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Abstract

diagnosis.

Liquid biopsy has emerged as a promising non-invasive strategy for cancer diagnosis, enabling the detection of vari-
ous circulating biomarkers, including circulating tumor cells (CTCs), circulating tumor nucleic acids (ctNAs), circulating
tumor-derived small extracellular vesicles (sEVs), and circulating proteins. Surface-enhanced Raman scattering (SERS)
biosensors have revolutionized liquid biopsy by offering sensitive and specific detection methodologies for these bio-
markers. This review comprehensively examines the application of SERS-based biosensors for identification and analy-
sis of various circulating biomarkers including CTCs, ctNAs, sEVs and proteins in liquid biopsy for cancer diagnosis.
The discussion encompasses a diverse range of SERS biosensor platforms, including label-free SERS assay, magnetic
bead-based SERS assay, microfluidic device-based SERS system, and paper-based SERS assay, each demonstrating
unique capabilities in enhancing the sensitivity and specificity for detection of liquid biopsy cancer biomarkers. This
review critically assesses the strengths, limitations, and future directions of SERS biosensors in liquid biopsy for cancer

1 Introduction

Cancer, a multifaceted heterogeneous disease, demands
precise diagnostic methodologies to guide effective treat-
ment strategies. Conventional diagnostic methods, while
valuable, often require invasive procedures and are not
favorable for multiple sampling to reflect the dynamic
changes of tumor progression. Liquid biopsy, by contrast,
harnesses the unique biomolecular signatures shed by
tumors into body fluids, providing real-time, minimally
invasive insights into the tumor’s molecular landscape
[1-3]. This transformative approach involves the analy-
sis of circulating tumor cells (CTCs), circulating tumor
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nucleic acids (ctNAs), circulating small extracellular
vesicles (sEVs), and circulating proteins as biomarkers,
offering insights into tumor dynamics and aiding in per-
sonalized therapeutic interventions.

CTCs are cancer cells that have detached from a pri-
mary tumor and intravasated into the peripheral blood-
stream during the process of cancer metastasis [4, 5].
CTCs were first discovered in the blood of a man with
metastatic cancer by Thomas Ashworth in 1869 [6, 7].
However, CTCs have been increasingly studied only
since the mid-1990s, with the development of new iso-
lation and detection techniques [8]. The CellSearch Sys-
tem (Janssen Diagnostics) is the first FDA-approved
system for clinical CTCs detection in breast, colorectal,
and prostate cancer patients [9]. The prognostic value of
CTCs has also been demonstrated in patients with blad-
der, head and neck, and pancreatic cancer [10]. The detec-
tion of CTCs poses significant challenges due to multiple
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factors, including i) extraordinary rarity with approxi-
mately 1 to 100 CTCs per milliliter of blood, making their
isolation and detection among 5 billion erythrocytes and
10 million leukocytes a daunting task [8, 11, 12]; ii) heter-
ogeneity of CTCs exhibiting significant variations in sur-
face marker expression, complicating the identification
and characterization of CTCs [13, 14]. ctNAs include cir-
culating tumor DNA (ctDNA) and microRNA (miRNA).
ctDNAs are released from tumor cells under apoptosis,
necrosis, or active release thus reflecting molecular, phe-
notypic or genetic changes in the tumor tissue [15-17].
miRNAs are non-coding small RNA molecules and are
known for their role in promoting tumor progression and
metastasis through inhibition of tumor suppressor genes
as well as the genes engaged in cell apoptosis and differ-
entiation [18]. Since ctNAs may reflect systemic disease
and are more abundant than CTCs, the analysis of ctNAs
could serve as a better measure of tumor burden and
heterogeneity with higher sensitivity and specificity than
analysis of solid tumors and CTCs [15]. sEVs, also called
exosomes, are nanoscale phospholipid bilayer membrane
vesicles released from cells with diameter < 200 nm [19,
20]. Due to their diverse origin (secreted by almost all
types of cells) and excellent stability in the body fluid,
cancer-derived sEVs have emerged as potential non-
invasive biomarkers in liquid biopsy for the diagnosis and
treatment of diseases [21, 22]. Circulating proteins from
serum or plasma can be used as non-invasive biomarkers
for cancer diagnosis, and the changes in protein expres-
sion levels and protein structures may indicate genomic
mutations and reflect disease progression [23]. The
detection of circulating proteins has been used in various
ways, such as screening, diagnosis, monitoring treatment
response, and detecting recurrence [24, 25].

The effective utilization of liquid biopsy biomarkers
relies on sensitive and specific detection methodologies,
propelling the advancement of surface-enhanced Raman
scattering (SERS) biosensors. SERS is a powerful spec-
troscopic technique that enhances the Raman scattering
signal of molecules adsorbed on or near nanostructured
metal surfaces [26]. The enhancement is predominantly
attributed to the localized surface plasmon resonance
(LSPR) effect, which occurs when noble metal nanopar-
ticles, such as gold or silver, interact with incident light
[27]. SERS assays have aroused considerable attention
due to their unparalleled sensitivity and specificity in
detecting molecular fingerprints of various cancer-asso-
ciated biomarkers. The advantages of SERS-based bio-
sensors include i) extraordinary sensitivity, often allowing
for the detection of molecules at extremely low concen-
trations [28]; ii) high specificity via functionalization
of SERS substrates with specific ligands, antibodies, or
aptamers, ensuring selective binding to target molecules
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[29]. This specificity is crucial for accurately identifying
and distinguishing between different analytes, making
SERS well-suited for biosensing applications; iii) high
multiplexing capability, allowing for the simultaneous
detection of multiple analytes in a single experiment [14,
30]. By using different SERS substrates functionalized
with specific recognition elements, multiplexed analysis
is achievable, providing comprehensive information in
a single measurement; iv) non-invasive sampling, allow-
ing for the detection of biomarkers without the need for
invasive procedures; and v) real-time and rapid analysis,
making it suitable for dynamic processes and time-sensi-
tive applications. This feature is valuable in fields such as
pharmacology, environmental monitoring, and point-of-
care diagnostics [9, 31, 32]. Therefore, SERS application
in liquid biopsy holds promise for revolutionizing cancer
diagnostics by offering rapid, multiplexed, and non-inva-
sive detection capabilities.

This review thus aims to comprehensively explore the
recent developments and applications of SERS biosen-
sors in liquid biopsy for cancer diagnosis. Four distinct
types of SERS assay, including label-free, magnetic bead
(pull-down), microfluidic device, and paper-based assays,
are discussed in detail. Each type of assay exhibits unique
attributes, ranging from enhanced capture efficiency
to portable diagnostic capabilities, contributing to the
diversification and optimization of liquid biopsy meth-
odologies. We endeavor to elucidate the significance of
liquid biopsy in cancer diagnosis and treatment manage-
ment, outline the existing methodologies employed in
liquid biopsy, explain the rationale behind the utilization
of SERS assays, and critically analyze the recent advance-
ments in SERS biosensors. Moreover, the specific focus
is on delineating the distinct attributes and potential
clinical implications of the four types of SERS assay in the
realm of liquid biopsy for cancer diagnosis. By integrat-
ing the diverse facets of liquid biopsy, SERS technology,
and innovative assay designs, this review aims to offer
insights into the evolving landscape of cancer diagnostics
and the transformative potential of SERS biosensors in
enhancing precision medicine.

2 Label-free SERS assay

Label-free SERS assay (also called direct-SERS assay) uti-
lizes the intrinsic Raman spectrum of the analyte rather
than labelling the analyte with Raman molecule to dis-
cern disease-associated biomarkers [33]. Figure 1 illus-
trates the working scheme of label-free SERS assay in
liquid biopsy for cancer diagnosis. Noble metal nanopar-
ticles, particularly gold nanoparticles (AuNPs) and silver
nanoparticles (AgNPs), are frequently utilized as SERS
substrates due to their strong plasmonic properties [34].
Spherical AuNPs display a robust plasmon resonance
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Fig. 1 Scheme of label-free SERS assay for liquid biopsy detection. Analyte including CTCs, ctNAs, sEVs and proteins attached to the SERS substrate
(such as AuNP) to generate inherent Raman spectra of the analyte, which could be analyzed by machine learning algorithms for cancer detection

within the visible to near-infrared (NIR) range, typically
around 520—550 nm [35]. This resonance makes Au an
excellent choice for applications that necessitate exci-
tation at visible wavelengths. Other materials, such as
copper, aluminum, and lead, also exhibit plasmon reso-
nance within the visible to NIR region and can be used
as SERS substrate [36]. The morphology of the SERS sub-
strate also holds a crucial role in SERS enhancement. The
wavelength of the localized surface plasmon resonance
for metal can be tuned by modifying the size, shape, and
the dielectric layer of the nanoparticles [9]. The analyte
in liquid biopsy sample can be attached to SERS sub-
strate through physical adsorption and chemical bind-
ing. Physical adsorption relies on van der Waals forces,
electrostatic attractions, or hydrophobic interactions
for adhesion of analyte to the substrate [37]. Alterna-
tively, chemical binding, such as the formation of cova-
lent bonds, can be employed to create a more stable and
specific interaction between the SERS substrate and the
target [37].

