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superposition states for quantum 
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Abstract 

Quantum characteristics of a driven series RLC nanoelectronic circuit whose capacitance varies with time are studied 
using an invariant operator method together with a unitary transformation approach. In particular, squeezing effects 
and nonclassical properties of a superposition state composed of two displaced squeezed number states of equal 
amplitude, but 180° out of phase, are investigated in detail. We applied our developments to a solvable specific case 
obtained from a suitable choice of time-dependent parameters. The pattern of mechanical oscillation of the amount 
of charges stored in the capacitor, which are initially displaced, has exhibited more or less distortion due to the influ-
ence of the time-varying parameters of the system. We have analyzed squeezing effects of the system from diverse 
different angles and such effects are illustrated for better understanding. It has been confirmed that the degree of 
squeezing is not constant, but varies with time depending on specific situations. We have found that quantum inter-
ference occurs whenever the two components of the superposition meet together during the time evolution of the 
probability density. This outcome signifies the appearance of nonclassical features of the system. Nonclassicality of 
dynamical systems can be a potential resource necessary for realizing quantum information technique. Indeed, such 
nonclassical features of superposition states are expected to play a key role in upcoming information science which 
has attracted renewed attention recently.

© Korea Nano Technology Research Society 2017. This article is distributed under the terms of the Creative Commons Attribu-
tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and 
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

1 � Background
Present high technologies of lithography and crystal 
growth paved the way for sophisticated experiments [1, 
2] with nano materials, leading to the rapid development 
of nanoscale technology in the field of nano physics and 
nanoelectronics. It is well known from diverse theories 
and elegant experiments related to nano materials that 
the quantum effects are conspicuous for nano devices, 
especially when the transport dimension reaches a 
threshold value which is so-called the Fermi wavelength. 
Consequently, the understanding of quantum proper-
ties which appear in such nanoscale materials is impor-
tant, meanwhile classical description for the motion of 
charge carriers is no longer valid in that situation. This 
is the reason why the research for the underlying theory 

of fundamental quantum characteristics of nano devices 
and nano electronic circuits are crucial for the develop-
ment of future science and technology which will inevita-
bly be associated with nano dimension.

For this reason, quantum features of nanoelectronic 
circuits have been extensively investigated in the litera-
ture so far [3–8]. Although motion of charges in funda-
mental LC circuits is described by a simple Hamiltonian 
that does not vary with time, a large category of nano-
electronic circuits, such as LC circuits driven by a sinu-
soidal power source and series RLC circuits that have 
time-varying parameters is classified as a time-varying 
system [9–11] that can be described in terms of a time-
dependent Hamiltonian. In this work, we focus on the 
study of a nanoelectronic circuit involving a time-varying 
capacitance and a power source [12–20]. The mathemati-
cal treatment of time-dependent Hamiltonians requires 
special techniques, such as an invariant operator method, 
a canonical or unitary transformation approach, a 
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reduction method, a propagator method, and some oth-
ers as well [21–24].

Quantum properties of a series RLC nanoelectronic 
circuit that involves a time-dependent driving power 
source will be investigated in this work by adopting an 
invariant operator method together with a unitary trans-
formation approach, that is very useful for managing a 
system characterized by time-dependent parameters. 
The invariant operator method was firstly introduced 
by Lewis and Riesenfeld in time-dependent harmonic 
oscillator systems [21]. The merit of this method in the 
quantum domain is that the eigenstates of an invariant 
operator are closely related with the Schrödinger solu-
tions of the system. In fact, we can obtain exact quan-
tum solutions by multiplying eigenstates of the invariant 
operator by suitable phase factors. This implies that it 
is required, for studying quantum properties of the sys-
tem, to derive the eigenstates of the invariant operator by 
solving its eigenvalue equation. However, the eigenvalue 
equation may not be easily solved since the system we 
regard is somewhat complicated due to the existence of 
time-varying parameters. In order to overcome this dif-
ficulty, a unitary transformation approach will be consid-
ered. By introducing an appropriate unitary operator, it is 
possible to transform the original invariant operator to a 
simple form whose eigenstates are well known or easily 
derivable. From the inverse transformation of the eigen-
states associated to the transformed system, one can 
evaluate full eigenstates in the original system. Finally, by 
determining the quantum phase factors via the aid of the 
Schrödinger equation, the complete quantum solutions 
in the number state can be obtained.

