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Although silicon technology has been the main driving force for miniaturizing device dimensions to improve cost
and performance, the current application of Si to soft electronics (flexible and stretchable electronics) is limited due
to material rigidity. As a result, various prospective materials have been proposed to overcome the rigidity of
conventional Si technology. In particular, nano-carbon materials such as carbon nanotubes (CNTs) and graphene are
promising due to outstanding elastic properties as well as an excellent combination of electronic, optoelectronic, and
thermal properties compared to conventional rigid silicon. The uniqueness of these nano-carbon materials has opened
new possibilities for soft electronics, which is another technological trend in the market. This review covers the recent
progress of soft electronics research based on CNTs and graphene. We discuss the strategies for soft electronics with
nano-carbon materials and their preparation methods (growth and transfer techniques) to devices as well as the
electrical characteristics of transparent conducting films (transparency and sheet resistance) and device performances
in field effect transistor (FET) (structure, carrier type, on/off ratio, and mobility). In addition to discussing state of the art
performance metrics, we also attempt to clarify trade-off issues and methods to control the trade-off on/off versus
mobility). We further demonstrate accomplishments of the CNT network in flexible integrated circuits on plastic
substrates that have attractive characteristics. A future research direction is also proposed to overcome current
technological obstacles necessary to realize commercially feasible soft electronics.
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1 Introduction

Since the invention of the transistor, the semiconductor
industry has affected nearly every aspect of our daily life
[1,2]. One main stream technological trend of the silicon
industry is scaling down the device sizes. For instance,
the gate length has been reduced down to ~20 nm under
current optical lithography technique, and the count of
transistors in a commercially available CPU numbers more
than 5 billion [3]. In spite of the tremendous progress of
miniaturized silicon technology, further development to soft
electronics is still limited by the rigidity of the materials
themselves. Electronic devices on flexible and stretchable
substrates, defined as soft electronics, are contrasted to
traditional rigid chips using conventional silicon and metals.
The strategies for developing soft electronics are driven by
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the investigation of new materials which are bendable,
twistable, flexible and stretchable. Toward the basic re-
quirement of replacing traditional rigid silicon electronics
by new materials, structure engineering, such as structures
in “wavy” layouts and the open mesh geometry have also
been investigated to achieve stretchability [4—6].

Figure 1 shows the development of materials for achiev-
ing soft electronics from traditional rigid chips. Amorph-
ous silicon (a-Si), low temperature polycrystalline silicon
(p-Si), semiconducting metal oxides, nanowires, and or-
ganic semiconductors are promising candidates for flexible
electronics from a materials perspective, but several chal-
lenges must be overcome prior to their practical use. a-Si is
low-cost and is applicable for large-area displays, but suf-
fers from poor mobility and flexibility [7]. Low temperature
p-Si has the advantage of relatively high mobility but has
low uniformity and processability [8]. Metal oxides are
costly due to the shortage of rare earth elements and
display poor environmental stability. Polymers have
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Figure 1 Classification of materials from rigid to soft. Conventional Si-based materials need to be replaced by new materials to realize soft
(flexible/stretchable) electronics. With good electrical and mechanical properties, materials such as a-Si, organic polymer, nanowires, and
nano-carbon materials are good candidates for next-generation soft applications.
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substantial bendability, but have poor mobility and chem-
ical stability.

Nano-carbons such as one-dimensional carbon nano-
tubes (CNTs) and two-dimensional graphene layers have
been widely studied to open a new technology platform
based on flexible electronics requiring high transmit-
tance, bendability, and high mobility [9-12]. Figure 2

shows various types of carbon-based materials - fullerene,
CNT, graphene, graphite, graphene oxide (GO), and
diamond.

The extraordinary electrical, physical, and chemical
properties of CNTs and graphene have been attractive
since their discoveries. Both materials exhibit outstanding
carrier mobility, which is attractive for applications to

Graphene oxide

and 3D diamond are demonstrated.

Figure 2 Carbon-based nanomaterials. Nano-carbon materials including 0D fullerene, 1D CNT, 2D graphene, 3D graphite, 3D graphene oxide,

Graphite
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electronic devices. The carrier mobility in semiconducting
single-walled carbon nanotubes (SWCNTs) has been
shown to be as high as ~80,000 cm® V™' s [13], while
the mobility of exfoliated graphene ranges from
~100,000 cm® V! s7 [14] on insulating substrates to
230,000 cm® V™! s7! in suspended structures [15]. These
ultra-high mobility values suggest that these materials
have the potential to outperform established materials for
next-generation high-speed electronics. The electric
current capacity for both CNTs and graphene are reported
above 10° A cm™? [16,17]. At room temperature, CN'Ts
exhibit a thermal conductivity up to 3,500 W m™* K™
[18], and graphene has a value of 5,300 W m™ K™ [19]
with a high transmittance of nearly 97% [20]. In addition
to high flexibility and stretchability, both materials also
have superb mechanical strength (Young's modulus of 1.0
TPa and tensile strength of 130 GPa) [21]. For these
reasons, CNTs and graphene are regarded as the most
promising materials to realize next-generation electronics.

The purpose of this article is to summarize the recent
progresses of both CN'Ts and graphene in soft electron-
ics, and furthermore, to provide guidance for future
nano-carbon research by clarifying feasible approaches
which will most likely lead to soft applications. We first
discuss several successful attempts to synthesize CNTs
and graphene. Variations in transfer techniques for both
materials are discussed thoroughly. For the use of CNTs
and graphene for transparent conducting films (TCFs),
the characteristics of TCFs using both nano-carbon
materials are compared in depth, together with ITO.
Furthermore, various types of field-effect devices using
different forms of CNT FETs such as single CNT FET,
random network CNT FET, aligned CNT FET, and
different forms of graphene FETs such as single layer
graphene (SLG), bilayer graphene (BLG), and graphene
nanoribbon (GNR) are compared. Moreover, the specific
FET device performances related to material preparation
and fabrication techniques are also discussed. Finally, the
logic level, flexibility, and stretchability of devices with a
combination of graphene and CNTs along with their
utilizations in logic circuits are further discussed. The sys-
tematic deep analyses of the device properties of graphene
and CNTs highlight excellent opportunities for future flex-
ible electronics. We conclude with a brief perspective on
the research directions of soft electronics in future.

2 Review

2.1 Material preparations

The preparation techniques for CNTs and graphene are
the most important fundamental research areas providing
realistic applications. From the discovery of CNTs and
graphene, diverse work has been done to improve the
quality of the materials (crystallinity and uniformity) and
to control other parameters (chirality, density, and doping
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levels) and morphology (length, area, dimension, and
thickness). This section describes some of the most suc-
cessful methods for synthesis of nano-carbon materials.

2.1.1 Carbon nanotubes

The CNT synthesis techniques aim to provide control
over the tube density, spatial distribution, length, and
orientation. Controlling the tube diameter and ratio of
semiconducting to metallic SWCNTs have been a critical
issue for electrical applications [22,23]. The conventional
growth methods for large-scale CNTs include arc dis-
charge, laser ablation, and chemical vapor deposition
(CVD) [24-28]. While CNTs grown by arc discharge
and laser ablation usually have fewer structural defects
than those produced by CVD techniques, the CVD
method is intrinsically scalable for realistic applications
due to its low setup cost, high production yield, and ease
of scale-up. Moreover, long average tube lengths can be
obtained from CVD method, which lead to generally
better electrical properties in CNTs. The challenge to
control alignment and geometry of SWCNTs is miti-
gated by the CVD method as well. As a one-dimensional
material, the as-grown CNTs have various geometries, as
shown in Figure 3.

