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Abstract
We report an innovative and facile approach to fabricating an ultrasensitive plasmonic paper substrate for surface-
enhanced Raman spectroscopy (SERS). The approach exploits the self-assembling capability of poly(styrene-b-
2-vinyl pyridine) block copolymers to form a thin film at the air-liquid interface within the single microdroplet 
scale for the first time and the subsequent in situ growth of silver nanoparticles (AgNPs). The concentration of 
the block copolymer was found to play an essential role in stabilizing the droplets during the mass transfer phase 
and formation of silver nanoparticles, thus influencing the SERS signals. SEM analysis of the morphology of the 
plasmonic paper substrates revealed the formation of spherical AgNPs evenly distributed across the surface of 
the formed copolymer film with a size distribution of 47.5 nm. The resultant enhancement factor was calculated 
to be 1.2 × 107, and the detection limit of rhodamine 6G was as low as 48.9 pM. The nanohybridized plasmonic 
paper was successfully applied to detect two emerging pollutants—sildenafil and flibanserin—with LODs as low 
as 1.48 nM and 3.45 nM, respectively. Thus, this study offers new prospects for designing an affordable and readily 
available, yet highly sensitive, paper-based SERS substrate with the potential for development as a lab-on-a-chip 
device.
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1  Introduction
Block copolymers (bCP) are polymers that consist of at 
least two different or immiscible polymers connected by 
covalent bonds. Szwarc was the first to synthesize amphi-
philic bCPs using living anionic polymerization back in 
the 1950s [1]. Since then, various bCP, such as linear, 
graft, and branched copolymers, have been synthesized 
using different polymerization methods [2]. The discov-
ery of bCPs’ ability to spontaneously self-assemble in the 
1960s [3] revolutionized the field of polymer science and 
paved the road for their use to generate nanostructures 
[4, 5], such as micelles [6], nanorods [7], and polymer-
somes [8]. The ability of bCPs to self-assemble into vari-
ous nanostructures is mainly governed by their molecular 
structure, composition, concentration, and response to 
external factors. Assembly of block copolymers at various 
interfaces, including air-water [9], oil-water [10], or solid-
liquid [11], can generate innovative materials with adjust-
able shapes, structures, and properties.

In our previously reported work, we developed a novel 
strategy for the fabrication of composite thin films via 
the self-assembly of poly(styrene)-b-poly(vinyl pyri-
dine) block copolymer (bCP) incorporating silver ions 
at the air-liquid interface [12]. The morphology of these 
films could be easily tuned and varied from nanowires 
to honeycomb-like structures depending on the concen-
tration of the components. A similarly flexible approach 
to controlling the formation of silver nanoparticles in 
the desired fashion could be most interesting for devel-
oping a surface-enhanced Raman spectroscopy (SERS) 
substrate.

The SERS is a powerful vibrational spectroscopy tech-
nique that enables the enhancement of the Raman signal 
by many orders of magnitude, providing fine molecular 
fingerprints and allowing the detection of trace species 
[13]. In this regard, the development of highly sensitive 
SERS substrates, i.e., enabling extensive hot spot gen-
eration, has been a cornerstone for achieving extraordi-
nary efficiency to the extent of distinguishing even single 
molecules [14, 15]. The uniform distribution of metal 
nanoparticles across the substrate in appropriate proxim-
ity to each other is pivotal, as it determines the ability of 
the SERS-sensitive regions to interact with the analytes 
[16]. Designing a facile and rapid method for the fabrica-
tion of a cost-effective SERS substrate that enables traces 
of target molecules to be detected continues to remain 
a major challenge, particularly in resource-limited 
situations.

Recently, paper substrates have become increasingly 
popular among researchers in the SERS community 
owing to the numerous advantages these substrates offer 
over their traditional counterparts [17, 18]. Paper is read-
ily available, inexpensive, and biodegradable; in addition, 
its surface can be easily functionalized to vary its affinity 

toward analytes and solvents [19–21]. Apart from this, 
the porous structure of paper enables its application to 
microfluidics [22, 23], whereas its mechanical properties 
present unique opportunities for the collection of real-
world samples [24]. Most importantly, the above-listed 
features can be achieved without sacrificing the sensitiv-
ity of the SERS technique, with a satisfactory enhance-
ment factor (EF) ranging from 105 to 108 [18, 25, 26].