On the basis of quantum solutions derived in this way, 
we will study displaced squeezed number states (DSNSs) 
[25]. While displaced number states (DNSs) [20, 26, 
27] can be obtained by operating only the displacement 
operator on the wave functions in number states, DSNSs 
are obtained by first operating the squeezing operator, 
and then the displacement operator on the same states. 
DSNSs are known as one of the familiar nonclassical 
states that can be analyzed in terms of the Q-parameter 
proposed by Mandel. Moreover, DSNSs reveal the prop-
erties of sub-Poissonian or super-Poissonian statistics 
depending on the relative scale of parameters that endow 
a particular realization of states. For more details for this, 
refer to Ref. [28].

The main goal of this work is to investigate squeezing 
effects and nonclassical features of superposition states 
of quantum nanoelectronic circuits, considering the case 
that the elements of the superposition states are com-
posed of two DSNSs with equal amplitudes but 180° out 
of phase. The superposition of two DSNSs with an oppo-
site or arbitrary phase difference exhibits interference 

that is highly nonclassical, as well as some properties sim-
ilar to those of statistical mixtures. Such states are known 
as a family of Schrödinger-cat states which can be used as 
potential resources for qubits in superconducting circuits 
that process quantum information [29, 30]. El-Orany and 
Obada studied the effects of quantum mechanical inter-
ference between two individual DSNSs with 180° out of 
phase and addressed nonclassicality of the system such as 
negativity of the Wigner function, quadrature squeezing, 
purity, etc. [31]. A method for generating superposition 
states composed of DSNSs with high fidelity is recently 
proposed by Podoshvedov [32]. We will derive exact wave 
functions of superposition states composed of DSNSs. 
The time evolution of these quantum states will be stud-
ied in detail. The effects of time dependence of param-
eters on the expectation value of canonical variables will 
also be investigated under the choice of particular time-
variable parameters.

2 � Results and discussion
2.1 � Hamiltonian dynamics
A series RLC nanoelectronic circuit driven by an arbi-
trary power source is considered in this work. We assume 
that the capacitance of the system varies with time. If we 
denote the charge stored in the capacitor as q, we obtain 
a differential equation from Kirchhoff’s law as

where ω(t) = [LC(t)]−1/2 and E(t) is the driving power 
source. We can say that the complete classical solution of 
this equation is represented as

where Qc(t) is a complementary function and Qp(t) is 
a particular solution. We can do the same thing for the 
conjugate canonical current, such that

Once the solution of Qc(t) and Qp(t) are known, we can 
also have Pc(t) and Pp(t) from

The Hamiltonian that yields the classical equation of 
motion given in Eq. (1) can be written as

where p̂ = −i�∂/∂q, which stands for the operator of the 
canonical current.

We introduce an annihilation operator of the form

(1)q̈ + R

L
q̇ + ω2(t)q = E(t)

L
,

(2)Q(t) = Qc(t)+ Qp(t),

(3)P(t) = Pc(t)+ Pp(t).

(4)Pc(t) = Le(R/L)tdQc(t)/dt,

(5)Pp(t) = Le(R/L)tdQp(t)/dt.

(6)Ĥ = e−(R/L)t p̂
2

2L
+ 1

2
e(R/L)t

[

ω2(t)Lq̂2 − 2E(t)q̂
]

,
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where ω0 = ω(0), ρ0 is an arbitrary real constant, and ρ(t) 
is a solution of the following differential equation

Of course, the hermitian conjugate of Eq. (7), Â†, is the 
creation operator. Notice that Â and Â† satisfy the boson 
commutation relation of the form [Â, Â†] =  1. Now, we 
can establish an invariant operator in terms of Â and Â† 
such that [21]

Due to the time dependence of parameters of the system, 
the Hamiltonian given in Eq. (6) is a somewhat compli-
cated form. For this reason, it is favorable to simplify the 
problem. The time-dependent Hamiltonian can be trans-
formed to a simple form by a suitable unitary operator Û . 
Let us consider the following unitary transformation of 
the Hamiltonian

where a unitary operator Û is chosen in the form [20]

Performing a straightforward algebra for Eq. (10) yields

where

and Lp(t) is a time function of the form

From a direct evaluation with Eqs. (13) and (14), we eas-
ily see that â = Xq̂ + iY p̂ and â† = Xq̂ − iY p̂ , where 

(7)

Â =
√

1

2�Lω0

{[

ρ0ω0

ρ(t)
− ie(R/L)t

ρ̇(t)

ρ0

]

× L[q̂ − Qp(t)] + i
ρ(t)

ρ0
[p̂− Pp(t)]

}

,

(8)ρ̈(t)+ R

L
ρ̇(t)+ ω2(t)ρ(t)− e−2(R/L)t (ω0ρ

2
0)

2

ρ3(t)
= 0.

