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Abstract

Nanomaterial-delivery fabrication expects high-potential impacts on nanoscience, technology and industry, but still
faces limited applicability mainly due to high-field requirement for liquid delivery, complicated intermediate processes,
and narrow ink selectivity. Here, we demonstrates a simple, non-template, non-contact and electric field-free fabrication
of diverse nanofibers. The process consists of continuous, meniscus-assisted delivery of liquid solutions through a
nanoapertured nozzle in ambient conditions, followed by subsequent evaporation of liquid and aggregation of nanoparticle
residues. For example, the carbon-nanotube nanofibers of 500 nm diameter exhibit a high shear modulus of ~1.5 GPa and
current density up to 104 A/cm2. The results provide a unique, universal and versatile tool with wide selectivity in both ink
and substrate.
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1 Background
Nanomaterial-delivered fabrication [1-7] is a critical step
toward realization of molecular architecture/electronics
and nano-bio material engineering. Among conventional
technologies, it corresponds to the additive nanofabrica-
tion method, representing a bottom up approach for
nanostructures and nanodevices, which deposits mate-
rials onto a substrate. Such additive methods can be
classified into two categories: beam-based writing [8,9]
and pen-type lithography [10,11]. The direct laser writing
is a typical beam-based lithography method and has the
advantage of a fast prototyping speed, but it cannot be
used to deposit beam-inactive materials. The electron-
beam-based and the focused-ion-beam-based lithography
allow high-resolution fabrication of various nanomaterials
but the required high particle energy and long writing
time limit their applications to nanodevice fabrication. On
the other hand, the pen-type nanofabrication method such
as the dip-pen nanolithography exhibits the advantages of
higher throughput and lower energy consumption than
the beam-based methods along with previous contribu-
tions of nano-dispensing [12-15] and scanning probe lith-
ography methods [16-18]. However, it also suffers from
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both lack of continuous writing capability and limited ink
selectivity. Recently, the meniscus-confined electrodeposi-
tion of electrolytes has been developed for fabrication of
metallic structures, but its application is restricted to the
conducting substrate because it employs the electric field-
induced delivery [19].
Therefore, the low energy consumption, broad selectiv-

ity in ink and substrate, and continuous writing capability
are still technical challenges for a general realization of the
existing additive nanofabrication methods. In other words,
one has to overcome the practical limitations of conven-
tional methods in fabrication of diverse nanomaterials; for
example, narrow ink/substrate selectivity, complex inter-
mediate processes, difficult individual manipulation of
nano-objects, non-applicability of microscale ink-jet print-
ing at the nanoscale, and relatively long manufacturing
time. As an alternative approach to address these crucial
and demanding issues, we introduce a direct and versatile
nanofabrication scheme, which combines the field-free
nanomaterial-delivery of liquid solutions (inks) followed
by mechanical drawing out of a nanoapertured pipette as
well as precise distance controllability and sensitivity of
dynamic atomic force microscope (AFM). This method
represents substantial advances over current technologies
because it demonstrates, (i) realization of general nano-
fabrication of nanofibers (NFs), (ii) electric field-free,
continuous delivery of liquid solutions, (iii) non-template
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fabrication and in situ characterization of the viscoelastic
NFs, (iv) demonstration of wide selectivity in ink (nano-
particles, polymer, ionic/bionic molecules and cabon
nano-tube (CNT)) and substrate (mica, glass, gold-coated
glass, and graphene) and (v) stable and repeatable op-
eration due to low-energy, non-contact control of the
nanoaperture, avoiding its mechanical wear or contact
damage.

2 Methods
Nanomeniscus-induced delivery of liquid solutions for
fabrication of the diverse NFs is realized by using a nano-
pipette combined with quartz tuning fork (QTF)-based
AFM [20] which was previous nanofluidic and lithographi-
cal results. The pulled glass nanopipette, fabricated by a
mechanical puller (P-2000, Sutter Instrument Co.), with
controlled aperture diameters of ~100 nm and ~500 nm,
serves as a nano-nozzle for drawing of low-volume liquid
solutions (Additional file 1: Figure S1). When the nanopip-
ette tip, which is a reservoir filled with various liquids such
as nanoparticle, CNT, polystyrene solutions, approaches
the substrate within ~2 nm, the capillary-condensed water
naturally forms in the nanopipette-substrate gap in ambient
conditions [21]. This water nanobridge plays a mediating
role of a nanoscale liquid channel through which the liquid
solution is continuously delivered at any desired locations,
even in the absence of applied electric fields once the
nanobridge is connected. As the tip retracts at variable
speeds, the nanomaterial solutions inside the pipette con-
tinue to be pulled out to produces the diverse NFs, con-
sisting of aggregated nanomaterials with the solution itself
evaporated in air. Note that the non-contact mode oper-
ation of AFM can be achieved due to the high stiffness of
the QTF, which produces the well-defined and well-
Figure 1 Products of nanomaterial-delivered fabrication. (a) Fabricated
standing but twisted due to SEM electron-beam illumination. (b) Fabricate
fabrication, which shows the traces (i.e., holes and pores) left behind after l
characterized NF preform, while protecting the tip dam-
age and allowing its repetitive and reliable use.
The phenomenon of nanomaterial delivery and liquid

