide [118]. Just as 
for the hafnium oxide devices, we limited the overview to 
the past few years.

The landscape of demonstrations for gradual RS in 
these materials presents itself almost identical to the 
one of hafnium-oxide-based devices, i.e., mostly at a 
proof-of-concept level and very few systems-level dem-
onstrations [119]. This means mostly demonstrations of 
a few individual large (often ≥100 µm diameter) devices 
with limited statistics on performance and variation. The 
reported switching voltages were between ±2 and ±10 V, 
retention times between  103 and  104  s for two to four 
states, and the measured endurance typically ranged 
from 100 to about  104 cycles. One notable outlier is the 
demonstration of  1012 switching cycles (switching volt-
age +3.5 and -7  V, two states) in a tantalum oxide/alu-
minum oxide device, which also exhibited multi-level RS. 
While >1010 switching cycles have been demonstrated 
in hafnium oxide devices, they did not show multi-level 
performance at the same time [120]. Just as for the dis-
cussed hafnium oxide devices, most demonstrations of 
neuromorphic plasticity in other oxides were based on a 
consecutive number of pulses, often together with paired 
pulse facilitation or STDP, and just as for hafnium oxide 
devices, the numbers of consecutive pulses did not result 
in strong conductance modulations, ranging from as low 
as 2% [118] up to a maximum factor of about 20 [108], 
and the (non-)linearity was comparable with hafnium 
oxide devices, too. Finally, explanations of switching and 
conduction mechanisms were on a similar level as for 
hafnium oxide, too, sometimes with varying degrees of 
speculation and only occasionally supported by substan-
tial quantitative modelling [115, 117].

6.2  Ferroelectric hafnium oxide
Finally, while based on a different physical mechanism, 
no review of RS and/or hafnium oxide these days seems 
to be able to go without a look at ferroelectric switching 
(FES) in hafnium oxide as one of the main alternatives to 
multi-level RS. With several review papers specifically on 
FES in hafnium oxide being published every year, we will 
only point out a few of the most recent ones [121–127] 
and based on these, provide a brief summary of the multi-
level switching phenomena based on FES. The most com-
mon realization of FE in hafnium-oxide-based films is a 
polycrystalline orthorhombic thin film of hafnium zir-
conium oxide (HZO) formed by rapid thermal annealing 
[128]. However, FE has also been reported in epitaxial 
FE hafnium oxide in the rhombohedral phase [129, 130]. 
Different dopants or composites are being used to stabi-
lize the FE phases, but HZO is by far the most commonly 
investigated and mature materials system.

Very generally, on the materials level, multi-level FES 
in hafnium oxide can be attributed to different switch-
ing dynamics of so-called domains, limited areas within 
a material. Such FE domains can occur due to crystalline 
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domains, but FE domains can also stretch across crystal-
line domains, and there can be multiple FE domains in 
a monocrystalline film, and domains can be as small as 
half a unit cell [131]. If different domains have different 
coercive fields, or they can be switched sub-coercively, it 
is evident how a FE film can exist in different states of dif-
ferent FE configurations. Based on these configurations, 
FE can be utilized in a device in different ways.

The most common implementation of FE hafnium 
oxide in devices is the FE field-effect transistor (FeFET). 
In this architecture, the ordinary amorphous transistor 
gate dielectric is replaced (typically) by HZO, and the FES 
induces a shift of the transistor threshold voltage, thus 
creating a memory window with multiple possible states 
based on the multi-level FES of the oxide [132]. Alter-
natively, FES in gate oxides can be utilized to achieve a 
negative capacitance in the gate stack, which can enable 
a sub-thermionic off-state of the transistor [133]. Possi-
ble two-terminal exploitations of FES can make use of FE 
tunnel junctions (FTJ) [134], Schottky-to-ohmic transi-
tions (SOT) [135], or simply replace the dielectric of the 
DRAM architecture with a FE oxide. In an FTJ, the FE 
polarization depletes or accumulates charge carriers in a 
semiconductor adjacent to the FE oxide layer, leading to 
different conductivities across the stack. In a SOT device, 
the switching FE polarizations changes the Schottky bar-
rier height between the FE oxide and the adjacent elec-
trode and the barrier height changes the current. In a FE 
DRAM, the FE polarization replaces the dielectric charge 
as the information storage medium and due to the FE 
non-volatility drastically reduces the need for memory 
refresh events. Schematics of the different configurations 
are provided in Fig. 7 for illustrative clarification.

In HZO FeFETs, cycling endurances of  1011 and extrap-
olated state retention of 10  years (2 ×  104  s measured) 
have been reported for a memory window of 0.9 V with 
switching voltages of ±3.5  V and near-linear multi-level 
conductance modulation [136]. This makes FeFETs the 
most promising hafnium-oxide-based multi-level devices 
to date. For two-terminal FE capacitors, which could 
be used for FTJs or FE DRAM, endurances of  1011 have 
been reported, too, for switching voltages of ±3.5 V and 
a remanent polarization of 2Pr ≈ 30–40  µC/cm2 [137], 
but the endurance for actual FTJ demonstrations is lower 
than that at about  107 for a memory window of ratio >10; 
the state retention was similarly good as in capacitors 
with extrapolated 10  years  (105  s measured) [138]. In a 
recently demonstrated FTJ which also exhibits multi-
level synaptic functionalities, the measured endurance 
was approaching  104 for a memory window of a factor 4 
[139]. The retention was not reported in this example and 
the resistance update for a number of consecutive pulses 
followed the exponential shape discussed in Sect. 2.2.