In label-free SERS assay, SERS spectra of analytes pro-
vides rich fingerprint information of the analytes, indicat-
ing their molecular composition and chemical structure.
However, identification of the difference in Raman spec-
tra from complex matrix is challenging due to the poten-
tial overlapping peaks, baseline noise or intermolecular
interactions. Thus, methodologies for signal analysis with
more precision are highly demanded, where machine
learning emerges as a promising solution. A number
of algorithms, including principal component analysis

(PCA), support vector machines (SVMs), convolutional
neural networks (CNNs), distributed arithmetic (DA),
quadratic discriminant analysis (QDA), linear discrimi-
nant analysis (LDA), partial least squares-discriminant
analysis (PLS-DA), artificial neural networks (ANNs),
and random forests (RFs), have been successfully
employed to analyze Raman spectra [38]. When com-
bined with an artificial intelligence (AI) technique, SERS
allows for analysis of samples with enhanced accuracy,
effectively addressing the limitations imposed by com-
plex data. By leveraging advanced data analysis models,
Raman spectra from healthy donors and patients can be
accurately distinguished. This integration of Al and SERS
offers a powerful tool for accurate and efficient diagno-
sis, further enhancing the capabilities of liquid biopsy in
clinical applications.

2.1 CTCs

CTCs contain a complex repertoire of biomolecules,
including polysaccharides, proteins, and nucleic acids.
Given its exceptional sensitivity, SERS presents a pow-
erful analytical tool for the label-free identification of
CTCs. However, accurate identification of CTCs solely
through label-free SERS spectra is challenging, as the
spectra of CTCs typically exhibit highly overlapping
spectral features originating from diverse biomolecules
within the focal area of the laser beam [33]. Therefore,
appropriate algorithms capable of discerning subtle spec-
tral variations between different cell types for accurate
identification of CTCs are needed.
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Zhang et al. presented a study that demonstrated the
potential of an Ag film-based label-free SERS assay for
distinguishing various cells through the utilization of a
discriminant model [39]. The model was developed based
on the nucleic acid characteristic peaks of various cells,
including tumor cancer cell lines, CTCs derived from
lung cancer patient tissues, red and white blood cells.
This approach allowed for the successful discrimination
of tumor cancer cells from white blood cells, as well as
CTCs, by utilizing the characteristic peak intensity ratios
of nucleic acid.

To simplify the procedures for CTC isolation and anal-
ysis, one study presented a one-step technique based on
tailor-made membrane to isolate and enrich CTCs from
blood samples [40]. SERS-active nanoparticles (Ag-Au
alloy) on a polymer mat could enhance the Raman sig-
nals, enabling molecular and biochemical analysis of
CTCs. SERS spectra of prostate cancer cells (PC3), cer-
vical carcinoma (HeLa) cells, and leucocytes (represent-
ing healthy cells) showed distinctive differences in band
positions and intensities of the Raman spectra, thus PCA
effectively identified these key differences and achieves
accurate classification of cell types, demonstrating the
potential for efficient cancer discrimination.

In an alternative methodology, Nicinski et al. leveraged
the advantages of automation and high-throughput capa-
bilities provided by microfluidic devices to isolate and
detect CTCs in human blood [41]. The microfluidic chip
enabled efficient size-based inertial separation of CTCs,
and the SERS-active substrate (AgNPs coated with silica
shell) facilitated label-free detection and molecular iden-
tification of isolated cells. SERS analysis discerned sig-
nificant differences in molecular composition between
cancer cells (HeLa, Caki-1) and blood cells using PCA.
This innovative approach simplifies the detection of
CTCs, improving accuracy without invasiveness or cell
damage.

2.2 ctNAs
Label-free SERS technology for ctNAs detection facili-
tates the direct acquisition of Raman signals from nucleic
acids, encompassing both nucleobases and the phos-
phate/sugar backbone [42]. This capability enables direct
identification of base changes and conformational altera-
tions within nucleic acid structures. Label-free SERS has
demonstrated successful detection of single bases, point
mutations, base methylations, and structural modifica-
tions, indicating the remarkable potential of label-free
SERS as a sensitive and rapid method for ctNA detection
(43, 44].

For instance, Liu et al. successfully created positively
charged Au—Ag alloy nanostars to perform label-free
SERS detection of DNA mutations without the need
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for Raman molecule labelling. The nanostars were
utilized to distinguish between wild-type (WT) and
BRAF V600E mutant genomic DNA using statisti-
cal analysis methods known as PCA-LDA [45]. This
approach allowed for the analysis of whole genome
DNA lysed from cells. Notably, the method provided
a comprehensive DNA fingerprint with reduced analy-
sis time while achieving a low detection limit of 100
copies, which was comparable to quantitative PCR
(qPCR) but ten times more sensitive than traditional
gel electrophoresis.

In another study, Lin et al. demonstrated the label-
free SERS method for sensitive quantification of minor
changes in DNA molecules at the single nucleobase
level [42]. The proposed method detected circulating
DNA in blood and achieved the diagnostic sensitivity of
83.3% and specificity of 82.5% for differentiating naso-
pharyngeal cancer (NPC) patients from normal subjects.
This proof-of-concept study demonstrated the promis-
ing potential of the method for sensitive NPC detection
based on liquid biopsy.

Label-free SERS can also be used for RNA detection.
For example, a label-free SERS assay, coupled with a
duplex-specific nuclease (DSN) signal amplification strat-
egy, has been developed for the sensitive and quantita-
tive analysis of miRNA-21 [46]. This approach involved
utilizing magnetic beads functionalized with excess cap-
ture DNA to hybridize with the target miRNA-21 and
iodide-modified Ag nanoparticles (AgINPs) for SERS
detection. This method indicated excellent performance
for miRNA-21 detection at a lower detection limit of 42
aM. Furthermore, this strategy exhibited effective base
discrimination capability and was successfully applied to
monitor the expression levels of miRNA-21 in different
cancer cell lines and human serum.

2.3 Circulating tumor-derived sEVs

Label-free SERS, which investigates signal patterns that
can originate from either unidentified or non-interesting
substances, enables the analysis of sEVs that are challeng-
ing to differentiate using other analytical methods that
target a unique marker. Additionally, Raman spectrum of
sEVs contains abundant information regarding the chem-
ical structure, thereby offering insights into the molecu-
lar composition of SEVs.

For example, one research introduced an artificial
intelligence-based SERS strategy for label-free spectral
analysis of serum sEVs [47]. The deep learning algo-
rithm training by using SERS spectra from cancer cell-
derived sEVs demonstrated 100% prediction accuracy
for patients with different breast cancer subtypes and
did not undergo surgery. Moreover, when combined with
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similarity analysis through PCA, the approach could
effectively evaluate the surgical outcomes for distinct
molecular subtypes of breast cancer.

To investigate the clinical application of label-free SERS
for sEV detection, a large cohort of patient samples with
different cancer types were investigated using AgNPs as
SERS susbtrate [48]. SERS spectra of serum and serum-
derived sEVs from 32 patients with prostate cancer (PCa),
33 patients with renal cell cancer (RCC), 30 patients with
bladder cancer (BCa), and 35 healthy controls (HCs) were
obtained using label-free SERS assay, yielding 650 and
1206 spectra, respectively. The serum SERS-based CNN
models showed testing accuracies of 73.0%, 71.1%, and
69.2% in diagnosing PCa, RCC, and BCa, respectively.
These results showed the superior diagnostic potential of
deep learning-based SERS analysis of sEVs, providing a
novel and effective tool for the diagnosis of urologic can-
cer, outperforming serum-based SERS analysis.

Additionally, Shin et al utilized deep learning-based
SERS assay of sEVs, and achieved an accurate diagnosis
of early-stage lung cancer [49]. Analyzing 43 patients,
including those at stages I and II, the deep learning model
predicted a significant similarity between plasma sEVs
and lung cancer cells-derived sEVs in a substantial pro-
portion of patients. This similarity correlated with can-
cer progression, and notably, the model predicted lung
cancer with a high area under the curve (AUC) of 0.912
for the entire cohort and 0.910 for stage I patients. These
findings underscored the immense potential of combin-
ing sEVs analysis and deep learning for early-stage liquid
biopsy of lung cancer.

More recently, Liu et al. applied an Au nanopyramid
array as the SERS substrate which could boost a high
density of hot spots with SERS enhancement factor over
10'° to obtain composition information from Raman-
active bonds inside sEVs [50]. A machine learning-based
spectral feature analysis algorithm was developed to
distinguish cancer-derived sEVs from non-cancer sub-
populations objectively. The algorithm demonstrated
prediction accuracies of 90%, 85%, and 72% in tissue,
blood, and saliva, respectively. A cross-validation method
was conducted to evaluate the performance of a diagnos-
tic or prognostic model and assess the clinical potential,
where excellent predictive accuracy was indicated by the
high AUC in ROC analysis. Furthermore, this study pro-
posed a way to trace the biogenesis pathways of patient-
specific sEVs from tissue to blood to saliva by comparing
the SERS fingerprints of individual vesicles.

2.4 Circulating tumor-related proteins

Label-free SERS stands as a prominent approach for the
detection and in-depth characterization of proteins. This
technique affords comprehensive structural insights into
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proteins by revealing vibrational details from crucial ele-
ments such as amide groups, amino acids, and protein
cofactors, including heme and flavins, under physiologi-
cal conditions. Notably, label-free SERS is not limited
by the protein molecular mass or solubility, thus offer-
ing distinct advantages over traditional protein analysis
methods such as electrophoresis, enzyme-linked immu-
nosorbent assay (ELISA), and western blots.