Individual CNTs are horizontally grown on the substrate
by CVD, as shown in Figure 3a. Horizontally aligned
SWCNTs can be grown using stable and laminar gas flow,
which can be determined by the Reynolds number, which
depends on volumetric flow rate, viscosity of gases, and
the hydraulic diameter of the quartz tube [29,30]. Both the
buoyancy effect induced by gas temperature and gas flow
stability play a dominant role in preparing batch-scale
SWCNT arrays [31]. In Figure 3b shows scanning electron
microscopy (SEM) images of an aligned SWCNT film
grown from Fe catalyst patterned into narrow stripes
oriented perpendicular to the growth direction on quartz
[32]. The CVD process on ST-cut quartz wafers using
patterned stripes of Fe catalyst leads to the highest levels
of alignment and density of CNTs. Linear alignment of in-
dividual SWCNTs was achieved with an average diameter
of ~1 nm, and a density approaching ~10 SWCNT/um.
Figure 3c shows that vertically stacked CNT films can
stand on a SiO, substrate. The CVD growth was carried
out on various catalysts, including Fe nano-particles and
metal thin films (Fe, Al/Fe, Al,O3/Co) on Si wafers,
quartz, and metal foils to synthesize CNT forest [33,34].
Depending on the collection time, the thickness of CNT
films can be changed from micrometers to a few centi-
meters [35]. Highly-stacked nanotube structures were
successfully fabricated on wafer-scale substrates with
different thicknesses, which are robust for numerous
applications as a conducting film [36,37]. Efficient field
emission has been demonstrated where the screening of
the field emission current is determined by the ratio of
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Figure 3 Various methods of CNT film preparation. a, CVD-grown aligned individual SWCNTs on SiO, substrate using stable and laminar gas
flow. b, Aligned array of CNTs on ST-cut quartz with narrow strip pattern of Fe catalyst. Reproduced with permission [32]. Copyright 2007, Nature
Publishing Group. ¢, Array of vertically aligned MWCNTs on Fe/Al/SiO, substrate. d, Random network SWCNTs prepared by spray of CNT solution

(left) and CVD-grown on SiO, substrate (right). e, Yarning of vertically aligned MWCNT film.

the interlayer spacing to CNT length [38,39]. Figure 3d
shows SEM images of random network geometry CNTs.
The network geometry can be achieved easily by print-
ing SWCNTs from a solution suspension [40,41]. Solu-
tion methods such as spray, filtering, dip-coating, and
ink-jet printing have been commonly used for random
network type CNT films [42—-46]. One serious drawback
of the solution approach is the bundling of individual
CNTs. This degrades the performance of transparent
conducting films (sheet resistance vs transmittance) and
transistors (on/off ratio vs mobility) [47]. Random
network CNT films prepared directly from CVD or arc
discharge can also produce CNT networks and improve
the device performance [48,49]. The bundling of CNTs
can be avoided and rather clean CNTs can be retained
through the CVD method without worrying about the
addition of additives that are used in solution approach
[41]. By controlling the concentration of catalysts of
Fe/Co/Mo, the density of CNTs can be modified, due to
increased surface area, pore volume, and catalytic activity
[50]. Nevertheless, realizing large-area with good uni-
formity is still challenging with the CVD method.
Owing to their strength, toughness, capabilities of
mechanical energy damping, and resistance to knot-
induced failure, yarns made from vertically aligned films
of MWCNTs are promising multifunctional materials
[51-53]. Figure 3e shows an example of the yarning
process for a vertically aligned MWCNT film. A beneficial
feature of these yarns is the diameter, which can be as

little as 2% of the diameter of a human hair, making them
ideal as an artificial muscle actuator or artificial muscle,
and for storing energy as part of a fiber supercapacitor or
battery. MWCNT fibers could also replace rigid metal
wires in electronic textiles, such as in heated blankets,
where the rigidity of the metal wires can be uncomfort-
able. Replacing wires with conducting fibers can also
provide radio or microwave absorption, electrostatic
discharge protection, other types of textile heating, or for
simple wiring applications such as headphones where
flexibility is important [37,54].

2.1.2 Graphene

Since graphene was first electrically isolated from graph-
ite using a mechanical exfoliation method, many efforts
have been studied to synthesize thin graphene films such
as the CVD method, reduction of graphene oxide (GO),
epitaxial growth on SiC, and chemical molecular assem-
bly method.

As shown in Figure 4a, the mechanical exfoliation
technique offers high quality but small flakes of gra-
phene. Tape was used as the micromechanical cleavage
layer to detach graphene samples from graphite. The ex-
foliation method was followed by the identification and
selection of monolayers by using an optical microscopy,
scanning electron microscopy (SEM), and atomic force
microscopy (AFM) [55,56]. However, the practical use of
such a graphene for electronics applications is limited by
the tiny size of the exfoliated graphene films, despite
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Figure 4 Various methods of graphene synthesis. a, Exfoliated graphene (monolayer, bilayer, and other thick layer) obtained by taping from
graphite. b, Graphene flake is grown on Cu foil by CVD. ¢, Schematic procedure to generate high quality graphene powder obtained from
reduced graphite oxide and the electron diffraction pattern. Adapted with permission [73]. d, Images of monolayer graphene on 6H-SiC(0001) for
explaining epitaxial growth of graphene. Reproduced with permission [74]. Copyright 2009, Nature Publishing Group.
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their high crystallinity. The preparation of graphene
using the CVD method has been reported for the feas-
ible use of graphene [57-59]. Figure 4b shows that the
graphene flake was grown on Cu foil under an atmos-
pheric CVD system. The CVD approach is attractive
because it allows fabrication over large-area, and expan-
sion of the applicability of graphene to flexible or
stretchable devices. Although quality and size of gra-
phene keep improving, field effect mobilities of devices
using CVD graphene exhibit still lower values compared
to those of devices with exfoliated or epitaxial graphene.
Yet, the presence of defects such as point defects, grain
boundaries, and wrinkles is unavoidable in the CVD
process [60]. Grain boundaries and defects reduce the
conductivity of the film and therefore it is highly desired
to remove them during growth. Observations and con-
trolling such defects are key research topics in the CVD
method. Atomic rearrangement at graphene grain
boundaries has been observed using transmission elec-
tron microscopy (TEM) and scanning tunneling micros-
copy (STM). Recent works use optical microscopy to
observe the grain boundaries realized by selectively oxi-
dizing the underlying copper foil through graphene grain
boundaries functionalized with —O and —OH radicals

generated by ultraviolet irradiation [61] and sodium
chloride solution [62]. Graphene can be also prepared by
a liquid-phase exfoliation or reduction of GO, which has
advantages in quantity, yield and cost [63-67]. Large
quantities of GO can be prepared by the traditional
Brodie and Hummer method, although these methods
can be slightly modified to improve the quality of GO
[68-71]. Several reducing agents have been used to
achieve reduced GO [72]. Although these methods are
advantageous for mass production, the complete removal
of epoxy and hydroxyl groups and defect generation are
an unsolved problem at the present time, unlike the high
quality pristine graphene. A simple thermal exfoliation
followed by high temperature annealing up to 1500°C in
vacuum provides a route of obtaining better quality gra-
phene powder (Figure 4c) [73]. This graphene powder
method is challenging but certainly advantageous for
conducting film and electrode applications. The fabrica-
tion of graphene using the epitaxial growth of graphene
directly on rigid insulating silicon carbide (SiC) wafers has
been also reported (Figure 4d) [74]. A carbon-included
material like SiC is used as a substrate for graphene
preparation with high temperature annealing (around
1,500°C) [75]. Graphene obtained with epitaxial growth
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is highly crystalline, thus is intensely studied to fabricate
transistors that operate at high frequencies [76,77].
Wafer-scale graphene can be produced by epitaxial
growth on SiC, but those graphenes are not suitable for
practical purposes because it is hard to detach graphene
from the SiC substrate. Although a solid source molecu-
lar beam epitaxy method was also reported to fabricate
graphene directly on Si(111), the high cost of molecular
beam epitaxy will likely prevent the method from being
commercially viable [78].

2.1.3 Transfer methods

Most CVD approaches for synthesizing CNTs and gra-
phene require high temperatures which prevent direct
growth of nano-carbon materials on plastic and other soft
target substrates. CN'Ts and graphene located on a catalytic
substrate need to be transferred onto a target substrate.
Transferring graphene from the metal substrates onto
desired substrates without degrading the quality of gra-
phene is the critical step to use CVD-grown graphene for
most practical applications.