ejection was directly observed by an optical microscope
(OM; ×1,000 magnification) positioned under the sub-
strate. A 200 μm-thick glass was used for the substrate
and the 20 nm-thick Au electrode was coated on its bot-
tom surface to avoid field-assisted spreading of the liquid
solution on the top surface. The detailed fabrication
processes of the vertically drawn NFs are described in
Additional file 1: Figure S2 and Movie S1 (×12 play speed).
Figure 1 shows the scanning electron microscope (SEM)
images of two Au NFs produced thereby, having a 100 nm
(500 nm) diameter and 5 μm (40 μm) lengths, respectively
using Au nanoparticle solution (2 ± 0.2 nm diameter, PBS
buffer, 0.01% wt/vol concentration; BBI Solutions Co.). The
diameter of the pulled Au NFs is basically determined by
the nanopipette’s aperture size, while the length can be
easily controlled by vertical retraction movement of the
piezoelectric transducer (PZT) that supports the glass sub-
strate. The self-standing 100 nm-thick NF, showing roughly
uniform diameter, is severely twisted to an arbitrary shape
by illumination of the SEM electron beam during evapor-
ation of the liquid solution (solvent) that exists between the
nanoparticles (Figure 1(a)). The 500 nm-thick NF, being
intentionally laid down on the horizontal substrate after be-
ing cut off by the tip itself, shows the holes and pores that
represent traces of the evaporated liquids (Figure 1(b)).

3 Results and discussion
3.1 Characterizations of the fabricated NFs
To investigate the material characteristics of the NFs, we
first have investigated the mechanical properties of the
NFs by exploring dynamic force spectroscopy in the
Au nanofiber (NF) of 100 nm thick and 5 μm long, which is free
d Au NF of 500 nm thick and 40 μm long, laid down horizontally after
iquid evaporation.
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simple harmonic oscillator model for the dual function
of the QTF as a force sensor [22-25]. When the Au NF
was formed between the nanopipette tip and the sub-
strate, with its bottom end fixed to the substrate via
physical bonding, fast oscillation motion (~32 kHz) by
dithering of the QTF tip (Additional file 1: Figure S3).
The shear modulus (=stress/strain, G = τ/γ) of the NFs can
be measured, where the shear stress and strain are given by
τ = Fs/A and γ ≈ 3ΔL/L, respectively (A is the circular cross
section area of the NF). Notice that the shear force Fs is
obtained by integration of the QTF sensor’s force-gradient
results, lateral displacement ΔL is half of the oscillation
amplitude (a) of the QTF, L is defined by stopping pos-
ition of tip retraction, and factor 3 comes from the
Figure 2 Characteristics of the fabricated NFs. (a) Results of the fast osc
shear stress τ (blue and red curves) with respect to the strain γ (black curve) fo
for a different oscillation amplitude a. (b) Electrical properties of the NF. (i) Ele
two electrodes after fabrication. The current through the NF shown in (ii) Mea
with rearrangement of the constituent nanoparticle clusters within the NF by
the spectral peak associated with the Au (111) particles. (ii) Halogen lamp illum
within the NF, as indicated by the gold color.
cantilever-model approximation. Figure 2(a) shows the
results of the fast oscillation experiment for the Au NF
with ~15 μm length and ~100 nm diameter. The oscilla-
tion frequency of the NF is same as the resonance fre-
quency of the QTF (~32 kHz), and the oscillation
amplitude is determined by the stroboscopic OM images
(Additional file 1: Figure S4). Figure 2(a)-(i) presents the
sinusoidal temporal behaviors of the strain γ (black curve)
and stress τ, which shows the existence of a time delay Δt
with respect to the strain. For large oscillation (red curve
for a ~1.3 μm), Δt is about 5 μs, whereas only a slight delay
occurs for small oscillation (blue curve for a ~100 nm), in-
dicating the dependency of viscoelasticity of the NF on the
oscillation velocity. Figure 2(b)-(ii) present the elliptic
illation (at ~32 kHz frequency) experiment. (i) The time delay Δt of the
r the NF. (ii) The hysteretic responses between the shear stress and strain
ctrical current is in situ measured by connecting the fabricated NF with
sured current signal with various current spikes which may be associated
electric field. (c) Optical properties of the NF. (i) The XRD results exhibits
ination shows the well and uniformly distributed Au nanoparticles
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hysteresis curves between the stress and strain, which
reveal the time delay, that is, the viscoelasticity informa-
tion of the NFs. With the measured shear stress of ~8
MPa (20 MPa) at the strain of 2% (5%), we obtain the Au
NF’s shear modulus of ~400 MPa at each maximum
displacement, which show similar values with the protein
crystal (100 ~ 1000 MPa) or soft polymer (~500 MPa) [26].
For investigation of the electrical properties of the NFs,