(9)Î = �ω0

(

Â†Â+ 1

2

)

.

(10)Ĥ ′ = Û−1ĤÛ − i�Û−1 ∂Û

∂t
,

(11)

Û = exp

(

iPp(t)q̂

�

)

exp

(

− iQp(t)p̂

�

)

exp

(

iLρ̇(t)e(R/L)t q̂2

2�ρ(t)

)

× exp

[

− i

4�
(q̂p̂+ p̂q̂) ln

(

ρ2(t)

ρ2
0

)]

.

(12)Ĥ ′ = ρ2
0

ρ2(t)
e−(R/L)t

[

�ω0

(

â†â+ 1

2

)]

+ Lp(t),

(13)â = Û−1ÂÛ ,

(14)â† = Û−1Â†Û ,

(15)Lp(t) = e−(R/L)t
P2
p(t)

2L
− 1

2
e(R/L)tω2(t)LQ2

p(t).

X =
√
Lω0/(2�) and Y = 1/

√
2�Lω0. These correspond to 

the ladder operators of the simple harmonic oscillator with 
frequency ω0. We can also confirm that [â, â†] = 1.

The equation for q in the transformed system is 
obtained by applying Hamiltonian dynamics with Eq. 
(12). Hence, from a minor calculation, the classical equa-
tion of motion in the transformed system is derived to be

Let us denote a classical solution (complementary func-
tions) for this equation as Qt,c(t). Then the correspond-
ing classical solution for conjugate canonical current is 
obtained from

The quantities Qt,c(t) and Pt,c(t) will be used for developing 
a quantum theory of the system in the subsequent sections.

2.2 � Superposition of displaced squeezed number states
The DSNS is defined by first squeezing the number state 
and, then, displacing it. The superposition of DSNSs as 
well as that of DNSs also exhibits many nonclassical char-
acteristics, such as interference and phase fluctuations 
that can be applied to implementing quantum information 
techniques, while its generation requires high technology 
and novel ideas that have yet to be developed. As a strategy 
for investigating this state, we first derive the DSNS in the 
transformed system, and then, we transform it inversely in 
order to obtain the DSNS in the original system.

The squeeze operator in the transformed system is 
given by 

where z is a squeezing parameter that can be represented 
in terms of its magnitude r and phase φ such that

Using Eq. (65) in "Methods" (the last section), the squeeze 
operator can be rewritten as

where

(16)q̈ +
(

R

L
+ 2

ρ̇(t)

ρ(t)

)

q̇ + e−2(R/L)t (ω0ρ
2
0)

2

ρ4(t)
q = 0.

(17)Pt,c(t) =
ρ2(t)

ρ2
0

Le(R/L)tdQt,c(t)/dt.

(18)Ŝ(z) = exp

[

−1

2
(z∗â2 − zâ†2)

]

,

(19)z = reiφ .

(20)

Ŝ(z) = 1√
s
exp

[

iLω0

2�

sin φ sinh r

s
q̂2
]

exp

[

− i

�
q̂p̂ ln s

]

× exp

[

− i

2Lω0�

sin φ sinh r

s
p̂2
]

,

(21)s = cosh r + cosφ sinh r.
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On the other hand, the displacement operator is defined 
to be

where

In actual evaluations, the expression of D̂(α) given in 
"Methods" is useful.

Now let us consider the following transformation

where ψ ′
n(q, 0) are initial wave functions in number state 

in the transformed system and T̂ ′ is a time evolution 
operator of the form [20, 33]

To derive ψ ′
s,n,±(q, t) from Eq. (24), we first need the for-

mulae ψ ′
n(q, 0). By solving the Schrödinger equation with 

Eq. (12) in the transformed system, we easily obtain the 
corresponding wave functions in the number state and 
confirm that their initial values are given by

These are the same as those of the simple harmonic 
oscillator with the angular frequency ω0. The action of a 
squeezing operator in the initial number state gives

where

(22)D̂(α) = exp(αâ† − α∗â),

(23)α =
√

Lω0

2�
Qt,c(0)+

iPt,c(0)√
2�Lω0

.

(24)ψ ′
s,n,±(q, t) = T̂ ′(q̂, p̂, t)D̂(±α)Ŝ(z)ψ ′

n(q, 0),

(25)T̂ ′(q̂, p̂, t) = exp

(

− i

�

∫ t

0

Ĥ ′(q̂, p̂, τ )dτ

)

.