While highly promising results have been demon-
strated, they are at the same time still rare and there 
are still a lot of proof-of-concept demonstrations being 
published just as for RS devices. In the same vein, a 
widespread or commercial implementation of FE-based 
hafnium oxide devices is still missing, too, because of 
a number of outstanding challenges. For more com-
prehensive perspectives of the general field of ferro-
electric hafnium oxide, we refer the interested reader 
to the initially mentioned dedicated reviews. The chal-
lenges most commonly identified for FE hafnium oxide 
are the difficulty of stabilizing a single FE phase (owing 
to a number of different crystal structures with similar 
energy), a relatively high coercive field, charge trapping 
related to the required applied fields, imperfect polari-
zation screening and consequently depolarization fields 
which degrade state retention, as well as the wake-up 
and fatigue effects, which are the increase and later 
decrease of polarization with the number of switching 
cycles.

Fig. 7 Illustrations of implementing ferroelectric switching. 
a Top: Schematic of a FE transistor (FeFET) with different domain 
orientations (arrows in boxes) in the gate oxide. S—source, G—
gate, D—drain. Ferroelectric switching in the gate oxide will cause 
a shift of the transistor threshold voltage VT, creating a memory 
window in the transistor transfer characteristics (bottom). Whether 
in a three‑ or two‑terminal device, gradual switching of different 
domains in a FE film can lead to multi‑level states if exploited 
accordingly. b Schematic band diagrams of Schottky‑to‑ohmic 
transition device. Depending on the FE orientation, illustrated 
by the arrows in boxes, the contact between the FE oxide 
and an adjacent electrode (with an appropriate work function) 
can be a Schottky contact (red, increased barrier) or an ohmic 
contact (blue, reduced barrier), leading to a high and a low 
resistance state, respectively. c Schematic band diagrams of a FE 
tunnel junction. Depending on the FE orientation, electronic 
carriers can be accumulated (blue, band bending downwards) 
or depleted (red, band bending upwards) at the interface, leading 
to a lower or a higher resistance state due to increased/decreased 
tunnelling through the FE oxide from accumulated/depleted 
carriers at the interface. EC conduction band energy, EF Fermi level 
energy. Note that the effect of FES on the insulator was disregarded 
in this schematic. d Circuit diagram of a DRAM configuration, 
where the standard dielectric capacitor was replaced by a variable FE 
capacitor. WL—word line, BL—bit line



Page 16 of 20Hellenbrand and MacManus‑Driscoll  Nano Convergence           (2023) 10:44 

7  Conclusions
Based on the summarized development of the past few 
years, multi-level resistive switching (RS) in hafnium-
oxide-based devices has every opportunity to play an 
important role in taking neuromorphic and non-von 
Neumann computing to the next level. Similar perfor-
mance values and similar shortcomings have been dem-
onstrated at the device level among a range of materials 
exhibiting multi-level RS, but a clear lead is not evident. 
Typically reported performance values of multi-level 
RS hafnium oxide and other oxides are switching volt-
ages ≤4 V, although with a majority between 0.5 and 2 V, 
endurances of about  104 cycles, although  109 have been 
reported for hafnium oxide and  1012 for tantalum oxide, 
measured retentions of  104–106  s, and ≥10 states per 
decade of resistance, but with pulsed multi-level resist-
ance modulation below an order of magnitude difference. 
Most commonly, these values are reported for individual 
devices. To move the field forward, higher performance 
values are required and most importantly, they have to 
be reported on statistically significant numbers (≥100) of 
small (≤0.1 µm2) devices instead of individual large ones. 
In addition, fabrication temperatures should be limited to 
CMOS-friendly values of ≤400 °C or even better ≤350 °C, 
and CMOS-friendly electrode materials such as TiN or 
W should be used.

Along the same vein, a more thorough fundamen-
tal understanding of different switching mechanisms is 
still required, as many reports only provide a schematic 
explanation of switching mechanisms without proper 
experimental evidence. This need is still very much given 
because the main reasons for the limited multi-level 
resistance variation are the complex and fast filamentary 
switching dynamics, which the majority of multi-level 
RS devices are based on. This makes it clear that there is 
still a need for careful materials design to achieve better 
control of the switching dynamics. Promising approaches 
are based on including an additional layer to the switch-
ing stack to slow down the filamentary switching, on 
coupling an RS stack with a transistor, or to move over 
to non-filamentary switching, where several promis-
ing demonstrations have been put forward. These are 
typically based on creating (vertical) structure in RS thin 
films to define pre-existing pathways for ionic conduc-
tion or electric field control.

Among various multi-level RS oxides, hafnium oxide 
has the advantage that a number of large-scale sys-
tems integrations have been demonstrated, it is firmly 
established in CMOS industry, and it can be made fer-
roelectric (FE) for alternative and complimentary neu-
romorphic and memory applications. At the same time, 
FE transistors based on hafnium oxide may be the biggest 
competition for RS as they offer multi-level capabilities 

as well but much higher values for endurance and reten-
tion. FE hafnium oxide faces its own remaining chal-
lenges, however. For RS systems demonstrations, besides 
the fundamental device challenges which limit their more 
widespread implementation, the required peripheral cir-
cuitry poses a challenge for many traditionally materials-
focused researchers and their realization will require 
considerable collaborations. The existing systems dem-
onstrations, however, are strong indicators that multi-
level RS for neuromorphic and AI applications based on 
hafnium oxide and similar oxides may be at the verge of 
commercialization. A number of startups based on these 
technologies consolidate this further.
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