For instance, Chaloupkovi et al. developed an analyti-
cal method for the parallel analysis of prostate-specific
antigen (PSA) and free PSA in whole human blood using
magnetically assisted (MA)-SERS [51]. This method was
based on magnetic Fe;O,@Ag nanocomposite func-
tionalized with anti-PSA antibody. It could distinguish
between the levels of PSA and free PSA within a single
analytical run with LOD of 0.62 ng/ml and 0.49 ng/ml for
PSA and free PSA, respectively.

Additionally, Liu et al. used label-free SERS technology
combined with AgNPs to measure and analyze peripheral
serum protein samples from patients with breast can-
cer, pre- and postoperatively, and from normal subjects
[52]. Significant differences in the serum protein’s SERS
spectra among the three groups were detected due to
the changes in certain biochemical compositions related
to breast cancer transformation. Using PCA-LDA, the
authors achieved diagnostic sensitivities of 96.7%, 53.3%,
and 100% for pre-surgery versus post-surgery, post-
surgery versus normal, and pre-surgery versus normal,
respectively.

In a short summary, the development of a label-free
SERS assay for liquid biopsy detection represents a
promising potential toward clinical translation. This
technology enables the sensitive and specific detection
of biomarkers directly from complex biological samples,
eliminating the need for labelling Raman molecules. The
key to its efficacy lies in the utilization of nanomateri-
als, such as Au and Ag nanoparticles, which amplify the
Raman scattering signal of the target analyte. By capital-
izing on surface plasmon resonance, Raman signal is sig-
nificantly boosted, thereby facilitating sensitive detection
of analytes at low concentrations. Furthermore, advance-
ments in data analysis models, including machine learn-
ing algorithms, have contributed to the improvement of
label-free SERS assays. Together with high-resolution
Raman spectrometers and sophisticated algorithms
for signal extraction and background correction, these
advancements have enabled more accurate and reliable
measurements. To provide a comprehensive overview of
label-free SERS assays for the detection of circulating bio-
markers in recent five years, Table 1 summarizes the key
information regarding assay sensitivity, SERS substrate,
sample sources, data analysis methods, assay advantages,
clinical sample details, and associated disease types. This
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table serves as a valuable resource for understanding the
current state of label-free based SERS detection tech-
niques for circulating tumor biomarkers.

Despite its promising potential, label-free SERS
still faces challenges in its journey to clinical transla-
tion, which includes overcoming background noise and
achieving reproducibility. Future research should focus
on addressing these challenges to fully harness the capa-
bilities of label-free SERS in liquid biopsy applications:
i) overcoming background noise from other untargeted
substances, which will involve significant consideration
of sample preparation to minimize the background signal;
ii) developing SERS substrates with high enhancement
factors, and stability; iii) creating advanced data analysis
tools for accurate analysis and identification of analytes
from complex SERS spectra; iv) establishing standard-
ized protocols and rigorous clinical validation methods
to ensure reproducibility and reliability of SERS assays
in clinical settings. Addressing these challenges through
collaborative efforts between researchers, clinicians, and
engineers will be key to unlocking the full potential of
label-free SERS for liquid biopsy applications.

3 Magnetic bead-based SERS assay

When combined with magnetic beads or nanoparti-
cles, SERS creates a versatile platform for the detection
of biomarkers from liquid biopsy. In the magnetic bead-
based SERS assay, SERS nanotags are employed as sen-
sors. Typically, SERS nanotags contain a SERS substrate
(plasmonic active metal colloids such as gold and silver),
Raman reporters adsorbed onto their surface, and con-
jugation with a target-specific binding molecule, e.g.,
antibodies, aptamers, or DNA probes for selective iden-
tification of the biomarkers [29]. The complexes of SERS
nanotags/biomarkers are then recognized by magnetic
beads functionalized with capture ligands to form a SERS
nanotags/biomarker/magnetic bead sandwich struc-
ture for enrichment by a magnet and the following SERS
measurement. The integration of magnetic bead with
SERS technology enhances the sensitivity, specificity, and
overall performance of liquid biopsy biomarker detec-
tion assays. This approach holds great promise for early
disease diagnosis and monitoring, especially in the field
of personalized medicine. This subsection aims to delve
into the diverse applications, methodologies, and recent
advancements in magnetic bead-based assays for detect-
ing CTCs, ctNAs, sEVs, and proteins from liquid biopsy.
The discussion will encompass various strategies involv-
ing magnetic beads functionalization, assay design, and
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their role in enhancing the sensitivity and specificity of
cancer biomarker detection. The scheme of bead-based
SERS assay is illustrated in Fig. 2.

3.1 CTCs

Magnetic beads offer a way to selectively isolate the tar-
get CTCs from numerous other blood cells by exploiting
specific interactions between the beads and the target
cells. This enrichment step can improve the sensitivity
and specificity of the SERS assay, enhancing the detection
of CTCs amongst a diverse population of blood cells. The
combination of magnetic beads with SERS-based detec-
tion was firstly reported by Sha et al. (2008), where the
bead modified with anti-EpCAM antibody and SERS
nanotags with anti-HER2 were used for specific recog-
nition of breast cancer cells in whole blood. The typical
sandwich structure (magnetic beads-CTC-SERS nano-
tags, Fig. 2A) was formed for rapid capture and detection
of CTCs in whole blood with a LOD of 50 cells/mL [66].

To improve the assay sensitivity, SERS nanotags with
improved signal enhancement were designed for CTCs
detection. For example, Ruan et al. designed the triangu-
lar silver nanoprisms (AgNPR) and superparamagnetic
iron oxide nanoparticles (SPION), both functionalized
with folic acid for capture, enrichment, and detection of
cancer cells in the blood with high sensitivity (1 cell/mL)
[67]. Notably, the captured CTCs were further released
via excessive free folic acid for cell expansion and pheno-
type identification [68].

Alternatively, modification of magnetic beads with
gold or silver-coated shell can further improve the SERS
signal due to their enhanced plasmonic properties. For
instance, Pang et al fabricated silver shell-coated mag-
netic nanoparticles functionalized with anti-ASGPR
antibody and Au@Ag nanorods functionalized with anti-
GPC3 for detection of CTCs from hepatocellular carci-
noma (HCC) [69]. Wherein, a LOD of 1 cell/mL for HCC
CTC in human peripheral blood samples was obtained
due to the dual-enhanced SERS signals between the silver
shell and the Au@Ag nanorods.

3.2 ctNAs

PCR-based assays for detecting ctNAs mutations rely on
probe-based qPCR, or targeted sequencing [70]. More
recently, droplet digital PCR has been demonstrated
to quantify mutant copies from limited DNA input in
ctNAs [71]. While accurate, these fluorescence-based
methods require expensive specialized equipment, have
limited sensitivity and multiplexing capability [30]. In the
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Fig. 2 Scheme of beads-based SERS assay for detecting circulating biomarkers, where SERS nanotags are functionalized with specific ligands,

e.g., antibodies, aptamers, or DNA probes for selective identification of the biomarkers. A CTC detection, where CTC surface markers are labelled
with SERS nanotags and magnetic beads, followed by magnetic enrichment for SERS reading. Reproduced with permission [14]. Copyright 2018,
Springer Nature. B ctNA detection, where amplicons were tagged with mutation-specific SERS nanotags and enriched using magnetic beads

for SERS detection. Reproduced with permission [30]. Copyright 2016, Ivyspring International Publisher. C sEVs detection, where molecular
phenotype profiling of sEVs were detected using SERS nanotags and capture antibody-functionalized magnetic beads. Reproduced with permission
[79]. Copyright 2020, American Chemical Society. D Protein analytes were recognized by magnetic beads functionalized with capture antibodies
and SERS nanotags for readout of SERS signal. Reproduced with permission [https://doi.org/10.1021/acssensors.9001211]. Copyright 2019,

American Chemical Society
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magnetic bead-based SERS assay, the combination of bio-
chemical (PCR) and physical (SERS) amplification allows
the assay to detect low copies of aberrant DNA from wild
type sequences, meanwhile, the magnetic beads can be
easily separated from the solution using magnetic fields
to simplify the sample preparation and washing steps.

Wee et al. reported a PCR/SERS method for multiplex
detection of clinically important melanoma DNA muta-
tions in ctDNA, by using a biotinylated reverse primer for
capture by streptavidin-coated magnetic beads (SMB),
and an allele-specific forward primer for direct hybridi-
zation to SERS nanotags. The presence of targeting
amplicons was detected by the fingerprinting spectrum
of the SERS nanotags (Fig. 2B) [30]. PCR/SERS method
showed comparable sensitivity with that of droplet digi-
tal PCR (ddPCR) yet at the convenience of standard PCR,
thus illustrating the great potential in sensitive detection
of multiple ctDNA mutations in clinical setting. Lyu et al.
further improved this PCR/SERS assay with a simple and
specific strategy by integrating asymmetric PCR with
SERS (Asy-PCR/SERS) for highly specific distinguishing
of KRAS G12V (c.35G>T) and KRAS G12D (c.35G>A)
locating at the same nucleotide on KRAS oncogene with-
out the needs of complex design and optimization of
allele-specific primers compared to that of PCR/SERS
assay [72].