Wet etching processes are commonly used to detach
as-grown materials from the mother substrates using
chemical solutions. FeCl; or (NH,),S,Og are often used
for removing Cu, and NaOH or KOH for sapphire
[79,80]. The most popular binder to hold graphene dur-
ing wet etching is poly(methyl methacrylate) (PMMA),
but this process unavoidably damages and contaminates
the graphene layer with residuals, and is not desirable
for scale-up fabrication. The dry printing (or stamping)
technique uses polydimethylsiloxane (PDMS) stamp to
transfer SWCNTs and graphene films from the growth
substrates such as SiO,/Si and metal films, still has
problems with mechanical damage [81]. The roll to roll
(R2R) lamination process can produce a large-area gra-
phene film on flexible substrates [82,83]. The R2R transfer
technique uses a thermal release layer as a temporary sup-
port and enables the continuous production of graphene
film on 44 inch-scale flexible substrates. The synthesized
graphene with Cu foil was laminated with the assistance
of an adhesive layer, poly(ethylene co-vinyl acetate, EVA)
with vinyl acetate (VA) as a supporting layer, to plastic
film, followed by Cu etching, as shown in Figure 5a [82].
The transferred graphene film has appropriate uniformity
with a resistance deviation of less than 10%. However, the
graphene surface is still contaminated by organic adhesive
from the thermal release tape using this transfer approach,
which may fairly degrade the electrical properties of the
film. Undesired mechanical defects also can be caused by
this R2R transfer on graphene film. A bubbling method
for transferring graphene films to target substrates is non-
destructive not only to graphene but also to the mother-
substrate (Figure 5b) [84]. The PMMA/graphene/Pt(or
Cu, Ni) was dipped into NaOH solution and was used as
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the cathode with a constant current supply. At the
negatively charged cathode, H, gas is produced by a water
reduction reaction, and the PMMA/graphene layer de-
taches from Pt substrate due to the H, bubbles at the
interface between the PMMA /graphene and Pt substrate.
Damage of the mother-substrate is reduced considerably,
and the substrate can be used repeatedly for the next
CVD growth. In addition, the transferred graphene is free
of metal particles, which are commonly found in graphene
transferred by the metal etching process. Figure 5c explains
the “clean-lifting transfer (CLT)” method, which uses
electrostatic forces to transfer graphene onto target
substrates, and doesn’t use a PMMA adhesive layer [85].
An electrostatic generator (SIMCO, 18 kV) was placed at
a distance of one inch away from the substrate, then the
discharge process occurred via the electrostatic generator,
followed by a pressing process to enable more uniform
attachment between graphene and substrate. After the
Cu foil was etched, the remaining graphene film on the
target substrate was rinsed with deionized water to
remove the residual etchant. The methods described so
far are a rather simple transfer process that does not take
account of positioning. There is an interesting transfer
method for aligning 2D flakes to a desired location. In
order to fabricate stacked graphene on BN devices, a
few-micro-size flakes of graphene and BN should be posi-
tioned at a desired location (Figure 5d) [86]. Graphene
was exfoliated separately onto a polymer stack consisting
of a water-soluble polyvinyl alcohol (PVA) and a PMMA
layer. When dipped into water, PVA was dissolved and
the graphene/PMMA layer was detached from substrate
and was floated on the surface of water bath. The PMMA
membrane was securely adhered to a holder, which has a
tiny hole to identify the top flake onto the PMMA layer
during the aligned transfer process. The holder was
clamped on the arm of a micro-positioner and then
mounted on an optical microscope. The graphene was
precisely aligned to the target BN flake by using the
microscope to locate the position and the two (PMMA/
graphene and BN) brought into contact. The demand for
stacked layered structures has been growing [87-90]. A
better strategy for transfer in a large-area without dam-
ages and residues on graphene is required for profound
study.

2.2 Carbon-based elements

Common electronic devices require conducting, semicon-
ducting, and insulating materials. For conducting elements,
several conducting polymers such as polyacetylene, poly-
pyrrole, polythiophene, polyaniline, and poly(3,4-ethylene-
dioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) have
been investigated for future applications to replace con-
ventional rigid conducting and semiconducting mate-
rials [91,92]. However, these polymers have a relatively
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Figure 5 Various transfer methods of graphene. a, Schematic demonstration of Roll-to-Roll lamination transfer using a thermal release layer.
Adapted with permission [82]. b, Schematic and photography images of bubbling process. The PMMA/graphene/Pt was dipped into NaOH
solution with a constant current supply. Reproduced with permission [84]. Copyright 2012, Nature Publishing Group. ¢, “Clean-lifting transfer
(CLT)" method, which uses electrostatic forces to transfer graphene. Adapted with permission [85]. d, Aligned transfer for placing graphene and
BN to a desired location. Reproduced with permission [86]. Copyright 2010, Nature Publishing Group.

Aligned transfer

low electrical conductance and poor stability, compared
with metal electrodes [93]. a-Si, p-Si, semiconducting
metal oxides, nanowires, and organic semiconductors are
promising candidates for the active channel, but several
challenges - including rigidity and electrical performance
issues - must be overcome prior to practical uses. CNTs
and graphene electrodes can be an alternative not only to
conducting electrodes but also to a semiconducting
channel.

2.2.1 Conducting electrodes

Electrical conducting materials would have potential for
consumer applications, such as soft displays, energy
generators, and human bio-devices. In such applications,
metal oxides such as [ZO and ITO are the most widely
used materials [94—96]. However, they have several limi-
tations: i) They are costly and a predicted shortage of
indium is a concern, and ii) fracture strain less than 1%
limits the mechanical ability of flexible devices. Nano-
carbon materials can overcome many of these limitations
and open a new technology platform due to their out-
standing electronic, optoelectronic, thermal, and mechan-
ical properties. Here, we describe nano-carbon materials
as conductive electrodes and the development of TCF
using CNTs and graphene, where the aim is to replace
ITO for certain applications.

During the past few years, much effort has been given
in synthesizing CNT films as a conducting element
[44,97-99]. Such CNT films have many applications in-
cluding flexible and stretchable transparent loudspeakers
[100], electrodes for LEDs, [101] lithium-ion batteries
[102], and touch panels [103]. Figure 6a shows a prac-
tical touch panel assembled by directly yarning vertically
aligned CNTs. Although the idea of utilizing CNT films
as conducting materials is simple, controlling density,
average tube length, tube diameter and mixture of me-
tallic and semiconducting CNTs is still challenging. Even
with optimized growth conditions, one serious drawback
is the relatively high sheet resistance compared to that
of conventional ITO [104]. Highly flexible, transparent,
and conducting SWCNT films are one of the recent
emerging technologies [105—-107]. The pristine SWCNT
TCF have a reported 360 /sq sheet resistance at trans-
mittance of 90% [43]. This sheet resistance could be
dramatically improved by chemical doping treatments.
Once such method using nitric acid removes the
remaining surfactant from the CNT network and can
lower the sheet resistance to a 150 Q/sq at transmit-
tance of 90% [108]. Further doping with Au®" ions has
also been shown to reduce sheet resistance to 110 Q/sq
at a transmittance of 90% [109,110]. While not surpass-
ing the electrical performance of ITO, these films have
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the advantage of better mechanical stability and are
fabricated from a more ubiquitous chemical element,
carbon. Figure 6b shows an example that graphene can
be used as electrodes to study Li ion diffusion through
graphite in lithium-ion batteries [111]. Together with
CNTs, graphene is attractive as a conducting film
[112,113], due to a large theoretically-predicted conduct-
ivity and good chemical stability. In particular, a scalable
CVD process to produce large sheets of graphene with
high transmittance and robust adhesion to plastic poly-
mers opens the possibility of using graphene in numerous
applications in soft electronics. Still the improvement of
sheet resistance of the film is an important issue for con-
ducting films. Similar to CNT films, the chemical doping
approach has been widely studied for conductivity im-
provement in graphene films [114—116]. A new approach
of layer-by-layer (LbL) doping to improve the conductivity
of transparent graphene films has been proposed [117].
Each layer was transferred to a polyethylene terephthalate
(PET) substrate followed by AuCl; doping. This approach
demonstrates not only improvement of sheet resistance