(26)

ψ ′
n(q, 0) =

(

Lω0

�π

)1/4 1√
2nn!

Hn

[

(

Lω0

�

)1/2

q

]

exp

(

−Lω0

2�
q2
)

.

(27)

Ŝ(z)ψ ′
n(q, 0) =

(

Lω0

�π

)1/4 1√
2nn!

√

Gn
b

Ga
Hn

[

(

Lω0

�Gc

)1/2

q

]

× exp

(

−Lω0

2�
Gdq

2

)

,

(28)Ga = cosh r + eiφ sinh r,

(29)Gb =cosh r + e−iφ sinh r

cosh r + eiφ sinh r
,

(30)Gc = cosh2 r + sinh2r + 2 cosφ cosh r sinh r,

Further action of D̂(±α) and T̂ ′(q̂, p̂, t), in turn, yields [7, 33]

where

Let us consider superposition states composed of the two 
DSNSs in the transformed system, which is

where ǫ is given by ǫ = |ǫ|eiϕ and �ǫs is a normalization 
constant of which the formula will be derived later. The 
superposition states in the original system are obtained 
by acting Û in these states:

A rigorous evaluation using Eq. (11) gives

where

(31)
Gd = 1− i sin φ sinh r(cosh r + eiφ sinh r)

(cosh r + cosφ sinh r)(cosh r + eiφ sinh r)
.

(32)

ψ ′
s,n,±(q, t) =

4

√

Lω0

�π

1√
2nn!

√

(hbGb)
n

haGa

×Hn

[√

Lω0

�h2ahbGc
[q ∓Qt,c(t)]

]

× exp

{

− Lω0

2�ha

[

[Gd cos�(t)+ i sin�(t)]q2

∓ 2q

(

GdQt,c(0)+ i
Pt,c(0)

ω0L

)

+Q2
t,c(0)Gd cos�(t)

]}

× exp

[

−
iP2

t,c(0) sin�(t)

2Lω0ha�
− i

Qt,c(0)Pt,c(0)

�

×
(

1

2
− i

Gd sin�(t)

ha

)]

× exp

[

− i

�

∫ t

0

Lp(τ ) d τ

]

,

(33)�(t) = ρ2
0ω0

∫ t

0

e−(R/L)τ

ρ2(τ )
dτ ,

(34)ha = cos�(t)+ iGd sin�(t),

(35)hb = 1− 2i sin�(t)

haGc
.

(36)ψ ′ǫ
s,n(q, t) = �

ǫ
s [ψ ′

s,n,+(q, t)+ ǫψ ′
s,n,−(q, t)],

(37)ψǫ
s,n(q, t) = Ûψ ′ǫ

s,n(q, t).

(38)ψǫ
s,n(q, t) = �

ǫ
s [ψs,n,+(q, t)+ ǫψs,n,−(q, t)],
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with

These are the full wave functions in the superposition 
states of the DSNSs. We can use them to derive an expec-
tation value of various quantum observables in the super-
position states.

From the absolute square of Eq. (38), we also have the 
probability densities as

where

(39)

ψs,n,±(q, t) = 4

√

Lω0

�π

√
ρ0/ρ(t)√
2nn!

√

(hbGb)
n

haGa
Hn

[

ξ±(q, t)
√

h2ahbGc

]

× exp

(

i

�
Pp(t)q

)

exp

(

iLρ̇(t)e(R/L)t

2�ρ(t)
[q − Qp(t)]2

)

× exp

{

− Lω0

2�ha

[

[Gdcos�(t)+ isin�(t)]

× ρ2
0

ρ2(t)
[q − Qp(t)]2 ∓ 2

ρ0

ρ(t)
[q − Qp(t)]

×
(

GdQt,c(0)+ i
Pt,c(0)

ω0L

)

+ Q2
t,c(0)Gdcos�(t)

]}

× exp

[

−
iP2

t,c(0)sin�(t)

2Lω0ha�
− i

Qt,c(0)Pt,c(0)

�

×
(

1

2
− i

Gdsin�(t)

ha

)]

× exp

[

− i

�

∫ t

0

Lp(τ ) d τ

]

,

(40)ξ±(q, t) =
√

Lω0

�

(

ρ0

ρ(t)
[q − Qp(t)] ∓ Qt,c(t)

)

.