DNA probe-based method is a direct and efficient
method for miRNA detection in blood samples and is
suitable for both research and clinical applications. For
example, Wu et al have demonstrated simultaneous
and sensitive detection of three hepatocellular carci-
noma-related miRNA biomarkers, namely miRNA-122,
miRNA-223, and miRNA-21 by using SERS nanotag and
a magnetic capture substrate [28]. Other magnetic nan-
oparticles-based SERS platforms with elaborate design
of signal amplification are also reported. For instance,
He et al. proposed a novel “off” to “on” SERS platform
combining padlock probe-based exponential rolling cir-
cle amplification strategy and magnetic Co@C/PEI/Ag
SERS substrate for quantitative and sensitive detection of
miRNA-155 with a LOD of 70.2 aM [73].

3.3 Circulating tumor-derived sEVs

ELISA and western blotting are two regular approaches
widely used to detect proteins from sEVs [74, 75]. How-
ever, these methods are limited by low sensitivity and
complicated protocols. The immunoaffinity magnetic
beads for enrichment of sSEVs through their specific pro-
tein markers have been used for the point-of-care clinic
diagnosis as the simple and fast isolation process [76].
The mechanism of immunomagnetic isolation proto-
cols is using magnetic beads coated with anti-marker

Page 12 of 39

antibodies/aptamers to capture sEVs by recognizing the
specific proteins on their surface (Fig. 2C) [77].

A variety of proteins can be targeted as biomarkers for
isolation of sEVs including the tetraspanins CD9, CD63,
CD81 and cancer-related markers such as EpCAM,
CD24, and CA125. Antibodies can be immobilized on
the surface of beads for binding with sEVs that expressed
specific antigens, the immunoaffinity thus resulted in
high specificity and purity for isolating a particular sEVs
subtype (Fig. 2C) [78]. For example, Zhang et al. reported
using anti-CD63 modified magnetic beads to capture and
enrich pancreatic cancer-derived sEVs from different cell
lines, followed with multiplex detection of three surface
markers glypican-1, EpCAM, CD44v6 on captured sEVs
by the three corresponding antibody labelled SERS nano-
tags [79]. To further demonstrate the clinical application
of the proposed assay, they profiled the sEVs’ phenotypes
from healthy donors and pancreatic ductal adenocarci-
noma patients, providing an initial investigation of using
bead-based SERS assay for pancreatic cancer diagnosis
and early cancer stage prediction in the clinical setting
[80].

Aptamers have been used as an alternative to antibod-
ies with high selectivity and affinity toward protein bio-
markers [81]. Numerous aptamer-based biosensors have
been designed for sEVs detection [82]. Taking the advan-
tage of particularly designed aptamers and the multi-
plexing ability of the SERS spectra, Wang et al. proposed
a SERS-based method for screening and simultaneous
multiple detection of sEVs using magnetic substrates and
SERS probes for targeting sEVs’ proteins (CEA, PSMA,
HER2) [83].

Other than the above-mentioned immunoaffinity bind-
ing between the functionalized magnetic beads and sEVs,
Pang et al. reported a strategy to enrich sEVs through the
binding of hydrophilic phosphate head of the sEVs phos-
pholipids to the TiO, shell on Fe;0,@TiO, nanoparticles,
where sEVs could be enriched and separated from solu-
tion within 5 min with a capture efficiency of 96.5%, and
subsequent labelling with anti-PD-L1 antibody modi-
fied Au@Ag@MBA SERS nanotags for quantification
with a LOD of 1 EV/uL [84]. Jiang et al. further reported
using the same strategy for enrichment of sEVs through
the affinity interaction of TiO, shell on Fe;O,@TiO,
nanoparticles, while using locked nucleic acid (LNA)-
modified Au@DTNB SERS nanotags to bind with target
miRNAs inside sEVs to induce hot spot SERS signals.
This is the first attempt to apply the target-triggered hot
spot SERS strategy for cancer-related miRNA qualifica-
tion inside sEVs, where sEVs miRNA can be determined
directly in serum samples [85].

Magnetic bead-based SERS assay has proved the prom-
ise in the early-stage screening of cancers. With the
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further improved sensitivity and repeatability, the SERS-
based method will be a useful strategy in the diagnosis
and therapeutics of cancers. However, due to the high
cost of affinity-based assay, this method is only applicable
for a small volume of samples and might not be suitable
for processing large volumes of samples efficiently.

3.4 Circulating tumor-related protein

The magnetic-assisted sandwich strategy is the most used
detection strategy for protein biomarkers. Generally,
magnetic bead/nanoparticle modified with antibodies
or aptamers are used to capture the target proteins, fol-
lowed by the binding/detecting of SERS nanotags in the
sample solution (Fig. 2D). Cheng et al. reported a bead-
based SERS assay for simultaneous detection of dual PSA
makers namely free PSA (f-PSA) and complexed PSA
(c-PSA) from prostate cancer patients by using the total
PSA (t-PSA) antibody-conjugated magnetic beads as cap-
ture substrates and two different types of antibody-con-
jugated SERS nanotags as detection probe [86].

Other than antibodies, aptamer could also be used for
recognizing the target proteins. For example, Hu et al
have demonstrated the use of aptamer labelled SERS
nanotags (Raman reporter labelled Au nano-bridged
nanogap particles, Au NNPs) and magnetic capture sub-
strate (Ag-coated Fe;O,-Au nanoparticles, Ag MNDPs)
for specific recognition of C-reactive protein (CRP). The
method exhibits excellent selectivity and specificity for
CRP under the interference of other proteins and displays
high accuracy in the detection of human serum samples
[87].

In a short summary, the high sensitivity and specificity
of magnetic bead-based SERS assay allow for the detec-
tion of trace amounts of biomarkers in liquid biopsy,
which is crucial in early cancer detection. Meanwhile,
magnetic beads can be easily separated from the solution
using magnetic fields, which not only simplifies the sam-
ple preparation and washing steps, but also reduces the
background noise and interferences. Moreover, magnetic
bead-based SERS assay is compatible with various sam-
ple matrices and can be used for both research and clini-
cal application; this flexibility makes it a versatile tool for
liquid biopsy detection. Table 2 summarized magnetic
bead-based SERS assay in the detection of liquid biopsy,
listed with typical reports in terms of sensitivity, speci-
ficity and multiplexity published in the last 5 years. With
further optimization and improvement, the method may
achieve higher selectivity, and reproducibility. In addi-
tion, more studies are needed to validate the method in
clinical settings and to evaluate its diagnostic accuracy in
larger patient cohorts.
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4 Microfluidic device-based assay

Since its adoption as an analytical tool in early 2000s,
[105] microfluidics has been continuously grown and
been widely adopted in a plethora of applications such
as single cell analysis, [106] cell and particle isolation,
[107] and organs-on-chips [108]. While research on the
use of microfluidics continues, the translation of this
technology is coming into reality as an in-vitro diagnosis
tool. This is because microfluidics enables manipulation
of small volumes of samples and reagents, and performs
assays including mixing, incubation, and isolation for a
successful in-vitro diagnosis assay. Most importantly, it
can be easily integrated with diverse biosensing methods
to detect disease-related biomarkers.

A microfluidic biosensor can detect trace amounts of
circulating biomarkers by i) ensuring sensitive and selec-
tive capture of biomarkers through frequent ligand-target
binding and ii) employing a sensitive sensing mechanism
to detect captured analytes. SERS can be easily integrated
into a microfluidic device in the form of functional-
ized SERS substrates or SERS nanotags. Such integrated
microfluidic SERS will therefore be an attractive candi-
date for liquid biopsy analysis. The scheme of microflu-
idic device-based SERS assays for liquid biopsy detection
is illustrated in Fig. 3.

4.1 CTCs

CTCs are rare cancer cells that can be as low as 1-10
CTCs per 10 mL of whole blood, [109] isolation of CTCs
from blood is therefore essential in CTCs analysis. CTCs
are on average larger than other blood cells, and express
specific membrane proteins (such as EpCAM). Micro-
fluidic devices leverage these differences to isolate CTCs
from blood cells. Captured CTCs will then be used to
profile expression of cancer-specific membrane pro-
teins such as EpCAM, cytokeratin (CK), vimentin, and
CD133, where the latter two markers used to identify
mesenchymal and stem cells phenotypes [110-112]. The
multiplexing capability and high sensitivity of microflu-
idic-integrated SERS biosensors can be used to target
multiple membrane proteins at low expression level (such
as low EpCAM expressing CTCs) [113].

Integration of SERS biosensors to a microfluidic device
depends on the microfluidic isolation mechanism. For
example, in a microfluidic trapping device (Fig. 3A),
Zhang et al. used SERS nanovectors functionalized with
detection antibody to target EpCAM, EGFR and HER2
proteins on captured CTCs. These nanovectors har-
bor unique Raman reporter molecules with distinct
Raman peaks allowing independent and multiplexed
analysis of the captured CTCs [114]. In another exam-
ple Gao et al. used aptamer functionalized SERS nano-
tags to perform SERS mapping on individual cells to
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of microfluidic device-based SERS assays for liquid biopsy detection. A typical microfluidic device should include a capture zone
zone, which can be physically in the same or separate location. A CTC detection: an array of traps can capture CTCs based on their

differential size followed by SERS mapping on individual captured cells. Reproduced with permission [114]. Copyright 2018, Wiley-VCH. B sEVs are
much smaller than CTCs and therefore their captures require an efficient mixing at both micro and nano scales; a nanomixing device represents this
concept. Reproduced with permission [128]. Copyright 2021, Wiley-VCH GmbH. C Capture of ctNA requires even more efficient mixing, a serpentine
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Reproduced with permission [131]. Copyright 2023, Dove Medical Press Limited. D Protein analytes require precision in capture and detection

due to low analyte concentration. This can be achieved by a magnetic capture nanoparticle, flow control through a valving system and detection

at small volumes for achieving higher analyte concentration. Reproduced with permission [138]. Copyright 2018, Springer Nature
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find epithelial-to-mesenchymal transition (EMT) CTCs.
The drawback of this method is that the blood sample
is mixed with SERS nanotags on the chip before enter-
ing the trapping zone, which increases the chance of
channel clogging [115]. An alternative size-based CTC
isolation methods is an inertial microfluidic device that
isolates CTCs from blood into a separate outlet which is
equipped with a SERS substrate [41].