and uniformity but also better environmental stability
compared to topmost layer doping. The optimized LbL-
doped four-layer graphene shows a sheet resistance of
54 Q/sq and a transmittance of 85% (at 550 nm) with a
robust bending stability. The performance of the gra-
phene conducting films need to be further tuned and
improved to meet different requirements of practical
flexible products [118,119]. Both CNTs and graphene
TCFs have a remarkable spectral response in the UV
region, compared to the poor response of ITO films, as
shown in Figure 6¢ [47]. While ITO shows a rapid in-
crease in the sheet resistance due to cracking of the film
as the bending angle increases, SWCNTs and graphene
films show almost no significant change in the sheet re-
sistance. One drawback of the CNT TCEF film is that the
performance strongly relies on the dispersion of CNTs
in solution. In graphene case, the bottleneck process is
the transfer process, which often involves wrinkles and
crack formation. Compared to a two-dimensional gra-
phene film, the SWCNT/graphene hybrid electrode is
interesting due to its enhanced mechanical properties
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[120-122]. The SWCNT/graphene hybrid electrode
showed a 36% resistance change at a 50% strain, as shown
in Figure 6d [123]. The resistance change is remarkably
smaller than found in ITO electrodes (i.e., 2000% at 5%
strain) and even in a few layers of graphene (i.e., 200% at
30% strain). This superb stretching performance results
from the use of graphene and SWCNT network. A
continuous and robust contact can be formed between the
SWCNT network and the graphene electrode even
with graphene layer cracks under strain. This one- and
two-dimensional material combination could well provide
CNTs and graphene as an appropriate soft and transpar-
ent electrode. Table 1 summarizes the transmittance and
sheet resistance of various films. It seems that doping is
very necessary to reduce sheet resistance. It is also noted
that the CNT/graphene hybrid may improve the sheet
resistance. This will be a future research direction.

2.2.2 Active channel — CNT and graphene FETs
Miniaturization is the most important issue not only to
increase device integration density but also to improve
FET performance for complicated operations. Semicon-
ducting Si technology has given great contributions to
society, but now faces scaling which involves heat and
power consumption issues due to the fundamental limi-
tations of Si. Atomic-thick nano-carbon materials might
satisfy the scaling issue and give great benefits with com-
bination of electrical/mechanical/optical advantages. As
an active channel component, SWCNTs and graphene
have been studied for fabricating FETs and p - n junc-
tions to demonstrate their potential to outperform estab-
lished materials for next-generation electronics [125-128].
Here, we discuss extensively the advantages and chal-
lenges of such nano-carbon materials for the use of FETs
and furthermore their adaptability to silicon technology.
Figure 7 shows that various kinds of FETs using nano-
carbon materials-based active channel. Diverse geom-
etries of FETs based on semiconducting SWCNTs have
been the subject of intensive research [129-131]. An in-
dividual SWCNT FET shows favorable device character-
istics such as large on-off ratio (>10°), at room-
temperature operation [132-134]. With single CNT
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studies, it has also been demonstrated that the saturated
on-current level can be simply determined from the
work function difference between the CNT and metal or
Schottky barrier height formed at the junction, as shown
in Figure 7a [135]. For fabricating this transistor, e-beam
lithography is used to pattern the electrodes to desired
positions, but has limitations for realistic multi-array
transistors. An alternative easy fabrication method with-
out e-beam lithography is required for large-scale integra-
tion for practical electronic device applications. Although
isolated SWCNTSs are not relevant to future applications
at their current stage, numerous works show that the
aligned arrays of SWCNTs or random networks can serve
as an active channel component. Figure 7b shows FETs
with aligned arrays of SWCNTs. The use of dense aligned
arrays of linear SWCNTs was used as an effective semi-
conducting channel suitable for integration into transis-
tors and other classes of electronic devices [32]. The tubes
were parallel to one another to better than 0.1 degree. The
average CNT density can be as high as 10 SWCNT/um,
and the film provides good device-level performance char-
acteristics with mobility of ~1,000 cm® V™! s™! [136,137].
Figure 7c shows an array of FETs with random network
SWCNTs that were synthesized on a catalyst (0.01 M of
ferrocene) array by using a plasma-enhanced chemical
vapor deposition (PECVD) method at low temperature
(450°C) [138]. SWCNTs network was placed between the
source and drain electrodes and played a role of active
channel path. This random network type morphology has
the potential applicability from CNT thin film transistors
(TFTs) to large-scale flexible electronics due to its good
uniformity and processability over a large-area, which is
alternative to conventional organic or other classes of
semiconductors for integrated circuitry applications
[126,139]. However, the gate modulation is degraded due
to the inclusion of some metallic CNTs in the channel.
Strategies to reduce metallic CNTs in the channel will be
discussed in the next Section 3.2.1. Figure 7d shows an
example of graphene channel FETs on a flexible plastic
substrate [140]. In graphene, the charge carriers in the
two-dimensional (2D) channel can change from electrons
to holes subject to electrostatic gate with a minimum

Table 1 Performance comparisons for TCFs based on graphene and carbon nanotubes

Material Preparation method Transmittance Sheet resistance Flexibility Stretchability
(% at 300 Q/sq (Q/sq at 90%

sheet resistance) transmittance)
Random network CNTs [108] Spray & AuCl; doping 95.7 110 O )
Yarning CNTs [103] Laser trimming & Metal deposition 91 208 O )
CVD Graphene [117] Layer-by-layer doping 97 108 O )
CNT-Graphene hybrid [123] Solid-phase layer-stacking 70 735 O )
Metal-Graphene hybrid [124] Metal grid & Graphene transfer - 20 O O
[TO [104] Sputtering 91 80 Poor
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Figure 7 Morphologies and characteristics of CNTs and graphene FETs. a, Single CNT transistors with different metal electrodes (Pd, Hf, Cr,
and Ti). Reproduced with permission [135]. Copyright 2011, American Chemical Society. b, Electrical performance, SEM images, and optical
microscopy images of flexible TFTs using aligned CNTs array. Reproduced with permission [32]. Copyright 2007, Nature Publishing Group. ¢, Array
of FETs with random network SWCNTs. Reproduced with permission [138]. Copyright 2009, American Chemical Society. d, Flexible graphene
transistor with ion gel dielectric. Reproduced with permission [140]. Copyright 2010, American Chemical Society.
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density (or Dirac) point characterizing the transition
[127,141-143]. The experimental graphene FETs have
extremely large mobility compared to SWCNT FETs,
while on/off ratio is as low as ~10 due to zero band gap.
Despite low on/off ratio, high transconductances and
current saturation are achieved, making graphene devices
suited for analogue applications [144].

2.2.2.1 Performance control — on/off ratio control
One of the key issues in high-performance TFTs is high
on/off ratio for efficient switching behavior. In the case
of a CNT channel, the as-grown CNT network usually
contains both semiconducting and metallic CNTs [145].
These metallic CNT paths reduce the on/off ratio of the
transistor [146]. Since controlling the ratio of semicon-
ducting to metallic CNTs leads to a trade-off between
on/off ratio and charge carrier mobility of a transistor,
engineering the proper parameter is important in terms
of the type of applications. In the case of zero band gap
graphene, opening the band gap is a big challenge in the
way of achieving a higher on/off ratio in transistors
[127]. Here, we introduce several strategies for increas-
ing the on/off ratio of a transistor. In CNTs, electrical
thinning and selective channel cutting, and separation
approaches are described below. BLG and nanoribbon

approaches will be discussed for increasing the on/off
ratio in graphene transistors.