(41)

∣

∣ψǫ
s,n(q, t)

∣

∣

2 =
√

Lω0

�π

1

2nn!
ρ0

ρ(t)d
|�ǫs |2

× exp

{

−Lω0

�d2

[

ρ2
0

ρ2(t)
[q − Qp(t)]2 + Q2

t,c(t)

]}

×
{

eZ(q,t)
[

Hn

(

ξ+(q, t)

d

)]2

+ |ǫ|2e−Z(q,t)

[

Hn

(

ξ−(q, t)

d

)]2

+ 2|ǫ|Hn

(

ξ+(q, t)

d

)

Hn

(

ξ−(q, t)

d

)

× cos

[

2B(t)

�d2
ρ0

ρ(t)
[q − Qp(t)] − ϕ

]}

,

(42)
d2 = cosh(2r)+ cos[2�(t)− φ] sinh(2r)

= s20 cos
2[�(t)− φ/2] + s−2

0 sin2[�(t)− φ/2],

(43)s0 = cosh r + sinh r = er ,

(44)
Z(q, t) = 2Lω0Qt,c(t)

�d2
ρ0

ρ(t)
[q − Qp(t)],

It is possible to represent d in terms of s given in Eq. (21) 
instead of s0. The transformation relation from s0 to s and 
vice versa are

Now, the formula of �ǫs is derived from the normalization 
condition, 

∫∞
−∞ |ψǫ

s,n(q, t)|2dq = 1. It results in

where

If we put r = 0, Eq. (48) reduces to Eq. (26) of Ref. [20], 
which is related to the superposition of DNSs. The prob-
ability densities, Eq. (41), consist of three terms. The 
first two terms correspond to the densities associated 
to ψs,n,+(q, t) and ψs,n,−(q, t), respectively. The last term 
that is represented in terms of a cosine function exhib-
its interference between the two components. This term 
signifies nonclassical properties of the quantum system, 
that do not appear in the counterpart classical system. 
The interference term is especially large when the two 
wave packets associated with ψs,n,+(q, t) and ψs,n,−(q, t) 
meet in space. From Eq. (41), we can confirm that the 
width of the packet is determined by the value of d. If 
d < 1, the packet corresponds to that of the q-squeezing 
case, whereas if d > 1, the packet belongs to that of the 
p-squeezing case. However, the degree of squeezing var-
ies more or less with time according to the time variation 
of d.

For the case that z is real (φ = 0), Eqs. (42) and (49) 
reduce to

We see that d0 varies with time for an arbitrary value of 
s0, while η0 is constant. However, for the case that s0 = 1, 
d0 does not vary with time and reduces to unity that cor-
responds to the situation of no squeezing at all.

Note that η0 can be rewritten in a simple form as

(45)
B(t) = Pt,c(t) cosh(2r)+ {Pt,c(0) cos[�(t)− φ]

+ Lω0Qt,c(0) sin[�(t)− φ]} sinh(2r).

(46)s0 →
s +

√

s2 − sin2 φ

1+ cosφ
,

(47)s →1− cosφ

2s0
+ s0(1+ cosφ)

2
.

(48)

|�ǫs |2 = {1+ |ǫ|2 + 2|ǫ| exp(−η(t))Ln[2η(t)] cosϕ}−1,

(49)η(t) = 1

�d2

(

Lω0Q
2
t,c(t)+

B2(t)

Lω0

)

.

(50)d20 = s20 cos
2�(t)+ s−2

0 sin2�(t),

(51)η0 =
1

�

(

s−2
0 Lω0Q

2
t,c(0)+ s20

P2
t,c(0)

Lω0

)

.
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where

In fact, Eq. (53) is slightly different from that of the sys-
tem proposed by El-Orany et  al. (e.g. see Eq. (4) of Ref. 
[31]).

For the case that n = 0, ǫ = ±1, and φ = 0, the prob-
ability density becomes

where �ǫ0,s = �
ǫ
s |φ=0. We can see from this  expres-

sion that, for the non-squeezing case (s0 = 1), the time 
dependence of phase of the interference term follows 
[q − Qp(t)]Pt,c(t)/ρ(t).

For a further simplified case which falls under n = 0 , 
ǫ = ±1, E(t) = 0, R = 0, and C(t) = C(0), we confirm 
that �(t) → ω0t and the probability density reduces to

In this case, the phase of the interference term is deter-
mined by q[Pt,c(0)s20 cos(ω0t)− Lω0Qt,c(0) sin(ω0t)/s

2
0]. 