Affinity-based isolation offers an alternative approach
with the advantage of avoiding the loss of small CTCs.
Cho et al. used biotinylated SERS nanotags to capture
breast cancer CTCs on streptavidin coated micro-posts
for a 5-plex SERS biosensing of MUC1, EpCAM, EGEFR,
HER2, and CD133 [116]. To increase the chance of CTC
capture, Kamil Reza et al. used an alternating-current
electrohydrodynamic (ac-EHD) device to create nano-
mixing near the electrode surface for enhanced CTC-
capture substrate interaction [117].

An interesting development in SERS biosensor for CTC
analysis is a multicolor iron oxide-Au SERS nanotag with
dual functions: i) selective binding to CTCs expressing
a target protein followed by magnetic isolation and ii)
multiplexed profiling of membrane protein expression
through their Raman reporter molecule coating. This
method has been proposed by Wilson et al. and ena-
bled capture and 4-plexed profiling of EpCAM, HER2,
CD44, and IGF1R CTCs from 10X diluted blood samples.
[118] The microfluidic device developed in this work
uses much smaller sample volume, a high gradient of
magnetic field across a narrow channel leading to more
effective magnetic isolation, and combines isolation and
detection in one device reducing the chances of CTC loss
and cross-contamination.

To overcome the limitations imposed by the need to
enrich CTCs before SERS detection, a high throughput
cell screening using Raman-based flow cytometry can be
performed. In this method introduced by Pallaoro et al,,
cells are focused in a narrow hydrodynamic flow focus-
ing before passing through a laser [119]. This method was
further enhanced by Kamil Reza et al. that detected three
membrane proteins of MCSP, MCAM and LNGEFR on
melanoma cells via a single flow chamber with sensitivity
as low as 10 cells in 1 mL of peripheral blood mononu-
clear cell (PBMC) [120].

Finally, microfluidic-SERS is a potent tool for func-
tional analysis of single CTCs. An important function
of cells is secreting proteins that facilitate cell-cell com-
munication. This is particularly important in analysis of
CTCs to find the most invasive phenotypes and to under-
stand the phenotype-function correlation. To quantify
this function, single cells can be encapsulated in nano-
droplets together with a SERS nanoparticle [121] or a
combination of a magnetic capture SERS substrate and a
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SERS nanotag [122]. The latter strategy allows dual SERS
amplification by i) turning SERS signal ON through the
Raman reporter molecule on magnetic nanoparticles
adjacent to AgNPs and ii) leveraging the magnetic field-
induced spontaneous collection effect, which brings 75
times enhancement for SERS signal [122]. Microfluidic
droplet-based SERS biosensors has enabled quantifica-
tion of critical cancer cells secretum including vascular
endothelial growth factor (VEGF) and interleukin-8 (IL-
8) that are indicators of tumor growth and expansion
[122].

4.2 Circulating tumor-derived sEVs

Like CTCs, sEVs analysis involves isolation and profil-
ing of surface membrane proteins. However, sEVs are
significantly smaller than CTCs, measuring at nanoscale
range. This intrinsic size difference calls for a new trans-
port strategy that can manipulate these nanovesicles and
enhance the contact frequency of EV-capture ligand both
at the micro- and nanoscales.

There are several reports on isolation of SEVs based on
their size, [123-125] however, on-chip sEVs detection is
almost exclusively performed in a microfluidic affinity-
based capture configuration (Fig. 3B). One of the most
sensitive tumor-derived sEVs detection systems was
reported by Wang et al. reaching a sensitivity of 1.6 x 10*
sEVs/mL. In that work, authors used an efficient mixing
strategy where the sEVs sample and the anti-CD63 func-
tionalized magnetic beads were first passed through an
array of patterned micropillars. sEVs bound to the anti-
CD63 functionalized magnetic beads were then mixed
with EpCAM Raman beads and immobilized in a detec-
tion zone for SERS detection [126].

A novel microfluidic device “EV phenotype analyzer
chip (EPAC)” was introduced by Wang et al., which uses
the principles of nanomixing to detect cancer-specific
sEVs phenotypes from melanoma patient plasma. AuNPs
coated with four Raman reporters and four capture anti-
bodies were used in 4-plex detection of MCSP, MCAM,
ErbB3, and LNFGR to monitor their changes during
BRAF inhibitor treatment [127]. EPAC-II improved the
performance of the previous version by incorporating
an antibody cocktail and circulating nanomixing force,
which reduces non-specific binding (Fig. 3B). Those
improvements led to a 100-fold increase in detection
sensitivity (from 10° sEVs/mL to 10% sEVs/mL). One of
the challenges in working with this system is operational
expertise [128].

In addition, a microfiltration microfluidic device that
incorporates a nanoporous polycarbonate track etched
(PCTE) membrane sandwiched between microfluidic
channels was introduced for osteosarcoma diagnosis,
[129] where sEVs and SERS nanotags are pre-mixed and
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then injected into the tangential flow filtration device for
enriching sEVs immunocomplexes and removing free
SERS nanotags and plasma biomolecules. This scheme
enables 3-plex detection of CD63, EpCAM, and vimentin
with sensitivity as low as 2x 10® sEVs/mL.

4.3 ctNAs

The genetic structure of ctNAs demands microfluidic
SERS biosensors that are functionalized with capture oli-
gonucleotides complementary to the ctNA sequence and
a signal amplification mechanism to obtain detectable
signals (Fig. 3C). Cao et al. reported a catalytic hairpin
assembly (CHA) strategy where the presence of ctDNA
triggers the formation of hairpin duplexes that join the
SERS probes and the capture substrate. Capture of SERS
probes over the reaction time led to the formation of hot-
spots that significantly increase the SERS signal [130].
This device contains three functional units: a micromixer
for efficient capture of ctNAs on SERS probes, a detec-
tion zone, and a capillary network for the passive flow of
analytes. The integration of an amplification step either
before or after CHA reaction can significantly improve
sensitivity, for example, Quian et al. and Cao et al. used
this strategy to detect lung and gastric cancer ctDNAs at
attomolar ranges [131, 132]. Interestingly, the sample and
SERS nanotags were driven into the microfluidic device
chambers through comb-like hydrophilic channels that
create capillary flow, thus achieving the passive flow of
sample without the need for a pump. This characteris-
tic renders the microfluidic device a suitable choice for
point-of-care and low-resource-settings [130].

A recent study in 2024 introduced another pump-
free microfluidic SERS biosensor which uses vacuum
generated by finger pressure to drive whole blood sam-
ples into the device [133]. The blood cells were rapidly
removed by passing them through a filter trench before
ctDNA capture and detection. Gold nanoprobes func-
tionalized with hairpin structures and Raman reporters
were used to detect the target ctDNAs. In the presence
of target sequences, the hairpin structures straighten
up and become linear in shape, thus increasing the dis-
tance between the gold nanorods and the Raman report-
ers, resulting in the reduction of SERS signal from the
Raman reporters. The device successfully detected EGFR
E746-A750 mutation in lung cancer patients with sensi-
tivity of 100 fM.

The strategy of altering SERS signals by changing the
distance between the Raman reporter molecule and the
plasmonic substrate was also employed in the detec-
tion of miR-34a, a tumor suppressor molecule [134]. The
detection zone in this device was functionalized with
miR-34a-specific molecular beacon (MB) which is dis-
rupted in the presence of miR-34a leading to detachment
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of the Raman reporter from the SERS substrate, resulting
in the decrease of SERS signal. An interesting aspect of
this device is its recyclability as the SERS substrate can be
removed from the device for washing and reusing.

Capturing sEVs miRNAs can also be detected through
sEVs capture and lysis on-chip [135]. A multifunctional
microfluidic chip first captures sEVs from plasma sam-
ples using functionalized magnetic beads, then the cap-
tured sEVs are lysed by mixing with a lysis buffer. The
lysed sample containing miRNA-21 passes through a
detection zone where the miRNA displaces a previously
immobilized DNA strand and activates a masked rolling
circle amplification (RCA) primer. The subsequent RCA
steps produce tandem periodic sequence units, facilitat-
ing the capture of numerous SERS nanotags that signifi-
cantly increase the SERS signal, allowing for detection of
miRNA-21 from sEVs with a sensitivity as low as 1 pM
[135].

4.4 Circulating tumor-related proteins

The role of microfluidic SERS biosensors in detection
of circulating proteins are i) ultra-sensitive detection in
a wide protein concentration range of ng/mL to fg/mL,
and ii) meeting the highly multiplexed detection require-
ment of circulating protein profiling, which is essential in
obtaining a high-resolution picture of the tumour status.