One method to obtain high on/off ratio involves elec-
trical thinning of the thick MWCNTs and CNT bundles,
as shown in Figure 8a [147]. The electrical thinning
process involves sweeping the drain voltage from 0 V to
negative values while holding the gate voltage at a just
above the threshold. Multiple sweeps with increasing
voltage eventually eliminate metallic CNT channels or
thin nanotubes (or bundles) to increase on/off ratio
[32,148]. After this procedure the off-state current in the
devices is reduced to values consistent with semicon-
ducting CNTs alone. A striping technique was used to
cut metallic CNT paths [123,149]. Figure 8b shows the
schematic image and SEM image of a region of the ran-
dom network SWCNT channel. By inserting the cutting
line perpendicular to the channel length direction, the
metallic CNTs can be terminated and the on/off ratio
increases. The critically important role of the cutting
width in determining the electrical characteristics can be
quantified. For cutting widths of 5 mm, the etched lines
increase the on/off ratio by up to four orders of magni-
tude, while reducing the transconductance by only 40%.
It is now possible to obtain uniform CNT thin films
with only semiconducting behavior by the techniques of
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applying bias. Reproduced with permission [147]. Copyright 2001, American Association for the Advancement of Science. b, Schematic and
SEM image of a region of the random network SWCNT channel. A striping technique was used to cut metallic CNT paths. Reproduced with
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permission [149]. Copyright 2008, Nature Publishing Group. ¢, Separation of semiconducting CNTs and metallic CNTs by density-gradient method.
Reproduced with permission [153]. Copyright 2006, Nature Publishing Group. d, BLG transistor with top and bottom gate to open band gap.
Applying perpendicular field from bottom gate, band gap of the BLG can opened up to 250 meV. Reproduced with permission [157]. Copyright
2009, Nature Publishing Group. e, Graphene nanoribbons with a width below 10 nm were obtained by upzipping CNTs. By narrowing the width
of graphene to a few nanometers, a quantum confinement effect of carriers happens to open the band gap. Reproduced with permission [162].

Copyright 2009, Nature Publishing Group.

semiconducting/metallic CNT separation in solution
[150—152]. The purification processes produce separated
CNTs in solution of the same chirality, diameter, length
and semiconducting/metallic type. A self-sorting method
to achieve a chirality separated CNT thin film by
controlling surface chemistry and a further large-scale
demonstration was reported in Figure 8c [153]. The
representative techniques are density gradient ultracen-
trifugation (DGU) and gel chromatography, which can
produce >99% semiconducting CNTs and continue to
improve. Despite the quite low productivity, yield, and
high process cost, this DGU technique appears to be the
most promising method to prepare semiconducting
CNT materials [153]. The gel chromatography separ-
ation method, much simpler than DGU method, is based
on the strength of the structure-dependent interaction
of CNTs with an allyl dextran-based gel [152]. TFTs
based on such separated CNTs also provide high on/off
ratio. BLG has a unique dispersion relationship whereby
application of a strong transverse electric field breaks

electron—hole inversion symmetry [154—156]. Experimen-
tally, it has been reported that an optical bandgap of ~
250 meV is possible. The effective electrical gap is smaller
than the reported optical gap, typically due to the presence
of disorder and sample imhomogeneities. Even so, large im-
provements in on/off ratios and the existence of an insulat-
ing state at charge neutrality have been observed (Figure 8d)
[157]. In these dual-gate BLG transistors, on/off ratios
of ~ 100 and ~2000 at room temperature and 20 K have
been reported, respectively [158]. BLG is disadvanta-
geous compared to graphene monolayer since acoustic-
phonon scattering is increased strongly, optical-phonon
scattering is reduced, and a parabolic band dispersion
near the band edge reduces carrier mobility compared
with monolayer graphene [159]. Moreover, the band
structure of BLG can be modified, with a larger bandgap
possible by applying a combination of strain (along z
axis) and an electrical field. However, this approach is
unfeasible with current technology. A new strategy de-
monstrated that benzyl viologen (BV) as an electron-
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donating group and bis(trifluoromethanesulfonyl)imide
(TESI) as an electron-withdrawing group are conjugated
on the top and bottom sides of bilayer graphene to open
the band gap [160,161]. This compensation doping in-
duces a high local electric field in the bilayer, but has the
limitation of weak field-effect due to a large disorder
potential. The graphene nanoribbon (GNR) strategy is
to ideally introduce a quantum confinement effect of
carriers to open the band gap by narrowing the width
of graphene to a nanometer scale. In reality, this
strategy is limited by fabrication procedures. Instead of
confinement-induced gap, this leads to a coulomb block-
ade effect that is strongly enhanced for dimensions below
20 nm. Graphene nanoribbons with a width below 10 nm
can be obtained by upzipping CNTs (Figure 8e) [162] and
by solution-phase stripping from bulk graphite [163]. The
GNR transistors exhibited an on-off ratio of ~ 10 at room
temperature [162—165]. Similar to the GNR method, gra-
phene with a nanomesh structure can open up a band gap
and shows an on/off ratio of >10* in a large sheet of gra-
phene [166,167]. However, these GNR and graphene
nanomesh transistors have poor on-state conductivity and
cannot be used for high-speed devices unless a new
method is found due to reduce scattering at the edges.
The band gap of graphene can be modulated by
chemical and physical doping processes. Band gaps of
boron- and nitrogen-doped graphene transistors showed
an on/off ratio of >100 [168,169]. It also has been reported
that by patterned adsorption of atomic H onto the gra-
phene surface, surface absorption can induce a band gap
in graphene of at least 450 meV around the Fermi level
[170]. Yet, again the degradation of mobility due to sp®
hybridization with atomic H makes this approach
impractical.

2.2.2.2 Performance Control — Polarity Control Although
CNTs and graphene intrinsically have an ambipolar
transport property, both show p-type behavior under
ambient conditions due to contacts, doping by oxidizing
acids, or doping by the adsorption of atmospheric oxy-
gen molecules and/or moisture. It is important to control
the carrier type of nano-carbon transistors for applying
“complementary metal-oxide-semiconductor (CMOS)
technology” because high noise immunity and low static
power consumption are critical issues in the modern
semiconductor industry. Therefore, it is desired to control
the major carrier types of CNTs and graphene FETs by
chemical and/or nonchemical doping methods. Here, we
introduce several polarity control methods to modify the
majority carriers in CNT- and graphene-based transistors
such as chemical doping, oxygen doping, electrostatic
doping, trap charge-induced doping, and metal work func-
tion engineering.
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In order to have n-type conversion and p-type en-
hancement behavior in CN'Ts under ambient conditions,
various chemical doping strategies have been investi-
gated [171-179]. The choice of chemical dopant is com-
plicated by the fact that the redox potential of CNTs is
strongly diameter-dependent, as shown in Figure 9a
[108]. The values in parentheses indicate the chiral index
of the SWCNTs and the reduction potentials of dopants
(BV, NADH, DDQ, NOBF,, and AuCls) are also indi-
cated as dotted lines. As shown in Figure 9a, the Au®*
ion has the large reduction potential of 1.50 V, which
acts as p-type doping in CNTs. BV has an oxidation
potential of —-1.1 V, which implies that BV can act as an
n-type dopants. BV donates electrons to the empty con-
duction band of semiconducting CNTs [180]. The right
panel of Figure 9a shows an example of n-type CNT
transistor by precisely positioning BV with inkjet printing
on CNTs channel region [181]. Using [-nicotinamide
adenine dinucleotide (reduced dipotassium salt, NADH), a
type conversion in CNTs is also demonstrated distinctly
[182]. A reduction potential of tetrafluorotetracyano-
p-quinodimethane (FATCNQ) in the range of 0.1 V to
0.2 V makes it an electron extractor and p-type dopant
[183]. For graphene, it has been demonstrated that the
work function of CVD graphene can be modulated up
to 1.1 eV with BV doping [184]. Similarly, other work
showed GO doping with Au allowed control of the work
function [185]. For BLG, surface chemical doping in
BLG can be utilized to induce a vertical displacement
field. Interestingly, tunable Dirac points can be ration-
ally controlled by the amount of BV doping, providing
complementary inverter circuits [186]. Figure 9b shows
a simple way to control polarity by just annealing the p-
CNT FET in vacuum, converting it to an n-CNT FET
[187]. One of the reasons for having p-character in
CNT FETs is due to the interaction with O, physisorbs
on the CNT surface [148,188,189]. Originally a p-type
CNT FET was converted to n-type after annealing
process for removing O, molecules [187]. It has been
shown that the type conversion of CNT FETs could be
possible by electrostatic doping using a charge-trap
layer between the gate electrode and CNT channel
[190,191]. Figure 9c shows the transfer characteristics of
p-type and n-type CNT FETs converted using an Au
floating gate. At high negative gate bias range, positive
charges are trapped in the trap layer, and the threshold
voltage is shifted in the negative bias direction. Therefore,
the FETs show n-type characteristics in relatively small
gate voltage sweep range. On the contrary, when high
positive gate bias is initially applied, which traps the
negative charges, the FETs show p-type characteristics in
a relatively small gate voltage sweep range. Figure 9d
shows the electrical performance of an initially p-type
characteristic as it is gradually changed to n-type via
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Figure 9 Various methods of polarity control of FETs based on CNTs and graphene. a, Redox potential of nanotubes as a function of the
diameter (left). This Reproduced with permission [108]. Copyright 2010, Royal Society of Chemistry. Array of n-type CNT transistor by precisely
positioning an air-stable BV. Reproduced with permission [181]. Copyright 2011, American Chemical Society. b, Effect of oxygen on p-doping. I-V
curves of originally p-type CNT FET, with the nanotube capped with PMMA, have been converted to n-type. Reproduced with permission [187].
Copyright 2001, American Chemical Society. ¢, The type conversion of CNT FETs by trap layer-induced electrostatic doping. Adapted with
permission [190]. d, |-V characteristic of an initially p-type characteristic in SWCNT FET, gradually changed to n-type caused by increasing amounts

of K. Reproduced with permission [187]. Copyright 2001, American Chemical Society. e, Polarity control by metal (Pd and Al) work
function. Reproduced with permission [193]. Copyright 2005, American Institute of Physics.