For the non-squeezing case, it is fixed simply by qPt,c(t).
The probability density |ψǫ

s,n(q, t)|2 given in Eq. (41) is 
plotted in Figs. 1, 2, 3, and 4 as a function of q and t under 
the choice of parameters as Eqs. (81)–(87) in "Methods". 
The probability density given in Fig.  1 is for relatively 
small displacing parameters: (Qt,c(0),Pt,c(0)) = (1, 1). By 
comparing Fig. 1a and b with each other, we can confirm 

(52)η0 = 2|f |2,

(53)f = α cosh r − α∗ sinh r.

(54)

∣

∣

∣
ψǫ=±1
s,n=0 (q, t)

∣

∣

∣

2
=

√

Lω0

�π

2ρ0

ρ(t)d0

∣

∣

∣
�
ǫ=±1
0,s

∣

∣

∣

2

× exp

{

−Lω0

�d20

[

ρ2
0

ρ2(t)
[q − Qp(t)]2 + Q2

t,c(t)

]}

×
{

cosh

[

2Lω0Qt,c(t)

�d20

ρ0

ρ(t)
[q − Qp(t)]

]

±cos

[

2

�d20 s
2
0

ρ0

ρ(t)
[q − Qp(t)]

×[Pt,c(0)s40cos�(t)− Lω0Qt,c(0)sin�(t)]
]}

,

(55)

∣

∣

∣
ψǫ=±1
s,n=0 (q, t)

∣

∣

∣

2
=

√

Lω0

�π

2

d0

∣

∣

∣
�
ǫ=±1
0,s

∣

∣

∣

2

× exp

(

−
Lω0[q2 + Q2

t,c(t)]
�d20

)

×
{

cosh

[

2Lω0Qt,c(t)q

�d20

]

± cos

[

2q

�d20s
2
0

[Pt,c(0)s40cos(ω0t)

− Lω0Qt,c(0)sin(ω0t)]
]}

.

that the width of the wave function becomes large as the 
value of r increases. Figure 1a is q-squeezing and Fig. 1b 
is p-squeezing. Figure  2a shows the time evolution of 
the wave packet that is dominated by ψs,n,+(q, t) , while 
Fig.  2b is the case that ψs,n,−(q, t) is dominant. By add-
ing these two packets, we may roughly obtain the nor-
mal wave packet, which is, for example, the one given in 
Fig.  1, with equal contribution of the two components. 
Figure  3 is the probability density for sufficiently high 
displacing parameters: (Qt,c(0),Pt,c(0)) = (5, 5). We see 
by comparing Fig. 3a with Fig. 1a that the displacement 
of the wave packet is quite distinct when the displacing 
parameters are large, as expected. The effects of a driving 
electromotive force on the circuit can be identified from 
Fig. 4. The wave packets in Fig. 4 are distorted more or 
less significantly, due to the influence of a time-depend-
ent electromotive force. 

We can find nonclassical features of the system from 
quantum interference displayed in Figs.  1, 2, 3, and 4. 
Highly peaked ripples in density, formed near the center 

Fig. 1  The probability density |ψǫ
s,n(q, t)|2 [Eq. (41)] plotted under 

the choice of parameters as illustrated in Eqs. (81)–(87) as a function 
of q and t. Here, we have chosen relatively small values of Qt,c(0) and 
Pt,c(0) and they are (Qt,c(0), Pt,c(0)) = (1, 1), while we have assumed 
that the electromotive force is zero, (Q,ω1) = (0, 0). The squeezing 
parameter r is 0.3 for (a) and 3 for (b). Other values taken here are 
L = 1, C0 = 1, ω0 = 1, ǫ = (1+ i)/

√
2, φ = 1, �= 1, β = 0.1, and n = 3
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(q = 0), signifies nonclassicality of the superposition 
state. The distribution of q exhibits peaks at the spots 
where the two or more non-zero line-shaped distribu-
tions intersect with each other. The distribution-lines are 
oscillating and mainly composed of two groups accord-
ing to the two individual components of the superposi-
tion state. In the same situation, the distribution of the 
conjugate variable p oscillates as a reflection of quantum 
interference [34].

Notice that the concepts of the superposition principle 
and quantum interference are applied to developing fun-
damental mechanisms for quantum information theory. 
In connection with this, quantum physics and quan-
tum field theory are undergoing a time of revolutionary 
change in these days.