Gold and silver nanoparticles have been largely uti-
lized as agents to enhance the Raman scattering in SERS 
mainly because of their stability and excellent enhance-
ment properties [27, 28]. Metal nanoparticles can be fab-
ricated via self-assembly [29], ink-jet printing [25], the 
deposition of presynthesized colloidal metal nanopar-
ticles [30], surfactant-free synthesis [31], silver-complex 
ink [32], etc. Nevertheless, any alternative approach that 
would entail a more facile yet still efficient procedure 
devoid of disadvantages such as the cost and operating 
time remains attractive and worthy of investigation.

Here, we report a cost-effective, easy-to-operate, and 
environmentally friendly method for the in situ fabrica-
tion of a SERS substrate. The method exploits the self-
assembly of a bCP in a single microdroplet to form a thin 
organic film doped with silver nanoparticles (AgNPs) 
on a paper surface for the first time. While numerous 
reports discuss the self-assembly of bCP in droplets, 
these droplets typically consist of emulsion or microflu-
idic droplets within a stable system [33–35]. We managed 
to achieve the use of exceptionally low volumes of com-
ponents in the microliter range such that the entire self-
assembly process occurs within the air/liquid interface 
of a single droplet deposited on paper substrate (Fig. 1a). 
This method does not require the preparation of colloi-
dal metal nanoparticles prior to the fabrication, thereby 
avoiding complications related to their preparation and 
storage [36]. Wax-patterned office paper was used as a 
substrate because of its rough surface, availability, and 
biodegradability. The denser structure of the office paper 
compared to Whatman No.1 filter paper allowed the con-
tact angle of the droplet to be increased, thus resulting in 
uniform fabrication devoid of the notorious “coffee ring” 
effect [37]. More importantly, the results showed that 
the bCP has a double function. The first is to promote 
the self-assembly of silver-loaded films, and the second 
is the stabilization of the microdroplet. These conditions 
led to the formation of uniform silver nanospheres with 
an average size of 47.5 nm. SERS measurements of rho-
damine 6G (R6G) demonstrated that the developed sub-
strates have good reproducibility in terms of reaching 
their limit of detection of 48.9 pM. The practicability of 
the developed sensor was demonstrated by using it for 
the detection of the emerging environmental pollutants 
sildenafil (SD) and flibanserin (FLBN) with calculated 
limits of detection of 1.48 nM and 3.45 nM, respectively.
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2  Methods/Experimental
2.1  Materials
Poly(styrene-b-2-vinyl pyridine) (Mn: 110,000-b-12,500) 
was purchased from Polymer Source, Inc. (Canada). Sil-
ver nitrate (AgNO3, ≥ 99.0%) was acquired from Sigma 
Aldrich. Sodium borohydride (NaBH4, ≥ 99.0%) was 
purchased from Fluka Analytical. Rhodamine 6G (99%) 
was purchased from Acros Organics. Sildenafil citrate 
(HPLC grade, > 98.0%) and flibanserin (HPLC grade, 
> 97.0%) were purchased from Tokyo Chemical Indus-
try (TCI chemicals, Japan). Dimethylformamide (ACS 
grade, 99.8+ %) was purchased form Alfa Aeser. Chlo-
roform (99%) was purchased from Samchun Chemical 
(South Korea). Conventional office paper (A4|75 g m− 2) 
was purchased from Hansol Copy, South Korea. Ultra-
pure water purified by the Milli-Q water purification sys-
tem (Millipore Corp., MA, USA) was used throughout 
the experiments. All reagents were used without further 
purification or modification.