increasing amounts of K on the nanotube [187,192].
Potassium ions have a high oxidation potential of -0.7 V
and act as an electron donor (n-type dopants) for CN'Ts.
Logic circuits and pn junctions were fabricated by cover-
ing half of a CNT FET with PMMA and K-doping the
exposed regions. The electrical polarity of SWCNT FETs
can be affected by the work function of the contact metal,
especially by the contact barrier control for the injection
of carriers [148,175,193]. Figure 9e shows the transfer
characteristics of CNT FETs using different metal contact
electrodes such as Pd and Al [193]. The transfer charac-
teristics show the presence of a p-type on-state but no
n-branch in the case of high-work function metals such
as Pd and Ti, ambipolar behavior in the case of Mg, and
n-type only behavior in the case of Ca electrodes [194].
By varying the work function, the band alignment for a
Mg-contacted device has efficient hole and electron in-
jection, resulting in ambipolar characteristics. Conversely,
due to work function and surface dipole formation, CNTs
contacted by Ca electrodes have a suppressed p-type

branch due to large energy barrier for holes. Although
this method works to control the injection of carriers in
single devices, the use of different metal electrodes in high-
density devices is commercially unreasonable and resulting
devices still have highly variable contact properties.

Numerous efforts have been made to get higher on/off
ratios and better control of carrier type in nano-carbon
transistors. In order to understand advantages and disad-
vantages for CNT and graphene FETs, a side-by-side
comparison is required. Table 2 shows the comparison
for FET performance of CNTs and graphene devices.
CNT FET and graphene devices exhibit output perfor-
mances in a different manner. Moreover, the perfor-
mances are distinct in different types of FET devices
consisting of different forms of CNTs (single CNT,
aligned CNT network, random CNT network) and
graphene (CVD graphene, exfoliated BLG, GNR) with
different gate structures. Nevertheless, a clear trade-off
behavior between on/off ratio and mobility for each
device was shown.
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Table 2 Device performance of various CNTs and graphene FETs

Channel Preparation method  Transistor Gate Gate Carrier type On/Off Mobility

structure dielectric  length (um) ratio (cm?/Vs)
Single CNT [32] CVD on quartz Back gate Sio, 5 p-type 10° 636"
Aligned CNTs [32] Electrical breakdown Back gate HfO, 12 p-type 2—-10* 5709 — 200©
Random network CNTs [149] Channel cutting Top gate HfO, 100 p-type 10 > 10" 2009 — 80
Random network CNTs [153]  97% separated CNTs Back gate SiO, 20 p-type 10* 20
Random network CNTs [181]  Viologen doped CNTs  Back gate HfO, 9 p — n-type 10° 2P
Exfoliated graphene [141] Monolayer graphene  Back gate SiO, 4 Ambipolar 10 10,000%
CVD grown graphene [195] Monolayer graphene  Back gate SiO, 5 Ambipolar 10 1,100®)
Exfoliated graphene [158] Bilayer graphene Dual gate  SiO, (Back) 1.6 Ambipolar 5— 100 -

HfO, (Top)

Graphene nanoribbon [162] 16 —6 nm nanoribbon  Back gate Sio, 0.25 Ambipolar — p-type 1.5 — 100 -

p: Parallel plate Model, c: Cylindrical Model, h: Hole Mobility, e: Electron Mobility.

2.3 Flexible electronics

2.3.1 Integrated logic circuits

Next-generation military and industrial radio-frequency
(RF) surveillance systems will benefit from flexibility and
stretchability of circuits for increased resilience. A realis-
tic short- and medium-term goal for carbon electronics
is utilizing the combination of electrical, mechanical,
and optical properties of CNTs and graphene thin films
to replace organic semiconductors and a-Si in these
flexible/stretchable systems [196—204]. In this section,
we introduce recent progress for integrating high-quality
circuits on plastic substrates.

Figure 10a shows an integrated circuit fabricated with
monolayer graphene as the electrodes and a SWCNT
network for the channel [123]. Using this layout, transpa-
rent logic circuit arrays (inverters, NOR gates, and NAND
gates) using SWCNT-channel/graphene-electrodes tran-
sistors were fabricated with a high yield of 80%. The au-
thors connected two p-type transistors to create a PMOS
inverter with gain of approximately 1.4, with an operating
voltage range of 0-5 V. PMOS NOR and NAND logic
gates were similarly constructed using three SWCNT/
graphene transistors. The graphene electrode and the
SWCNT network channel are desirable not only for flex-
ible and stretchable electronics, but also for use with invis-
ible electronics due to the high transparency of atomically
thin materials. Figure 10b shows a flexible four-bit row
decoder circuit using SWCNT as the channel and metal
electrodes [149]. A binary-encoded input of four data bits
is successfully decoded using this decoder circuit. Due to
the high mobility of the SWCNT thin films, even with
critical dimensions (100 pm) these decoder circuits can
successfully operate in the kHz region. With such large
channel lengths, cheap and scalable patterning methods
such as screen printing are possible. More complex device
structures are also easily possible such as master—slave
delay flip-flops and 21-stage ring oscillators which were

fabricated on PEN substrates [205]. Figure 10c demon-
strates flexible complementary graphene inverters prepared
on a plastic substrate by connecting two graphene transis-
tors with a coplanar gate configuration. Fabrication was
achieved using only two materials: graphene and an ion
gel gate dielectric [206]. Unlike conventional solid state di-
electrics, the operation of ion-gel gated transistors is based
on the formation of a high capacitance electric double
layer (EDL) under an electric field. The graphene inverter
operates uniquely with two identical ambipolar transistors,
unlike complementary inverters based on separate n- and
p-channel transistors. Also in contrast to typical CMOS
inverters, the output voltage did not saturate to zero or
the supply voltage (Vpp) due to the zero band gap of
graphene [206]. With an estimated maximum voltage gain
of 2.6, the technology is sufficient to drive subsequent
components in logic circuits. Graphene-based frequency
doublers and modulators on rigid substrates have been
reported to demonstrate the feasible usage of graphene
in analogue electronics [207-211]. Figure 10d shows a
flexible all-graphene modulator circuit for quaternary
digital modulations, which can encode two bits of
information per symbol [212]. A couple of transistors
are required for these two quaternary modulations.

2.3.2 Other Flexible Applications

Applications ranging from flexible solar cells, displays,
e-papers, wearable and biomedical skin-like devices open
up new opportunities in the field of electronics. In this
section, we describe applications of several flexible de-
vices possible with carbon electronics jsuch as sensors,
LEDs, RF devices, stimulators, and memory devices.