a direct current measurement scheme was implemented
on the spot where the NF was fabricated (Additional file 1:
Figure S5). After the NF was fabricated on the substrate,
the two electrodes were connected with the NF and the
electrical current was in situ measured (Figure 2(b)). The
NF behaves like a poor conductor (~200 nA at ~1 kV bias
potential) compared with the single-crystalline Au nano-
wire [27] due to the low dimensional factor, impurity and
composition of liquid. Interestingly, several electrical
spikes were observed as marked by the arrows, which may
be attributed to rearrangement of the nanoparticle clusters
within the NF by an applied electric field. Due to the phys-
ical similarity between the NF and the molecular architec-
ture based on complex biological materials, the similar
current measurement may be useful for such applications
as molecular electronics and biomolecule synthesis. We
also investigated the optical (or structural) properties of
the NFs by analyzing the X-ray diffraction (XRD) patterns
and by illuminating the halogen lamp (Figure 2(c)). The
test sample for the XRD experiment was prepared by a
droplet of the 2 nm Au-particle solution dried on the glass
substrate, and the XRD results indicate the presence of
the Au (111) states above the SiO2 background. Direct
Figure 3 Wide selectivity in ink and substrate for diverse nanofiber fa
combinations of inks and substrates. (b) The fabricated micro- and nano-sc
are distinguished by the contrast of the reflection-mode OM images.
illumination of the halogen lamp on the fabricated Au NF
shows the gold-color fluorescence, which confirms the
uniformly distributed Au nanoparticles along the NF axis.

3.2 Wide selectivity in ink and substrate
The previously demonstrated nanoscale material-delivery
schemes with electrospinning and electrochemical methods
[11,12] exhibit intrinsic limitations due to, in particular,
narrow ink selectivity associated with stringent require-
ments of specific liquid solutions, such as low viscosity or
slow electroreduction rate. Here, we successfully demon-
strated fabrication of the NFs using various inks (or liquid
solutions) and substrates (Additional file 1: Figure S6).
Figure 3(a) presents the OM images of various NFs
produced by diverse combinations of ink and substrate.
For example, the 2 nm Au-nanoparticle- and 42 nm
polystyrene-sphere-based NFs having a diameter of several
hundred nm were fabricated on the glass, Au-coated glass,
mica, and chemical vapor-deposition graphene monolayer
[28,29] by using a 100 and 300 nm apertured nanopipette.
In the case of NaCl solution, on the other hand, the ionic
concentration was a critical factor for successful nanofab-
rication. At a high concentration (>0.1 M), although verti-
cal growth was possible with a shape of the hollow
sculpture, it was rather difficult to fabricate the well-
shaped NFs due to the fast reduction process of ions.
However, at a low concentration under ~10−4 M, the
nanoscale NaCl crystal pillars were easily produced by the
NF fabrication (Additional file 1: Figure S7).
In particular, the ionic composite NFs could be realized