2.2  Instrumentation
SERS measurements were performed on an EnSpectr 
R532-50 Enspectr Portable Raman Luminescent Spec-
trometer probe (Enhanced Spectrometry Inc, 560 South 
Winchester Blvd, #500 San Jose, USA) equipped with a 
532-nm wavelength laser and a Jasco NRS-3300 Micro/
Macro Raman spectrophotometer with a 532-nm 
laser. The morphology of the paper surface was stud-
ied by examining FE-SEM images captured with a CZ/
MIRA I LMH microscope (Czech Republic). UV-Vis 
absorbance measurements were conducted on a V-670 

spectrophotometer (Jasco Inc.). Contact angle of drop-
lets were estimated using software ImageJ and “Con-
tact_Angle” plugin. X-ray diffraction (XRD) was carried 
out on a Bruker D8 Discover diffractometer with Cu Kα 
radiation (λ = 0.1542  nm). Samples were fixed to a glass 
substrate for the analysis.

2.3  Fabrication of plasmonic nanohybridized paper 
substrate
Wax-patterned multi-well paper sheets with designed 
hydrophilic wells with diameters of 4  mm were printed 
on a Xerox ColorQube 8570DN PS (Xerox Corporation 
Wilsonville, 97,070, OR, USA). The solid wax ink was 
deposited twice to increase the water-resistance of the 
wax barriers on the 200 × 200  mm A4 (210 × 297  mm) 
printing paper sheets (Hansol Paper, Jung-gu, Seoul, 
Korea). The paper sheets were wrapped in aluminum foil 
and placed on a hot plate (Daihan Scientific Co., Ltd.) for 
30 s at 100 °C to melt the wax to allow for the thorough 
distribution thereof over the cellulose fibers of the paper, 
after which the diameter of the wells was reduced from 
the initial 4 mm to 1.5 mm.

In a typical experiment, 4 µL of AgNO3 of the desired 
concentration was drop-casted into the wells with a 
micropipette to form a droplet that occupies the entire 
surface of each well. Then, 2 µL of bCP dissolved in 
dimethylformamide (DMF) and chloroform (CHCl3) 
(0.1  mg mL− 1; VDMF/VCHCl3 = 3/2) was slowly injected 
into each droplet using a microsyringe. The paper sub-
strate was then placed in the oven for 10  min at 30  °C 
to allow the solvents to gently evaporate. Evaporation 

Fig. 1  Schematic illustration of the preparation of an organic film containing silver nanoparticles at the microliter scale via the self-assembly of 
poly(styrene)-b-poly(vinyl pyridine) copolymer molecules at the air-liquid interface. (a) FE-SEM images of nanohybridized paper-substrate fabricated 
with 0.1 mg mL− 1 of bCP and 0.05 M AgNO3 at three different magnifications (b, c, and d). Inset: histogram presenting the size distribution of the silver 
nanoparticles
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of the solvent led to the formation of a thin copolymer 
film, the existence of which was divulged by the observed 
reflection of room light from the surface of the wells. 
Next, the paper substrate was immersed in an aqueous 
solution of NaBH4 (0.01 M) for 30 min. The color of the 
wells changed to dark yellow as a result of the reduction 
of the Ag+ to form AgNPs. Finally, the paper substrate 
was dried in the vacuum oven for 10  min at 65  °C and 
used immediately or within 48  h, during which time it 
was kept at 4  °C in glass vials filled with nitrogen and 
wrapped with aluminum foil.

2.4  SERS measurements
SERS measurements were conducted on a R532-50 
Enspectr Portable Raman Luminescent Spectrometer 
probe using a wavelength of 532 nm, a Raman shift range 
of 109 − 4050  cm− 1, and an integration time of 30  s. In 
a typical experiment, 5 µL of the analyte (R6G, SD, and 
FLBN) in different concentrations were drop-casted 
into the wells of a paper substrate flushed with nitro-
gen and allowed to dry in the vacuum oven for 15 min. 
The Raman spectra of the analyte samples were col-
lected across the entire well area. The experiments were 
repeated three times with different batches.