As an example of further applications of flexible devices,
Figure 11a demonstrates an active-matrix backplane for
an artificial electronic skin (e-skin) device, capable of
spatial touch mapping [213]. The SWCNT TFTs are used
for a mechanically flexible backplane with polyimide as a



Chae and Lee Nano Convergence 2014, 1:15
http://www.nanoconvergencejournal.com/content/1/1/15

Page 15 of 26

3’“"4 -

SWCNT inverter, NOR, NAND

00 w1

Input voage
Graphene inverter

s
v)

Figure 10 Flexible logic circuits using CNTs and graphene. a, Transparent and flexible logic circuits (inverter, NAND, and NOR) using
graphene as electrodes and random network CNTs as the channel. Reproduced with permission [123]. Copyright 2011, American Chemical

Graphene digital modulator

Society. b, Flexible four-bit row decoder circuit using SWCNT channel and metal electrodes. Reproduced with permission [149]. Copyright 2008,
Nature Publishing Group. ¢, Flexible complementary graphene inverters prepared on plastic substrate with ion-gel gate dielectric. Reproduced
with permission [206]. Copyright 2012, American Chemical Society. d, Transparent and flexible all-graphene digital modulator for quaternary

digital modulations. Reproduced with permission [212]. Copyright 2012, Nature Publishing Group.

support substrate. The polyimide film substrate was
utilized as a honeycomb mesh structure to make the sub-
strate more robust against strain. Each pixel of pressure
sensor is actively controlled by a SWCNT TFT. The sen-
sor sensitivity shows ~30 pSkPa™*, which is three times
larger than previous NW-based sensors [214]. Figure 11b
shows the flexible active-matrix design with SWCNTs as
the channel material. In these devices, high current drive
is needed to actively switch OLEDs [215]. Each pixel is
controlled by a SWCNT TFT that acts as a switch for an
active-matrix of OLED and pressure sensor. Alternating
current electroluminescence devices on flexible PET
substrates were also demonstrated based on monolayer
graphene electrodes [216]. Graphene seems to be an ideal
material for high-speed systems owing to its extremely
high carrier mobility. Despite poor switching behavior of
graphene transistors limits their usage in digital/logic

applications, they are still promising in the analogue/RF
applications due to their atomic-thick layout that allows
for shorter scaling of channel length. The combination of
high speed and flexibility is a big challenge for flexible gra-
phene RF devices [217-221]. RF devices using graphene
have achieved cut-off frequencies between 100-300 GHz.
Figure 11c shows the flexible solution-based graphene
transistors at GHz frequencies with a current gain cut-off
frequency of 2.2 GHz and a power gain cut-off frequency
of 550 MHz [217]. Noninvasive probing and manipulation
of biological tissue is another field where graphene is use-
ful. Figure 11d reports a nonvascular surgical method to
increase cerebral blood volume using a flexible, transpar-
ent, and biocompatible graphene electrical field stimulator
[222]. The flexible graphene stimulator was placed onto
the cortical brain without tissue damage or unnecessary
neuronal activation. A noncontact electric field was
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Figure 11 Various flexible applications using CNTs and graphene. a, Active-matrix of SWCNT TFTs for a pressure sensor device. Reproduced
with permission [213]. Copyright 2011, American Chemical Society. b, Flexible active-matrix design using SWCNTs as the channel material of the
TFTs in OLEDs. Reproduced with permission [215]. Copyright 2013, Nature Publishing Group. ¢, Flexible RF device using solution-based graphene.
Graphene is an ideal material for high-speed communication systems owing to its uniquely high carrier mobility. Reproduced with permission
[217]. Copyright 2012, American Chemical Society. d, Flexible, transparent, and noncytotoxic graphene electric field stimulator. Reproduced with
permission [222]. Copyright 2013, American Chemical Society. e, Transparent and flexible memory devices using SWCNT channel and graphene
electrodes. The oxygen-decorated graphene electrode revealed an initially large hysteresis in SWCNT/graphene TFT. Adapted with permission [223].

applied at a specific local blood vessel to detect effective
cerebral blood volume increases in mouse brains using
in vivo optical recordings of signal imaging. In Figure 11e,
transparent and flexible memory devices were fabricated
using graphene electrodes and SWCNT channel [223].
The original electrical characteristics of the FET using
graphene electrode without ozone treatment show small
hysteresis. When the graphene gate was treated under an
ozone generator, oxygen atoms and graphene have bond-
ing as C-O-C, C=0, and C-OH, which acted as charge
trap sites. The FET with oxygen-decorated graphene elec-
trode exhibits large hysteresis. This hysteresis-controllable
FET can act as memory device, and showed no degrad-
ation of transmittance after oxygen decoration. This result
is noticeable, compared to Au and Al nanoparticle trap
layers that provided an 11.4% and 25% decrease in trans-
mittance, respectively [224]. Flexible organic resistive
memory devices with multilayer graphene electrodes were
also reported [225]. Memory devices using a graphene
oxide film were also fabricated on flexible substrates with
reliable memory performance in terms of retention
and endurance [226].

2.4 Stretchable electronics

Stretchability is a key parameter in the development of
wearable devices that can be embedded into clothes and
garments or even attached directly to the skin, where
high levels of strain will be encountered. Possible appli-
cations include the human-friendly devices for detecting
human motions, monitoring health system, and healing.
In addition to flexibility, all these stretchable applica-
tions demand tolerance of large levels of strain (> > 1%)
without fracture or significant degradation in electronic
properties. The mainstream strategy to realize improved
stretchability focuses on the development of stretchable
materials including organic polymers, networks of 1-D
wires, and nano-carbons [227-231]. Owing to the diffi-
culties in developing new stretchable materials, geomet-
rical engineering of the structures also needs to be
addressed [6]. For example, ultrathin buckled geometries
and pre-strained geometrically wavy materials offer
stretchability with applied strain [232-235]. These de-
vices can be integrated into larger systems containing
conventional rigid materials. In this section, we intro-
duce developed classes of material-based stretchable
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devices that use CNTs and graphene thin films on
elastomer substrates.

2.4.1 Stretchable conducting films

Loading a SWCNT random network onto an elasto-
meric substrate simply affords a stretchable conducting
film with the ability to accommodate strains greater than
20% [236-238]. The left panel of Figure 12a shows trans-
parent, conducting spray-deposited films of SWCNTs that
can be stretched by applying strain along each axis [239].
This stretchable SWCNT film accommodates the stret-
chability by up to 150% with conductivities as high as
2,200 S cm ™" at the strain of 150%. This property can be
utilized to construct strain sensors, with performance
comparable to conventional metal-strain gauges. Using a
nonlinear buckling process as shown in the right panel of
Figure 12a, ribbon arrays of CNT films can be modified
into a “wavy” layout [231]. With a pre-strain (100%)
method, the wavy CNT ribbon can accommodate large
stretching with the 4.1% resistance increases when the
wavy CNT ribbon is stretched to the pre-strain stage. Ap-
plied strains lead to a reversible deformation of these
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buckled patterns which change the electrical properties.
Together with the good optical and electrical properties,
graphene films have excellent mechanical properties ap-
plicable to stretchable electrodes. One such example con-
sists of few-layer CVD grown graphene films transferred
onto elastic substrates, as shown in the left panel of
Figure 12b [240]. The transferred film on an unstrained
substrate recovers its original resistance after stretching by
~6%. In this work, the authors also transferred the film to
pre-strained (12%) substrates to enhance the electromech-
anical stabilities. Both longitudinal and transverse resis-
tances (R, and R,) were stable up to ~11% stretching with
only one order of magnitude change at ~25% stretching.
3D-graphene macroscopic structures formed with a foam-
like network of graphene was also developed using
template-directed CVD (right panel of Figure 12b) [241].
The composites fabricated by this approach are a mono-
lithic 3D-graphene network, in which electrical and
mechanical properties were improved by using continuous
CVD grown graphene building blocks. The results of gra-
phene composites show stretchability over 50% with resist-
ance changes stable after the fifth cycle of stretch-release.

st 2nd‘ 3rd
Stretching cycles

0 036036036
1047 Stretching (%)

Resistance (2)

-
!0]] - o
9000, o o+ .