Microfluidic channels can create a spatial pattern to
achieve individual zones for parallel detection. In a study
by Zheng et al.,, a microfluidic stamping device was first
used to create patterns of AgNPs functionalized with cap-
ture antibodies against breast cancer specific biomarkers
CA153, CA125 and CEA [136]. Subsequent stamps were
made to introduce the sample followed by SERS nano-
probes for the detection. This strategy was also used for
3-plex detection of IL-6, IL-8 and IL-18 cytokines, which
are stimulants of tumour cell proliferation, malignant
transformation, and progression [137].

Several strategies have been employed to increase
the capture of circulating protein and improve assay
sensitivity. First, is a microfluidic SERS biosensor that
comprised of a mixing unit to selectively capture pro-
teins on antibody-conjugated magnetic nanochains
(Magchain) followed by opening a microfluidic valve
for mixing with SERS-encoded probes to form sand-
wich immune complexes (Fig. 3D) [138]. The mixed
sample is then exposed to a magnetic field which
routes Magchains with attached proteins to a Raman
detection zone. This device allowed detection of pros-
tate-specific antigen (PSA), carcinoembryonic antigen
(CEA), and o-fetoprotein (AFP) circulating proteins
with high sensitivity of 10 pg/mL. The second strat-
egy is ac-EHD device developed by Kamil et al., which
benefits from the increased surface area offered by
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graphene oxide substrate and micromixing through
electrohydrodynamic flow for 4-plex detection of
HER2, EGFR, MUC1, MUCI16 at the high sensitivity of
10 fg/mL [139].

Finally, microdroplet systems also offer increased
mixing efficiency for improved capture and sensitivity.
In this strategy, the sample, capture magnetic beads
and SERS nanotags are first mixed into droplets that
follow a winding channel that creates a chaotic advec-
tion for mixing the reagents. A Y-shaped splitting
junction breaks up the droplet to separate the immu-
nocomplexes from the residual SERS nanotags. The
immunocomplexes are then collected in a separate
chamber and analysed via SERS.

In summary, microfluidics-SERS provides benefits
of low sample consumption, portability for point-
of-care testing, delicate manipulation of input ana-
lytes, and superior integration with SERS biosensors.
Efficient capture and detection are at the core of all
microfluidic-SERS biosensors. However, each circulat-
ing biomarker has its own requirement, as presented
in Table 3. First, the design of the microfluidic device
should be tuned to enable manipulation of input sam-
ple. For instance, CTCs need to be isolated from blood
samples, and EVs and ctNAs need to frequently col-
lide with the functionalized capture substrates through
one of the mixing strategies. Second, the microfluidic
device should deliver SERS nanosensors to the cap-
tured analytes uniformly while simultaneously pre-
venting their clogging and aggregation. These two
criteria directly affect the device’s sensing capability
quantified via assay sensitivity, specificity and multi-
plexity. Ligand conjugated SERS nanoparticles need to
efficiently find their target (i.e. high sensitivity), while
removing the chance of non-specific binding through
washing steps (i.e. high specificity). As a final evalua-
tion criterion, it is important to have a holistic view of
each microfluidic method and its advantages in clini-
cal application. Assay time, ease of manipulation, SERS
interface integration, minimal contamination, and
flexible and automated operation are all important fac-
tors in assessing a microfluidic SERS biosensor plat-
form for a specific application.

5 Paper-based SERS assay

The use of paper as a substrate for detection assays has
a long history that extends over many centuries, with
some of the earliest instances being traced as far back as
the seventeenth century [150, 151]. Over time, numerous
scientific advancements have paved the way towards the
development of modern paper-based detection assays
for increasingly complex applications. The invention of
paper chromatography in 1944 laid the groundwork for

Page 20 of 39

the paper chromato-electrophoresis radioimmunoassay
in 1959, which introduced the immunoassay technology
that led to the invention of the pregnancy test: the first
at-home paper-based point-of-care (POC) test to reach
the market in 1985 [151-155].

Since then, paper-based detection assays have con-
tinued to evolve and diversify into established FDA-
approved tools for diagnosis and disease monitoring.
Paper substrates are often the preferred platform for
designing POC tests due to their cost-effectiveness, bio-
compatibility, adaptability, and portability, which are
attributes that satisfy most of the ASSURED criteria
(Affordable, Sensitive, Specific, User-friendly, Rapid and
robust, Equipment-free, and Deliverable to end users)
outlined by the World Health Organization (WHO)
in 2006 to evaluate the effectiveness of POC devices
[156—158].

These devices come in various forms (Fig. 4), including
as lateral flow assays (LFAs), vertical flow assays (VFAs),
microfluidic paper-based analytical devices (pPADs),
and simple filter paper-based assays. LFAs are the most
common type of paper-based detection assays commer-
cially available, this is the format of most pregnancy and
COVID-19 rapid antigen tests (RATs). A typical LFA
(Fig. 4A) is composed of a sample pad, a conjugate pad,
a nitrocellulose (NC) reaction membrane, and an absor-
bent pad, all fixed onto a strong backing card for sup-
port and durability. Liquid sample is first added to the
sample pad, and as the name suggests, it travels laterally
along the assay due to the capillary action of the porous
substrates, subsequently, the sample enters the conju-
gate pad where it encounters detection bioreceptors
that bind to the sample and create bioreceptor-sample
complexes. Gold nanoparticles (AuNPs) are the most
common detection bioreceptors used in LFAs, they are
conjugated with antibodies against the target analyte and
dried in the conjugate pad. Upon contact with the liq-
uid sample, the AuNPs are re-solubilized and released
from the pad to bind to the target analyte via the anti-
bodies, the bioreceptor-sample complexes then continue
to travel along the assay into the NC membrane where
the test and control lines are located. The test line con-
tains capture bioreceptors that bind to the target analyte.
When the bioreceptor-sample complex reaches the test
line it becomes immobilized on the NC membrane, thus
forming a sandwich-like structure linking the AuNPs, the
detection antibody, the target analyte, the capture anti-
body, and the NC membrane together. The accumulation
of various AuNDPs onto the test line produces a red signal
that indicates the presence of the target analyte. If no sig-
nal is produced, then there was no target analyte to form
linkages between AuNPs and the NC membrane. Control
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Lateral flow assay Legend
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Fig. 4 Scheme of paper-based SERS assays for liquid biopsy detection representing A a lateral flow assay device (left) and a lateral flow assay strip
(right) depicting the lateral movement of the sample from the sample pad to the conjugate pad, nitrocellulose membrane, and absorbent pad; B
a vertical flow assay device (left) and a vertical flow assay structure with the reaction membrane/substrate and absorbent pad arranged vertically

(right), depicting the addition of the sample to the device followed by detection using gold nanoparticle bioreceptors; and C the modification
of filter paper with alkyl groups that allows the attachment of gold nanoparticles (red) on the substrate to enhance Raman signals
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lines are added as quality control, they are designed to
produce a signal regardless of the presence of the sample.

VFAs help mitigate the “hook effect” that can cause
false negatives in LFAs when used for samples with very
high concentrations of analyte [159, 160]. The pads and
membranes of VFAs are organized vertically so that the
sample traverses across the conjugate pad, the NC mem-
brane, and the absorbent pad (Fig. 4B). Some VFAs con-
sist of only a NC membrane and an absorbent pad, here
the AuNPs detection bioreceptors are pre-mixed with
the sample beforehand and then added to the device. On
other occasions, the untreated sample is added first, then
a conjugate pad is placed over the VFA and the AuNPs
are released with buffer.

uPADs were developed more recently in 2007 and
quickly became one of the most researched paper-based
platforms due to their affordability and portability [151,
161]. Their principle focuses on patterning paper to cre-
ate microchannels that direct liquid reagents and samples
through the device. This was a groundbreaking technique
due to the increased control that allowed for the develop-
ment of increasingly complex devices. In contrast, filter
paper-based assays (Fig. 4C) are usually simple devices
composed of functionalized filter paper with at least one
test zone.

The first detection assay to combine paper substrates
and SERS was introduced in 2010 by Yu and White, and
a few years later in 2014, Li et al. pioneered the develop-
ment of the first SERS-based immunochromatographic
assay that was pivotal for the development of various
forms SERS-based LFAs commonly studied today [162,
163]. The integration of SERS in paper-based assays
remarkably improved sensitivity and allowed for the
quantification of analytes, which is not possible with the
colorimetric formats commonly used. Consequently,
assay portability and user-friendliness were negatively
affected by the need for external equipment to read and
measure Raman signals. Although this disadvantage
could soon be mitigated with the introduction of porta-
ble SERS readers, the equipment requirements still make
it difficult for SERS-based assays to meet ASSURED cri-
teria for POC tests [156—158, 164].

Nevertheless, increased assay sensitivity is particularly
important for the detection of scarce biomarkers, like in
the early detection of diseases where biomarkers might
not be as abundant. Cancer is a very common disease in
which early diagnosis is paramount for a good progno-
sis. As such, highly sensitive techniques would be very
helpful for disease monitoring and the reduction of mor-
tality rates. This section describes recent advancements
in paper-based assays that use SERS technology for the
detection of common liquid biopsy biomarkers, includ-
ing CTCs, ctNAs, sEVs, and circulating cancer protein
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biomarkers. The scheme of the paper-based SERS assay
for liquid biopsy detection is illustrated in Fig. 4.