The SERS mapping technique was exploited to reveal 
the occurrence of molecular binding events between the 
SERS-sensitive area of the substrate and R6G. SERS sig-
nals were collected over a detection area of 30 × 30  μm 
with a laser spot size of 3 μm.

3  Results and discussion
3.1  Characterization of plasmonic nanohybridized paper 
substrate
The ability of block copolymers to form molecular assem-
blies in solution at the air-liquid interface is utilized to 
fabricate a thin organic film doped with silver nanopar-
ticles (AgNPs) on the surface of the paper (Fig.  1a). 
Considering the porosity and surface roughness of the 
paper substrate, the morphology and distribution of the 
self-assembled AgNPs@film were studied by acquiring 
FE-SEM images (Fig.  1b-d). The FE-SEM micrographs 
revealed the formation of AgNPs with a size distribution 
of 47.5 nm and their close proximity to each other on the 
paper superficies.

EDS mapping (Figure S1a and S1b) further confirmed 
the uniform distribution of the spherical AgNPs across 
the surface of the paper substrate in close proximity to 
each other. In addition, the more negligible porosity of 
the office paper (49%) resulted in the retention of par-
ticles close to the surface [38]. As anticipated, FE-SEM 
analysis of the nanohybridized plasmonic paper fabri-
cated with lower concentrations of AgNO3 revealed lesser 
coverage of the paper surface with AgNPs, indicating that 
the concentration of precursors in a typical experiment is 

optimal for the pattern size (Figs. 1 and S1c-e). Interest-
ingly, the lowest tested concentration of AgNO3 (0.01 M) 
resulted in the formation of non-uniformly aggregated 
nanoparticles on the surface of cellulose, whereas higher 
concentrations of AgNO3 resulted in a more even distri-
bution and greater coverage of the surface of the cellu-
lose fibers. Subsequently, we examined the effect of the 
bCP concentration on the formation of hybridized plas-
monic paper, as shown in Fig. 2a and the supplementary 
video. Typically, the injection of DMF/CHCl3 contain-
ing bCP into the aqueous solution of AgNO3 resulted in 
mass transfer and self-assembly of the film with different 
structures imposed by the concentrations of the compo-
nents. However, at the microdroplet scale, the variation 
of the bCP concentration directly influences the stability 
of the droplet. Specifically, the injection of a lower con-
centration of bCP decreased the stability of the drop-
lets, whereas the injection of DMF/CHCl3 without bCP 
resulted in the immediate destruction of the droplet. FE-
SEM images and droplet stability studies confirmed that 
the most suitable concentration of bCP and AgNO3 was 
0.1  mg mL− 1 and 0.05  M, respectively. After treatment 
with NaBH4, the films were subjected to XRD analysis 
to ensure that the reduction of silver ions to AgNPs was 
successful, as shown in Figure S2. The cellulose lattice 
planes (110), (200), and (004) are responsible for the dif-
fraction peaks at 2θ = 16.2°, 22.6°, and 35.9°, respectively. 
Weak diffraction peaks at 2θ = 29.7°, 36.1°, 39.6°, 43.3°, 
47.8°, and 48.7° correspond to the (104), (110), (013), 
(020), (018), and (116) planes of CaCO3, which is found 
in standard office paper [25]. The peaks at 2θ = 44.4°, 
64.5°, and 77.6° are ascribed to the (111), (200), (220), and 
(311) planes of the AgNPs, respectively.