Stable

e

o 5 10 15 20 25 30
Stretching (%)

Strain (%)

Graphene conducting films

Figure 12 Stretchable conducting films using CNTs and graphene. a, Transparent, conducting spray-deposited films of SWCNTs that can be
rendered stretchable by applying strain along each axis (left). Reproduced with permission [239]. Copyright 2011, Nature Publishing Group. Wavy
ribbons of CNTs are embedded in elastomeric substrates to fabricate stretchable conductors (right). Adapted with permission [231]. b, Stretchable
conducting films using few-layer CVD grown graphene (left). 3D-graphene macroscopic structure with a foam-like network graphene (right).
Reproduced with permission [240,241]. Copyright 2009 and 2011, Nature Publishing Group.
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2.4.2 Stretchable applications

Extreme difficulties are associated with the development
of complete sets of stretchable electronics because all el-
ements of the system need to be stretched out together.
For instance, currently available carbon-based devices
such as TFTs usually exhibit limited flexibility and
stretchability owing to the use of fragile oxide dielectrics
such as Al,O3 and SiO,. Polymer dielectrics have modest
electrical performance despite their excellent bendability
[242]. In this section, we introduce several strategies to
fabricate stretchable devices using CNTs and graphene.

Reproduced with permission [246] Copyright 2011,
Nature Publishing Group.

Figure 13a shows transparent and stretchable integra-
ted circuits composed of CNTs and polymer dielectric
[243]. The active channel and electrodes were all fabri-
cated from CNTs (semiconducting and metallic), with
PMMA dielectric layer and a plastic substrates. Although
these were fabricated on plastic substrate, thermo-
pressure was used for forming dorm-shape biaxial strain.
The devices exhibit biaxial stretchability of up to 18% and
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the level of logic circuits include inverters, ring oscillators,
NOR, NAND, XOR gates, and static random access mem-
ory (SRAM) cells. In Figure 13b, a graphene FET array on
a stretchable rubber substrate with ion-gel dielectric is
introduced [244]. Such all-graphene devices (graphene
composes both the channel and electrodes) exhibit hole
and electron mobilities of ~1188 and ~422 cm’*V~' 577,
respectively with stable operation up to 5% stretching.
Although the stretchability of transistors is moderate,
impressively the electrical properties were invariant
even after 1000 cycles. Figure 13c shows a new approach
for preparing a wrinkled gate dielectric using a transfer
method to maximize the performance of the oxide with-
out compromising the ability to stretch and bend [245]. A
50 nm aluminum oxide (Al,Os3) layer was deposited onto
rough Cu foil using atomic layer deposition. After coating
with PMMA, Cu foil was chemically etched, and the
Al,O3 layer was then transferred as dielectric layer. This
transferred Al,O3 layer was wrinkled with a “wavy” struc-
ture, which was robust under high tensile strain. The
resulting TFTs exhibited device-acceptable electrical
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Figure 13 Stretchable applications using CNTs and graphene. a, Transparent and soft integrated circuits with random network SWCNT

lon gel
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k—s%nlamn—-—rl
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channel and PMMA dielectric layer on the PEN substrate. Reproduced with permission [243]. Copyright 2013, Nature Publishing Group. b, Graphene
FET array on a stretchable rubber substrate with ion-gel dielectric. Reproduced with permission [244]. Copyright 2011, American Chemical Society.

¢, Stretchable and transparent TFTs combining SWCNTs/graphene with a geometrically wrinkled AlL,Os dielectric layer. Reproduced with permission
[245]. Copyright 2013, Nature Publishing Group. d, Wearable and stretchable strain sensors fabricated from thin films of aligned SWCNTs. Reproduced
with permission [246]. Copyright 2011, Nature Publishing Group.
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performance with small gate leakage current due to
the build-in air gap between wrinkled Al,O3; and
graphene gate. The devices were stretched along the
length direction (16% strain) and along the width direction
(20% strain), as shown in Figure 13c. The devices were
stretched and released up to a maximum of 1,000 times
without deterioration. Figure 13d shows a class of wear-
able and stretchable devices fabricated from thin films of
aligned SWCNTs [246]. When stretched, the films frac-
ture into gaps and islands with tube bundles bridging the
gaps. This mechanism allows the films to act as strain
sensors with capabilities extending up to 280% strain,
which is 50 times more than conventional metal strain
gauges, with high durability (10,000 cycles at 150% strain),
and fast response (delay time of 14 ms). When the CNT
sensors were assembled on stockings, bandages and
gloves to fabricate devices, the devices were able to
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detect human movement, typing, breathing and speech,
each unique applications useful for developing human-
friendly and bio-integrated devices [239]. Figure 14 shows
a summary of the flexible/stretchable device layouts and
circuit levels of devices using nano-carbon, followed by
the demonstrations of electrical, optical and mechanical
properties.

3 Conclusions

3.1 Summary and prospects

We have reviewed the current status of CNTs and gra-
phene in diverse applications of soft electronics from
material preparation to performance in logic circuits. Low-
dimensional carbon materials exhibit superb electronic
properties and promising performance and are attractive
for future electronics. Methods for synthesizing one-
dimensional CNT and two-dimensional graphene films, as
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on flexible plastic substrates. Since this device uses metal electrodes, there is no transmittance data. Reproduced with permission [149]. Copyright
2008, Nature Publishing Group. b, Flexible integrated circuits (inverter, oscillator, NOR, NAND, and Flip-flop) with random network SWCNT channel
on the PEN substrate. Reproduced with permission [205]. Copyright 2011, Nature Publishing Group. ¢, Transparent and flexible logic circuits
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Copyright 2011, American Chemical Society. d, Graphene FET array on a stretchable rubber substrate with ion-gel dielectric. Reproduced with
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well as procedures for device fabrication on soft substrates
have been discussed here. Both CNTs and graphene exem-
plify TCF properties including a high operational flexibility
and stretchability that are not accessible with transparent
ITO electrodes. Likewise, field effect mobilities of carbon-
based transistors have reached levels unfeasible by organic
semiconductors/a-Si. CNT FETs, whether composed of a
single CNT, aligned CNTs, or random network CNTs,
show high on/off ratio and mobility. Graphene FETSs pro-
vide extremely high mobility but poor on/off ratio due to
zero band gap. Engineering for on/off ratio increase and
carrier polarity control were summarized. For applications
in active electronics, SWCNT and graphene transistors
can be assembled on a variety of substrates including
flexible plastic and stretchable elastomers. Various com-
plex integrated circuits based on nano-carbon materials
have been demonstrated in the literature, as well. Each
of these topics requires significant future exploration
in order to realize commercialized applications of the
immense potential of nano-carbon in next-generation
electronics.

In spite of recent progress demonstrating the unique
advantages of CNTs and graphene, the possible appli-
cations, social influence, addressable markets, and re-
lated economic issues will eventually decide the success
of these nano-carbon materials. Both have unique and
superb properties which open the possibility for soft
electronics. Nevertheless, applications are limited by a
different set of factors. Assemblies of CNTs are practical
compared to the use of individual CNTs, but require the
positioning of the CNTs in a specific direction, with
desired density, and of desired metallicity/chirality.
Methods to achieve this control are a current hot topic,
but adoption of a particular method will require a high
yield for industrial utilization even in niche applications.
Conversely, graphene can be prepared in a large-area
format. Yet, the transfer to a desired substrate may pro-
voke damage in the graphene layer and degrade device
performance. Therefore, developing a smart way of assem-
bling CNTs to maximize the device performance and
robust method of transfer of large-area graphene are two
key ingredients that are unsolved but required for applica-
tion. On a systems level, future electronics including
biomedical applications with biocompatibility will require
further research. For instance, CNTs and graphene com-
bine synergistically, showing better flexibility and stretch-
ability with no degradation of electrical performance when
engineered to maximize potential. Additionally, combin-
ing both stretchable materials and stretchable geometries
can allow for extremely stretchable systems. Aside from
the engineering challenges of applying nano-carbon to soft
electronics, CNTs and graphene are outstanding materials
for demonstrating a number of basic science concepts in
the fields of quantum electrodynamics, quantum optics,
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and quantum chemistry. Controlled synthesis and applica-
tion of monolayer materials also allows exploration into a
new class of vertical tunneling devices. Aside from carbon,
other classes of graphene-like 2D materials such as
transition-metal dichalcogenide (TMD) materials and
boron nitride (BN), might also be promising in the field
of soft electronics when a band gap or other electrical/
mechanical properties are required. These related en-
gineering opportunities in areas with the broad range of
influential research topics provides strong motivation
for continued efforts in human-friendly soft electronics.
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