5.1 CTCs

Although CTCs have been the focus of various paper-
based devices, the integration of SERS with paper-based
devices for the detection of CTCs remains unexplored
to date. Moreover, among the limited number of paper-
based devices for CTCs detection, the majority were vali-
dated with human serum samples spiked with cancer cell
lines. Therefore, these devices might not be as effective
when used with clinical patient samples due to the com-
plexity of blood samples [165-167]. This might be due
to the markedly low abundance of CTCs in blood, with a
concentration of 1-10 to 10-100 CTCs per mL of whole
blood, [109, 168, 169] and the evident difficulties in pro-
curing real CTCs patient samples.

5.2 ctNAs

Colorimetric LFAs perform best with uniform nanoparti-
cles with smooth spherical surfaces, while nanoparticles
with rough surfaces are best suited for SERS-based LFAs
[170]. Li et al. recently developed two LFAs for the detec-
tion of ctDNA and miRNA in clinical serum samples
[171, 172]. The SERS substrates for both LFAs were pal-
ladium gold core—shell nanorods (Pd-AuNRs) conjugated
with Raman reporters, and detection was coupled with
catalytic hairpin assembly (CHA) for signal amplification.
Tips, edges, and rough surfaces in nanoparticles serve as
“hot spots” for generating strong SERS signals. Therefore,
rougher nanoparticles such as gold nanostars (AuSts)
and Pb-AuNRs lead to higher enhancement factors (EF)
of the Raman signal compared to gold nanospheres
[171-175]. The Raman signal from Pb-AuNRs is further
enhanced with CHA, an amplification-free method that
increases the binding of Pb-AuNRs to the test line. Pb-
AuNRs are coupled with biotinylated hairpin structures
that unravel after hybridization with sample strands to
expose the biotin molecule, which binds to streptavi-
din immobilized on the NC membrane, thus driving the
accumulation of Pb-AuNRs on the test line. The sample
strands are freed by the introduction of another sequence
with higher affinity to the hairpin structures, in this way,
the hairpin structures remain open with the exposed
biotin molecule, while the sample strands are recycled
through the system. The accumulation of Pb-AuNRs on
the test line is therefore independent from the number of
sample strands present, thus greatly amplifying the gen-
erated signal.

These principles were applied for the detection of TP53
and E545K ctDNA biomarkers, and miR-106b and miR-
196b biomarkers in serum samples from laryngeal squa-
mous cell carcinoma patients [171, 172]. The LOD for
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both LFAs reached attomolar levels ranging from 23.1 to
61.3 aM within 30-45 min, with results comparable to
qRT-PCR [171, 172]. Mao et al. applied the same CHA
principle in another LFA for the multiplexed detection of
miR-21 and miR-196a-5p on a single test line, achieved
by using two SERS probes that can be distinguished in
the same Raman spectrum due to their distinct Raman
peaks. Although this assay demonstrated higher LODs
ranging from 2.2 — 3.3 pM, it offered the distinct advan-
tage of the simultaneous detection of two biomarkers in
non-invasively collected urine samples [176].

Multiple hairpin sequences and long preparation
times for SERS probes might negatively affect the cost-
effectiveness and accessibility of these LFAs. Although
sensible, the stability of the SERS probes and hairpin
structures within LFA materials remains to be elucidated.
Moreover, the preparation processes of clinical speci-
mens were not detailed in the studies, so it is unclear
whether any type of nucleic acid isolate or enrichment
was performed prior to adding samples to the LFAs.

5.3 Circulating tumor-derived sEVs

Recently, Su et al. developed two types of paper-based
devices for the quantification of breast cancer exosomes
in serum: a 3-plex VFA and a 2-plex LFA [177, 178].
These two platforms are vastly different, with distinct
advantages and disadvantages. The VFA was made to
quantitatively profile serological exosomes from differ-
ent breast cancer subtypes through the detection of exo-
somal surface proteins carcinoembryonic antigen (CEA),
human epidermal growth factor receptor 2 (HER2), and
Mucin 1 (MUC1) [177]. AuSts coupled with the Raman
reporter p-nitrothiophenol (p-NTP), and anti-CD63
aptamers were used as SERS probes, while three differ-
ent test zones were coated with capture aptamers against
HER2, MUCI, and CEA [177]. The different Raman sig-
nals from the test zones were used to measure the pro-
portions of exosomal surface proteins and discriminate
between exosomes from different origins. This approach
was applied to analyze samples containing a mixture
of exosomes derived from four breast cancer cell lines
(MCEF-7, SKBR-3, MDA-MB-231 and BT474) in a 50%
FBS medium, as well as four breast cancer subtypes
(luminal A/B, HER2, triple negative) in human serum
samples [177]. Although a good discrimination of exo-
somal protein expression profiles was observed, it is
important to note that these findings were obtained using
samples with known exosomal origins. This becomes
more evident through the examination of the profiles of
HER2 and luminal B serum samples, which were nearly
indistinguishable from one another. A blind study with
sample mixtures of unknown proportions or breast can-
cer subtypes would be beneficial to accurately measure
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the efficacy of this assay in profiling exosomes. Another
issue posed by this approach, also observed in other mul-
tiplexed assays, is that a sample might contain a heter-
ogenous mixture of exosomes from different origins or
cancer subtypes and that each type of exosome can con-
tribute to the final Raman signal differently. The strong-
est Raman signals from the most prominent group of
exosomes could overshadow the more subtle signals from
the minority groups, thus certain exosomes in the mix-
ture might be overlooked in the analysis.

Su et al’s LFA sought to overcome this issue by inte-
grating two spectrally different SERS probes made of
AusSts coupled with distinct Raman reporters and aptam-
ers against HER2 and MUCI1 on the conjugate pad, while
coating the test line with anti-CD63 aptamers [178].
Similar to Mao et al., HER2 and MUCI1 were simultane-
ously detected on a single test line using these two SERS
probes with distinct Raman reporters [176, 178]. Su et al.
took this a step further by using the combined Raman
signals of the SERS probes to generate distinct Raman
signatures that can differentiate between exosomes
derived from SKBR-3 and MCF-7 cell lines (SKBR and
MCF exosomes) [178]. A mixture of SKBR and MCF
exosomes can result in a total of four Raman signals on
the test line: SKBR-3 exosomes+ HER2 /MUCI probes,
and MCF exosomes+HER3/MUCI probes. Since there
are only two Raman reporters here, there is no way to
distinguish between the Raman signals from SKBR and
MCEF exosomes. Multivariate spectral unmixing analy-
sis solved this issue by separating the combined Raman
spectra of the two SERS probes into two separate indi-
vidual spectra that each represent a different type of exo-
some. Traditional methods, similar to Su et al’s VFA,
identify the proportions of multiple biomarkers in the
sample as whole without considering that the sample can
contain different types of exosomes that each contribute
to the final Raman spectra differently. In contrast, this
approach can differentiate between exosome subtypes
in a complex matrix, thus providing a more comprehen-
sive analysis of the sample [178]. Low LODs of 3.27 x 10°
SKBR exosomes/mL and 4.80x 10° MCF exosomes/mL
were observed, although this was measured in 50% FBS
instead of human serum. While the assay required a large
volume of 100 pL isolated exosomes, it is noteworthy that
the procedure was completed in only 15 min and valida-
tion with 39 breast cancer human serum samples yielded
results in line with ELISA [178].

5.4 Circulating tumor-related proteins

Various studies have reported the potential improve-
ment in diagnostic efficacy of detection assays capable of
identifying multiple protein biomarkers, as opposed to
assays focused on a single protein biomarker [179-182].
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Multiplexed paper-based SERS assays are often designed
by immobilizing distinct capture bioreceptors to multiple
test zones, each aimed at detecting specific biomarkers.
In contrast, alternative designs combine different cap-
ture bioreceptors into a singular test zone for the simul-
taneous detection of multiple biomarkers. In 2019, Chen
et al. reported the first multiplexed SERS-based VFA
by immobilizing capture antibodies against CEA, AFP,
and PSA on a single test dot [183]. The assay procedure
was completed in 7 min with as little as 10 pL of serum,
and, although only 5 replicates were tested, consist-
ent results between the VFA and ELISA were observed
with prostate cancer human serum samples. Low LODs
of 0.260-0.370 pg/mL were obtained using Raman dye
(RD) encoded core—shell (Au@Ag) SERS nanotags that
further enhance Raman scattering through the nanogaps
between the gold core and the silver shell [183]. This
creates the plasmon coupling effect that amplifies the
electric field on the nanoparticle surfaces and leads to
significantly enhanced Raman signals. However, since
the LOD was determined without the use of biological
samples, it is probable that clinical serum specimens will
result in higher LODs [183]. In 2020, Xia et al. also devel-
oped a multiplexed single-test line LFA for the detection
of squamous cell carcinoma antigen (SCCA) and cancer
antigen 125 (CA125) in cervical cancer human serum
samples [184]. This reduces variability in LFAs caused by
the different distances between test lines and the sample
pads [185]. The assay was completed within 20 min with a
LOD of 7.37 pg/mL for SCCA and 8.10 pg/mL for CA125
[184]. While Xia et al’s assays did not display the same
level of sensitivity as those developed by Chen et al.’s, it is
noteworthy that Xia et al’s LOD was measured and vali-
dated against ELISA with 120 serum samples [183, 184].
Lu et al. proposed a filter paper-based SERS assay
with a single test zone coated with capture antibodies
against SCCA and osteopontin (OPN) for the detection
of cervical cancer human sera samples [186]. Notably,
an interesting mechanism for Raman enhancement was
introduced by coating the filter paper with gold nano-
flowers (AuNFs) coupled with the capture antibodies
on the test zone [186]. Since there is no conjugate pad,
the sample was added directly to the filter paper fol-
lowed by the addition of SERS immunoprobes after an
incubation period of 1 h [186]. Gold-silver nanoshuttles
(Au-AgNSs) in the SERS immunoprobes are elongated
with arrow-like structures at both ends of the particles,
which serve as hot spots for enhancing the electric field
and increasing the Raman signals [186]. This signal is fur-
ther enhanced by the plasmonic coupling effect from the
close distance between the AuNFs on the filter paper and
the Au-AgNSs in the SERS immunoprobes. Although
this assay seems simple, it has a lengthy operation time
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of>2 h and a combined fabrication time of>18 h [186].
Noteworthy results were nevertheless obtained, with low
LODs recorded at 8.63 pg/mL for SCCA and 4.39 pg/
mL for OPN [186]. Furthermore, a strong correlation
between ELISA and this approach was established during
validation with cervical cancer serum samples [186].