To further investigate the most suitable ratio of com-
ponents for the fabrication of nanohybridized plasmonic 
paper, we investigated the Raman enhancement for each 
substrate using R6G as the target analyte. As shown in 
Fig. 2b, the SERS intensity increases with increasing con-
centration of the precursors until it reaches a threshold 
beyond which the SERS signals disappear. For bCP, that 
limit was at the concentration of 0.1 mg mL− 1, at which 
the SERS intensity exceeded that of 0.05 mg mL− 1 more 
than threefold, whereas SERS signals were not obtained 
at 0.2  mg mL− 1. In this way, the optimal concentration 
of AgNO3, the precursor agent of the AgNPs, was deter-
mined to be 0.05 M. This can be attributed to the aggre-
gation of AgNPs when a high concentration of AgNO3 is 
utilized, thus preventing the formation of hot spots. In 
contrast, the excess bCP might cover the surfaces of the 
AgNPs too thoroughly, thus restricting the attachment of 
R6G molecules to the AgNPs and preventing them from 
reaching the localized surface plasmon resonance areas. 
The particles appeared to be spherical and sporadically 
with small, truncated corners, which is likely owing to 
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the involvement of bCP in the formation of the particles 
and the porous structure of the paper. This feature, in this 
regard, might be beneficial for SERS: the edged structure 
of metal nanoparticles leads to the more efficient forma-
tion of localized surface plasmons.

Classification of the developed substrate as reliable to 
enhance Raman signals requires the plasmon resonance 
spectrum to be separate from the charge transfer and 
absorption spectra. This is because plasmonic materials 
support electromagnetic SERS enhancement, whereas 
excitation via the chemical enhancement mechanism 
of charge transfer alone does not result in the con-
ventional EF of SERS [28]. The absorption peak of the 
paper substrate on which the AgNPs is deposited is cen-
tered at about 400 nm, which is in accordance with data 
reported elsewhere for AgNPs (Fig. 2c). However, a broad 
absorption extending to higher wavelengths is contrib-
uted by the edged structure of the nanoparticles and is 
more closely associated with dipole plasmon resonance. 
Despite the possibility that the wavelength of the lasers 
used in the Raman experiments might cause fluorescence 

emission of the office paper samples, this fluorescence 
was quenched by the deposition of the AgNPs@bCP thin 
film. Thus far, this phenomenon has been explained in 
terms of Förster resonance energy transfer because of the 
presence of the deposited metal nanoparticles [38]. The 
deposited nanoparticles would also shield any fluores-
cence originating from the paper material.

The fact that electromagnetic enhancement plays a 
more significant role in SERS than chemical enhance-
ment has been proven experimentally to date [28]. Suc-
cessful SERS detection mainly depends on the interaction 
between the adsorbed molecules and plasmonic nano-
structures. The presence of the pyridinic nitrogen atom 
in each bCP unit creates favorable conditions for the 
interaction of the substrate with analytes bearing any 
type of group capable of undergoing hydrogen bonding 
[39]. This feature was expected to contribute to achieving 
more prominent EFs inevitably.

Fig. 2  Effect of bCP concentration on microdroplet stability (a), components concentration-dependent variation in the SERS intensities (1 × 10− 6 M of 
R6G) (b), UV-Vis absorbance spectra of bare office paper and nanohybridized paper substrate (c), and SERS spectra of R6G on nanohybridized plasmonic 
paper substrate (d)
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3.2  Stability and contact angle of microdroplet
The stability of the microdroplet during the injection 
of bCP in DMF/CHCl3 was strongly dependent on the 
concentration of bCP. The effect of bCP on the stabil-
ity of the microdroplet contact angle was further eluci-
dated by comparing aqueous AgNO3 droplets injected 
with pure DMF/CHCl3 solution with those injected with 
bCP (Fig. 3). As a reference, an aqueous AgNO3 droplet 
injected with the same quantity of DI water was used. 
All three droplets were deposited on the wax-printed 
paper, which served as a hydrophobic surface. The refer-
ence droplets had an average contact angle of θ = 107.72°, 
whereas the droplet injected with DMF/CHCl3 had an 
average contact angle of θ = 74.97°. The observed decrease 
in the contact angle was induced by adding DMF/CHCl3 
with a lower surface tension. The dissolution of bCP in 
DMF/CHCl3 increases the surface tension of the result-
ing blend, thus resulting in a droplet with a higher con-
tact angle (Figs.  3 and S3). Moreover, the migration of 
bCP to the liquid/air interface allows the formation of a 
film that further stabilizes the microdroplet.