2.3 � Time evolution of quantum observables
The time evolution of quantum observables in the quan-
tum states developed in the previous sections can be 
found by evaluating the expectation value of them. Let 

us see for example the time evolution of charges and cur-
rents in the DSNS in the original system. Considering the 
fact that the notation of the wave functions in this state 
can be rewritten, without loss of generality, in the form

(56)ψǫ
s,n(q, t) = �q|ψǫ

s,n(t)�,

Fig. 2  Asymmetric evolution of the probability density |ψǫ
s,n(q, t)|2 

given in Eq. (41). The relative amplitude ǫ associated to ψs,n,−(q, t) is 
0.1ǫ0 for (a) and 10ǫ0 for (b) where ǫ0 = (1+ i)/

√
2. The conditions 

given in Eqs. (81)–(87) are used. The values of other parameters taken 
here are L = 1, C0 = 1, ω0 = 1, Qt,c(0) = 1, Pt,c(0) = 1, r = 0.3, φ = 1, 
�= 1, β = 0.1, n = 3, and Q = 0, which, in fact, are the same as those 
of Fig. 1a

Fig. 3  The probability density |ψǫ
s,n(q, t)|2 [Eq. (41)] plotted under 

the choice of parameters as illustrated in Eqs. (81)–(87) as a function 
of q and t. Here, we have chosen relatively large values of Qt,c(0) and 
Pt,c(0) and they are (Qt,c(0), Pt,c(0)) = (5, 5), while we have assumed 
that the electromotive force is zero, (Q,ω1) = (0, 0). The squeezing 
parameter r is 0.3 for (a), 1 for (b), and 2 for (c). Other values taken 
here are L = 1, C0 = 1, ω0 = 1, ǫ = (1+ i)/

√
2, φ = 1, �= 1, β = 0.1, 

and n = 3, which, in fact, are the same as those of Fig. 1
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and using the consecutive unitary transformation, the 
expectation value of an arbitrary quantum observable Ô 
can be evaluated from

where

(57)�ψǫ
s,n(t)|Ô|ψǫ

s,n(t)� = |�ǫs |2�ψ ′
n(0)|Ô′|ψ ′

n(0)�,

Let us perform successive operations given in Eq. (58) 
after replacing Ô with q̂ and p̂. Then, with the use of Eqs. 
(67)–(80) in "Methods", we have

where b̂ and b̂† are defined in "Methods" [see Eqs. (79) 
and (80)] and

Let us calculate the expectation value of canonical vari-
ables with an assumption that α is sufficiently small than 
unity. If we consider up to [α(∗)]3 terms, the expectation 
values are given by

where

(58)
Ô

′ = Ŝ
†[D̂†(α)+ ǫ∗D̂†(−α)]T̂ ′†

Û
†
ÔÛT̂

′[D̂(α)+ ǫD̂(−α)]Ŝ.

(59)

q̂′ =
√

�

2Lω0

ρ(t)

ρ0
{(b̂+ α)e−i�(t) + (b̂† + α∗)ei�(t)

+ ǫ[(b̂+ α)e2(α
∗b̂−αb̂†)e−i�(t) + (b̂† + α∗)e2(α

∗ b̂−αb̂†)ei�(t)]

+ ǫ∗[(b̂− α)e−2(α∗b̂−αb̂†)e−i�(t) + (b̂† − α∗)e−2(α∗b̂−αb̂†)ei�(t)]

+ |ǫ|2[(b̂− α)e−i�(t) + (b̂† − α∗)ei�(t)]} +Qp(t),

(60)

p̂′ = F(t)(b̂+ α)e−i�(t) + F∗(t)(b̂† + α∗)ei�(t)

+ ǫ[F(t)(b̂+ α)e2(α
∗b̂−αb̂†)e−i�(t)

+ F∗(t)(b̂† + α∗)e2(α
∗b̂−αb̂†)ei�(t)]

+ ǫ∗[F(t)(b̂− α)e−2(α∗b̂−αb̂†)e−i�(t)

+ F∗(t)(b̂† − α∗)e−2(α∗b̂−αb̂†)ei�(t)]
+ |ǫ|2[F(t)(b̂− α)e−i�(t)

+ F∗(t)(b̂† − α∗)ei�(t)] + Pp(t),

(61)F(t) =
√

�L

2

(

ρ̇(t)

ρ0
√
ω0

e(R/L)t − i
ρ0

ρ(t)

√
ω0

)

.