by using deionized (DI) water (with a resistivity of ~18 MΩ ·
brication. (a) The OM images of several NFs produced by different
ale composite (i.e., mixture of Au nanoparticle and NaCl) NFs, which
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cm) at a low pulling speed of the pipette tip (Additional file
1: Figure S8). In other words, the low-concentration ions in
DI-water were well stacked and thus formed the NFs on
the boundary rim of the nanoaperture, resulting from
fast evaporation of water at a low retraction speed of
the tip. In particular, this result is worthy of notice be-
cause it suggests one can realize nanomaterial-delivered
fabrication even with such a high-purity DI-water. The
dye molecule-delivered NFs on the glass and mica sub-
strates were also fabricated and their images were cap-
tured by the florescence microscope (FM). In addition,
Figure 3(b) shows the OM images (in both transmission
and reflection modes) of the fabricated micro ((i), (ii))
as well as nanoscale ((iii), (iv)) Au nanoparticles/NaCl
composite fibers. Because the NaCl solution tends to
aggregate the Au nanoparticles with each other, the NF
drawing experiment had to be performed immediately
after the solution is filled in the nanopipette reservoir.
Each part of NF having different constituent particles
(i.e., Au nanoparticle or NaCl) is distinguished by the
contrast of the reflection OM image.
Figure 4 In situ electrical wiring with the CNT fiber. (a) Demonstration
between two separated Au electrodes on the mica substrate using the CN
by the proposed NF fabrication procedure. (b) Corresponding mechanical
higher than the Au nanoparticle-delivered NF case. (c) High electrical prop
of Au nanoparticle NF.
3.3 Electrical wiring by micro/nanoscale CNT fibers
The CNT fibers have high industrial potential due to the
unique capabilities of mechanical strength, good elec-
trical and thermal conductivity [30]. Using our proposed
nanofabrication technique, the micro/nanoscale CNT fi-
bers were simply fabricated with a commercial single
wall CNT solution (1 ~ 2 nm diameter, 2 ~ 5 μm length,
0.1% wt/vol, H2O buffer, KH Chemicals Co.) in ambient
conditions. For demonstration of capability of the fiber
device, two spatially separated Au electrodes on mica
substrate were in situ connected by the fabricated CNT
fiber (having diameters of (i) ~500 nm, (ii) 1 μm and (iii)
5 μm). The electrical wiring by the CNT fiber was per-
formed by lateral movement of the NF fabrication pro-
cedure (Figure 4(a)). The in situ measured shear
modulus of the fabricated 500 nm CNT fiber is ~1.5
GPa, showing no fracture, which is ~4 times higher than
the case of Au nanoparticle-delivered NF (Figure 4(b)).
The electrical property of the connected ~500 nm diam-
eter CNT fiber is about 2 orders higher than the Au
nanoparticle NF case, which is comparable to previously
of CNT fiber device capability with in situ electrical connection
T fibers (with diameters of (i) ~500 nm, (ii) 1 μm and (iii) 5 μm) pulled
properties. The measured shear modulus is ~1.5 GPa, which is ~4 times
erty. The measured current density is about 2 orders higher than that
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reported results [30,31] (Figure 4(c)). In particular, the
middle part of the 5 μm diameter CNT fiber expands by
50 s illumination of electron beam, which occurred dur-
ing SEM-image taking (Additional file 1: Figure S9A). In
the case of small diameter under 50 nm, the CNT fiber
is bent by electrons, similarly to the previously shown
Au nanoparticle-delivered NF case (Additional file 1:
Figure S9B). The vertically grown CNT fiber using our
system with ~5 μm aperture diameter of the pipette is
presented in Movie S2 (×4 play speed).

4 Conclusion
We demonstrated a general, non-template, non-contact,
and electric field-free nanomaterial-delivery platform for
fabrication of diverse NFs in ambient conditions. We
showed continuous pulling of flexible NFs, accompanied
by in situ mechanical interpretation with a wide selectivity
in nanomaterials (inks) and substrates for versatile and
direct fabrication. We may further extend our method to
fabricate thinner NFs down to 30 nm diameter or to de-
sign better characteristic NFs for biology-driven purposes.
Our nanoscale fiber-pulling results may also help (i) facili-
tate in situ fabrication and characterization of the low-
dimensional viscoelastic biological materials and (ii) build
the nanoscale architectures with various inks for elec-
trical/biological/chemical applications as a candidate to
realize the practical field-free nano ink-jet printing or to
use as a platform for molecular electronics.

Additional file

Additional file 1: Supplementary Information. Nanomeniscus-
induced delivery of liquid solutions for diverse nanofiber fabrication.
Figure S1. The mechanically pulled nanopipette for fabrication of the
NFs by nanopipette-based nanofabrication. Figure S2. Nanomeniscus-
induced fabrication procedure of the NF by nanopipette-based
nanofabrication. Figure S3. Fast oscillation motion and slow lateral
movement of the NF for measurement of mechanical properties. Figure S4.
Characterization of the QTF sensor’s amplitude and output current.
Figure S5. Electrical current measurement system combined with the
nanopipette/QTF-AFM and two electrodes. Figure S6. Various ink and
substrate for NF fabrication. Figure S7. Micro- and nano-scale NaCl
pillars fabricated by the NF. Figure S8. Fabrication of the ionic
composite NF with deionized water. Figure S9. Fabricated CNT fibers.
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