3.3  SERS performances of the nanohybridized plasmonic 
paper substrate and spot-to-spot reproducibility
The morphological analysis confirmed that the signifi-
cant Raman signal enhancement and good reproduc-
ibility are attributable to the favorable formation of the 
metal nanoparticles, which efficiently promote the gen-
eration of “hot spots” and propagation of surface plas-
mon resonances. As shown in the FE-SEM micrographs, 
along with the small interparticle distance, the pres-
ence of some irregular protrusions on the surfaces of 

the nanoparticles might contribute to the enhancement 
of the electromagnetic field. The SERS characteristics of 
the plasmonic paper substrate were investigated by using 
R6G (Fig. 2d). Overall, the characteristic Raman peak at 
611 cm− 1 for R6G was selected to determine the EF, cal-
culated to be 1.2 × 107. However, to obtain a reliable sen-
sor, the “hot spots” should be uniformly distributed to 
ensure that a stable Raman signal is detected from differ-
ent locations.

Quantitative SERS detection can be achieved when the 
analyte concentration changes in a predictable manner 
[40]. This necessitated an examination of the distribu-
tion of the “hot spots” via SERS mapping with a laser spot 
size of ∼ 1 μm. This involved performing SERS measure-
ments over a 10 × 10 μm area on the plasmonic nanohy-
bridized paper substrate (Fig.  4a-d). The SERS mapping 
technique revealed notable signals at R6G concentrations 
of 1 × 10− 6 M and below. Furthermore, the probability of 
detecting noticeable SERS signals with 1 × 10− 6 M of R6G 
was determined to be equal across the substrate, indicat-
ing that the developed system is devoid of the notori-
ous “coffee ring” effect associated with SERS substrates 
consisting of conventional paper (Fig.  4a). The random 
selection of ten spots to determine the uniformity of the 
SERS signal intensity led to the observation that the vari-
ance in data was not significant, with the RSD calculated 
to be 2.49% (Fig.  4b). As anticipated, the probability of 
observing stable SERS signals decreased when the con-
centration of R6G was lowered to 1 × 10− 9 M (Fig. 4c). At 
this concentration, much weaker SERS signals and sig-
nificant fluctuation of the signal intensity were observed. 
As shown in Fig. 4d, the RSD of the SERS intensities of 
the 611  cm− 1 band of R6G (1 × 10− 9 M) among the ten 
random AgNP spots was 10.95%. To the best of our 
knowledge, the developed plasmonic paper has excellent 
spot-to-spot reproducibility for detecting R6G at a con-
centration of 1 × 10− 6 M.

3.4  Sensitivity of nanohybridized plasmonic paper
To determine the sensitivity, SERS spectra of nanohy-
bridized paper treated with 5 µL R6G droplets with con-
centrations ranging from 10− 9 to 10− 6 M were recorded 
on the portable Raman spectrometer, as shown in Fig. 4e. 
During the experiments, the major peaks were neither 
observed to shift nor did their Raman intensity change. 
The limit of detection (LOD) and limit of quantification 
(LOQ) of R6G using the nanohybridized paper sensor 
were estimated by conducting a linear fitting of the SERS 
intensities versus the log R6G concentration, as shown in 
Fig.  4f. The calibration curve has excellent linearity for 
the studied concentrations of R6G ranging from 10− 9 to 
10− 6 M with a correlation coefficient of 0.99. The LOD 
and LOQ of R6G using the developed plasmonic paper 

Fig. 3  The contact angle of aqueous AgNO3 droplet (left) injected with DI 
water, (middle) injected with 0.1 mg mL− 1 bCP in DMF/CHCl3, and (right) 
injected with DMF/CHCl3. Inset: photographs of droplets corresponding 
to each case deposited on the wax-patterned paper
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sensor were estimated to be 48.9 pM and 0.16 nM, 
respectively.

The analytical performance of recently reported paper-
based plasmonic substrates used for R6G detection was 
collected from the literature and compared to the results 
of the current study (Table 1). The sensitivity of our paper 
substrate is comparable to or exceeded that of previous 
research, but its spot-to-spot reproducibility is substan-
tially superior.