Fan et al. and Peng et al. took this approach one step
further by integrating conventional SERS-LFAs with a
plasmonic internal standard (PIS) made of plasmonic
nanoparticles embedded into NC membranes [187, 188].
In this new LFA, called PIS-LFA, sample molecules travel
to the conjugate pad to bind with the SERS immuno-
probes and form complexes, which then travel along the
NC membrane to encounter the PIS nanoparticles as well
as the test and control lines. The nanogaps between the
PIS nanoparticles on the NC membrane and the SERS
immunoprobes create the plasmon coupling effect that
significantly enhances Raman signals [187, 188]. The plas-
monic nanoparticles on the PIS also generate a Raman
signal independently from the SERS immunoprobes, this
serves as a constant background signal that can be used
as a normalization factor by calculating the Raman peak
intensity ratio between the SERS immunoprobes and the
PIS [187, 188]. This reduces signal variation from exter-
nal factors, thus improving overall assay sensitivity and
reproducibility. An advantage of Fan et al’s design was
the addition of capture antibodies against CEA and neu-
ron-specific enolase (NSE) onto a singular test line, thus
allowing the simultaneous detection of both biomark-
ers [188]. Consistent results in the detection of CEA and
NSE with early-stage lung cancer human serum samples
were observed using both the PIS-LFA and electrochemi-
luminescence immunoassays (ECLIA) [188]. Although
low LODs of 39.0 pg/mL and 46.0 pg/mL were achieved
for both CEA and NSE, respectively, it is important to
note that these measurements were obtained without the
use of biological samples [188].

Nanostructures of various shapes and sizes have been
engineered to increase the number of nanogaps or hot
spots, with the goal of significantly enhancing Raman
scattering. This was observed when She et al. used the
curiously shaped raspberry-like Fe;O,@Au magnetic
nanoparticles (RAUMNPs) in a multiplexed LFA for the
detection of AFP, CEA, and PSA [189]. These NPs consist
of a 150 nm magnetic iron core, initially coated by 20 nm
AuNP seeds interspersed with smaller 3 nm AuNPs seeds
[189]. The final raspberry-like nanostructure is synthe-
sized when the AuNP seeds are grown on the surface of
the iron core via the nucleation reaction of gold chloro-
auric acid [189]. Nanogaps of 1.4 nm are created between
the surface AuNPs of different sizes that generate various
hot spots, significantly enhancing Raman signals and giv-
ing the RAUMNPs an EF of 2.27x 107, which was higher
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than the EF of gold nanospheres, AuNRs, AuSts, and
other Fe;O,@Au magnetic nanoparticles with a smooth
gold coating [171-175, 189]. Additionally, the RAUMNPs
also function as magnetic beads to separate and enrich
the target analyte before using the LFA. This sample
enrichment in conjunction with Raman enhancement
culminated in the sensitive detection of AFP, CEA, and
PSA in bovine serum samples, with low LODs of 1.92 pg/
mlL, 3.84 pg/mL, and 1.43 pg/mL respectively [189].

Among all the devices listed in Table 4, Shen et al’s
approach yielded the lowest LODs measured with
spiked serum samples [189]. This method can poten-
tially be applied to other types of biomarkers that require
enrichment procedures, such as CTCs. However, this
could also present a shortcoming for POC settings, as
the additional preparation steps might be cumbersome
and time-consuming. In contrast, Gao et al. developed
a SERS-based LFA for the direct detection of CEA from
whole blood, eliminating the need for sample pre-treat-
ment [190]. While not as sensitive as other devices men-
tioned here (1 ng/mL LOD), it stands out as the device
that is closest to satisfying the ASSURED criteria, second
only to the urine-based LFA for miRNA [176, 190].

All in all, the integration of SERS into paper-based
assays has significantly increased sensitivity and enabled
the detection of scarce biomarkers important for early
disease diagnosis and monitoring. Table 4 has summa-
rized the paper-based SERS assays for the detection of
ctNAs, circulating tumor-derived sEVs and related pro-
teins that were developed in the last 5 years. Paper-based
SERS assays are relatively unexplored in comparison with
other types of SERS-based detection assays, particularly
for the detection of CTCs, highlighting a significant gap
in the current research. Despite the enhanced sensitiv-
ity, challenges in terms of portability and user-friendli-
ness persist due to the reliance on external equipment to
measure Raman signals. This makes it difficult for assays
to meet the stringent ASSURED criteria for POC tests
outlined by WHO. Nevertheless, advances such as new
shapes of nanoparticles with more hot spots for enhanc-
ing Raman signals, the integration of a plasmonic internal
standard for reducing background signals, and utiliza-
tion of multivariate spectral unmixing for distinguishing
between complex samples are crucial for the continued
improvement of paper-based assay technologies that
have the potential to revolutionize disease detection and
monitoring.

6 Conclusions, perspectives and outlook

In conclusion, liquid biopsy based cancer diagnosis ben-
efits from a diverse range of SERS biosensor platforms,
including label-free SERS assay, bead-based sensors,
microfluidic device systems, and paper-based assays,
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each demonstrating unique capabilities in enhancing the
sensitivity and specificity of circulating cancer biomarker
detection: i) label-free SERS assays explore the elimina-
tion of exogenous SERS labels, simplifying assay proce-
dures and facilitating real-time detection of circulating
biomarkers, thereby accelerating diagnostic processes,
ii) bead-based SERS biosensors leverage functional-
ized beads to capture and analyze diverse circulating
biomarkers, demonstrating potential for multiplexed
detection and precise characterization; iii) microfluidic
device-based biosensors represent a frontier in liquid
biopsy, enabling precise manipulation of small sample
volumes, high-throughput analysis, and integration with
SERS technology for enhanced sensitivity and rapid bio-
marker detection; iv) paper-based SERS biosensors offer
portable and cost-effective diagnostic solutions, wid-
ening access to liquid biopsy technologies and enabling
point-of-care applications. Therefore, this comprehensive
review illuminates the transformative impact of SERS-
based biosensors in liquid biopsy, empowering accurate
and non-invasive detection of circulating biomarkers for
improved cancer diagnosis and treatment management.

The continued evolution of SERS biosensors holds
immense potential in several key areas, including i) The
paradigm of label-free SERS assays is anticipated to
witness extensive exploration, driven by the quest for
simplification and real-time detection. Innovations in
plasmonic nanostructures paves the way for highly sen-
sitive label-free SERS assays, minimizing complexities
in sample preparation and expediting diagnostic work-
flows; ii) The advancement of beads-based SERS bio-
sensors, with their capacity for multiplexed analysis and
improved capture efficiency, presents an opportunity for
simultaneous profiling of multiple biomarkers, enabling
a more comprehensive understanding of tumor hetero-
geneity and aiding in personalized treatment strategies;
iii) Microfluidic device-based biosensors are anticipated
to undergo refinements in design and functionality, ena-
bling seamless integration with SERS technology. The
future integration of microfluidic systems with advanced
SERS detection promises enhanced throughput, precise
manipulation of minute sample volumes, and real-time
analysis, catalyzing the translation of liquid biopsy into
routine clinical practice; iv) The trend of paper-based
SERS biosensor is poised towards further miniaturiza-
tion, cost-effectiveness, and integration with portable
devices, facilitating decentralized cancer diagnostics.
This evolution could revolutionize resource-limited set-
tings and empower healthcare providers with rapid,
on-site diagnostic capabilities, thereby addressing acces-
sibility gaps in cancer care.

Despite these promising prospects, several challenges
persist in the field of SERS biosensors for liquid biopsy.
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Standardization of protocols, validation of assays, and
harmonization of data analysis remain pivotal for ensur-
ing reproducibility and reliability across different plat-
forms. Additionally, addressing concerns regarding cost,
scalability, and regulatory consideration will be impera-
tive for their widespread adoption in clinical settings.

In summary, the convergence of SERS biosensors with
liquid biopsy represents a new era in cancer diagnos-
tics, offering non-invasive, sensitive, and multiplexed
detection of circulating biomarkers. The future trend
involves concerted efforts towards technological refine-
ments, addressing challenges, and fostering collabora-
tions between academia, industry, and regulatory bodies
to propel SERS-based liquid biopsy into routine clinical
practice, ultimately revolutionizing cancer diagnosis and
patient care.
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