3.5  Detection of SD and FLBN using nanohybridized 
plasmonic paper
As proof of concept, two emerging pollutants, SD and 
FLBN, were chosen as target analytes. SD is a phospho-
diesterase-5 inhibitor (PDE-5i), which was originally 
developed to treat ischemic heart disease, pulmonary 
hypertension, and altitude sickness, but has since gained 

the reputation for treating erectile dysfunction (ED) [41, 
42]. Illegal use as an ingredient [43] and the accessibil-
ity of generics [44], which are sold without a proper pre-
scription, resulted in leakage into the water environment. 
Recently, Kim’s group reported that the concentrations 
of SD in local sewage treatment plants before and after 
purification were alarmingly high, especially on weekends 
[45]. Moreover, the results showed that the efficiency of 
biological nutrient removal (BNR) systems—the modi-
fied Ludzack-Ettinger (MLE; anoxic/oxic) and the A2/O 
(anaerobic/anoxic/oxic) processes—for the elimination of 
SD was alarmingly low. This reality prompted us to inves-
tigate the ability of the nanohybridized plasmonic paper 
we developed to quantitatively detect SD. We dropped 
5 µL of solutions of SD with concentrations ranging 
from 10− 4 M to 10− 8 M in DI water onto the prepared 
substrate and recorded the Raman spectra, as shown in 

Table 1  Comparison of SERS parameters with other paper-based plasmonic substrates
Substrates Enhancement factor (EF) LOD (M) Spot-to-spot reproducibility 

(RSD)
Ref

AgNPs on A4 paper and AgNPs on Al foil 6.72 × 107 and 1.03 × 108 26.3% and 12.1%  [48]
Graphene oxide/ AgNPs on bacterial NFC nanopaper - 0.13 × 10− 9 21%  [49]
AgNPs@filter paper 1.8 × 108 1.2 × 10− 9 16.73%  [50]
Grape skin-AuNPs/GO based paper SERS 1.92 × 109 for GE-AuNPs/GO 

and 5.8 × 104 for GE-AuNPs
7.33 × 10− 11 9.6%  [51]

AgNPs inkjet printed on chitosan@paper 7.4 × 108 1.07 × 10− 11 4.5%  [25]
Amphiphilic polymer self-assembled film containing AgNPs 
on office paper

1.2 × 107 4.89 × 10− 11 2.49% for 1 × 10− 6 M R6G and 
10.95% for 1 × 10− 9 M

This 
work

Fig. 4  SERS mapping result of R6G at 611 cm− 1 extracted from 1 × 10− 6 M aqueous solutions (a,b) and from 1 × 10− 9 M aqueous solutions (c,d). RSD for 
aqueous solutions of rhodamine 6G (R6G; 1 × 10− 6 M and 1 × 10− 9 M) were 2.49% and 10.95%, respectively. SERS spectra of R6G obtained by varying the 
concentration of R6G (front to back: 10− 9, 10− 8, 10− 7, 10− 6, 10− 5 M) on the nanohybridized paper substrate (e). Relationship between the intensity of the 
band at 610 cm− 1 and the log concentration of R6G. Inset: linear equation, LOD, and LOQ (f)
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Fig. 5a. The characteristic Raman peaks of SD appeared 
with a slight shift in the SERS peaks compared to the 
Raman peaks of SD powder (Figure S7a and Table S1). As 
shown in Fig. 5b, the calibration curve exhibits excellent 
linearity for the tested SD concentrations ranging from 
10− 4 to 10− 8 M, with a correlation value of 0.99. The esti-
mated LOD and LOQ of SD utilizing the developed sen-
sor were 1.48 nM and 2.76 nM, respectively.

On the other hand, FLBN is the only drug approved 
by the US Food and Drug Administration (USFDA) for 
treating hypoactive sexual desire (HASD), found in 7% 
of premenopausal women [46, 47]. The performance of 
the developed SERS substrate with respect to detecting 
FLBN was investigated by twice dropping and drying 5 
µL of FLBN solutions with concentrations ranging from 
10− 4 M to 10− 8 M, as shown in Fig.  5c. The character-
istic Raman peaks of FLBN are detected with the SERS 
spectra slightly shifted compared to the Raman spectra of 
FLBN powder (Figure S7b and Table S2). The calibration 
curve of FLBN concentrations ranging from 10− 4 to 10− 8 
M had good linearity with a correlation value of 0.97, as 
shown in Fig. 5d. The LOD and LOQ of FLBN using the 
nanohybridized plasmonic paper were estimated to be 
3.45 nM and 7.45 nM, respectively.

In the evolving landscape of analytical techniques 
for pharmaceutical compounds, the developed sens-
ing device based on SERS represents a significant 

advancement, particularly in the detection of FLBN 
and SD. The sensitivity of the developed SERS substrate 
demonstrated comparable, if not superior, performance 
relative to the established gold standard of chromatog-
raphy-tandem mass spectrometry for analyzing FLBN, 
as shown in Table  2. Moreover, this method requires 
more complex setups and requires well-trained staff. On 
the other hand, other methods, such as spectrofluorim-
etry have also been used for sensing FLBN but showed a 
lower sensitivity, as shown in Table 2.

However, it’s important to acknowledge that our devel-
oped SERS substrate does not exhibit the same level of 
selectivity as some alternative SERS substrates modified 
for specific targets, notably those leveraging molecular 
imprinting or immunoassays. These techniques benefit 
from a high degree of specificity towards target mol-
ecules, a feature currently less pronounced in the devel-
oped SERS substrate. Despite this, the primary objective 

Table 2  Comparison of reported sensing methods for FLBN and 
SD
Method Target LOD (M) Ref
HPLC-Mass spectrometry (MS) FLBN 1.8 × 10− 8 [52]
HPLC- diode array detector (DAD) FLBN 6.4 × 10− 8

HPLC-Charger aerosol detector (CAD) FLBN 1.3 × 10− 6

Spectrofluorometric FLBN 1.0 × 10− 7  [53]
Voltammetry SD 5.5 × 10− 8  [54]

Fig. 5  SERS spectra of SD (a,b) and FLBN (c,d) obtained by varying the concentration (front to back: 10− 8, 10− 7, 10− 6, 10− 5, 10− 4 M) on the nanohybrid-
ized paper substrate
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of this research was to pioneer novel, cost-effective, and 
simplified methodologies for SERS substrate fabrication 
based on the self-assembly of bCP in microdroplet.

4  Conclusions
In summary, the self-assembly of block-copolymers 
(bCPs) at the air-liquid interface to form an organic film 
is an attractive feature. We took advantage thereof to 
develop an ultrasensitive detection method based on a 
SERS substrate in the form of a paper surface deposited 
with the film doped with silver nanospheres. An unprec-
edentedly low volume of components was utilized such 
that the entire fabrication process occurred on the scale 
of a single microdroplet stabilized by the bCP. FE-SEM 
micrographs revealed that, with the assistance of self-
assembled copolymer film, AgNPs were formed with an 
average size of 47.5  nm and small, truncated corners. 
These morphological features of the AgNPs endowed the 
paper surface with plasmonic properties and leveraged 
the efficient generation of “hot spots.” The sensitivity of 
the designed nanohybridized plasmonic paper substrate 
was investigated by recording the SERS profiles of aque-
ous solutions of R6G. The generated electromagnetic field 
enhancement yielded an EF of 1.2 × 107 and LOD of 48.9 
pM for R6G. The analysis of two emerging pollutants, SD 
and FLBN, which was performed as proof of concept, 
showed that the nanohybridized plasmonic paper deliv-
ered excellent analytical performance. The LODs of SD 
and FLBN were estimated to be 1.48 nM and 3.45 nM, 
respectively. The novel approach has the advantage of 
allowing additional steps, such as synthesizing colloidal 
nanoparticles, to be bypassed during the preparation of 
the ultrasensitive and reproducible SERS substrate.
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