(62)

�ψǫ
s,n(t)|q̂|ψǫ

s,n(t)� = |�ǫs |2
√

�

2Lω0

ρ(t)

ρ0

× {(1− ǫ∗ǫ)[αe−i�(t) + α∗ei�(t)]
+ (ǫ − ǫ∗)[Ke−i�(t) − K ∗ei�(t)]}
+ Qp(t),

(63)

�ψǫ
s,n(t)|p̂|ψǫ

s,n(t)� = |�ǫs |2{(1− ǫ∗ǫ)[F(t)αe−i�(t)

+ F∗(t)α∗ei�(t)] + (ǫ − ǫ∗)[F(t)Ke−i�(t)

− F∗(t)K ∗ei�(t)]} + Pp(t),

Fig. 4  The effects of the electromotive force on the probability den-
sity |ψǫ

s,n(q, t)|2 [Eq. (41)]. We used the parameters illustrated in Eqs. 
(81)–(87). The values of parameters (Q,ω1) associated with the elec-
tromotive force are (Q,ω1) = (0.5, 5) for (a), (Q,ω1) = (5, 1.5) for (b), 
and (Q,ω1) = (10, 0.5) for (c). Other values taken here are Qt,c(0) = 5

, Pt,c(0) = 5, L = 1, C0 = 1, ω0 = 1, ǫ = (1+ i)/
√
2, r = 1, φ = 1, �= 1, 

β = 0.1, and n = 3, which, in fact, are the same as those of Fig. 3b
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(64)

K = 2{α∗eiφ(2n+ 1) cosh r sinh r − α[(n+ 1)(cosh r)2 + n(sinh r)2 − 1/2]}
+ 4α∗3e2iφ(2n2 + 2n+ 1)(cosh r)2(sinh r)2 + 2α∗2αeiφ{(2n+ 1) cosh r sinh r

− 2[(3n2 + 4n+ 2)(cosh r)3 sinh r + (3n2 + 2n+ 1) cosh r(sinh r)3]}
+ 2α∗α2{−(2n+ 1)[(cosh r)2 + (sinh r)2] + 2[(n2 + 2n+ 1)(cosh r)4

+ n2(sinh r)4 + (4n2 + 4n+ 2)(cosh r)2(sinh r)2]} + 2α3e−iφ{(2n+ 1)

× cosh r sinh r − 2[(n2 + 2n+ 1)(cosh r)3 sinh r + n2 cosh r(sinh r)3]}.

Fig. 5  Time evolution of the expectation value �ψǫ
s,n(t)|q̂|ψǫ

s,n(t)� 
for the case that time functions are chosen to be Eqs. (81)–(87). The 
value of ǫ is 1 for (a), 1+ 0.005i for (b), and 1+ 0.02i for (c). Other 
values taken here are L = 1, C0 = 1, Q = 1, ω1 = 1, ρ0 = 1, r = 1, φ = 1, 
Qt,c(0) = 1, Pt,c(0) = 1, �= 1, β = 0.02, and n = 1

To see the time behavior of canonical variables, let us see 
again for the case given in Eqs. (81)–(87). From Fig. 5, we 
can confirm that the expectation value of q̂ is more or 
less distorted with time due to the influence of the time 
dependence of parameters.

3 � Conclusions
Squeezing effects of a series RLC nanoelectronic circuit 
of which parameters depend on time are investigated 
focusing on the nonclassical properties of its superposi-
tion states. Due to the time dependence of the Hamilto-
nian, the system is classified as a kind of time-dependent 
Hamiltonian system (TDHS) that requires an alternative 
rigorous treatment for the study of their quantum prop-
erties. Hence, we introduced a quadratic invariant opera-
tor which is very useful when we study quantum features 
of a TDHS. Because the Hamiltonian (or the invariant 
operator) of the system is somewhat complicated, we had 
transformed the Hamiltonian to a simple form by using a 
unitary operator. We confirmed that the wave functions 
in the transformed system are the same as those of the 
simple harmonic oscillator. We considered the superposi-
tion states composed of two distinct DSNSs in the trans-
formed system. By inverse transformation of quantum 
solutions (wave functions) identified in the transformed 
system, we also obtained the full wave functions for the 
corresponding superposition states in the original sys-
tem [see Eq. (38) with Eqs. (39) and (40)]. On the basis of 
these solutions, we investigated quantum characteristics 
of the superposition states.

The time evolutions of probability densities in super-
position states are illustrated using corresponding graph-
ics. It is confirmed by comparing Figs. 3a with 1a that the 
effects of displacement are conspicuous when the initial 
values Qt,c(0) and Pt,c(0) are large. For the case that C(t) 
is given by Eq. (81), the effects of displacing become less 
prominent as the value of β increases. When the driv-
ing electromotive power source is exerted on the sys-
tem, the wave packet of charges exhibits a significant 
distortion. We have also confirmed that the time evo-
lution of the expectation value of q̂ is more or less dis-
torted on account of the effects of time dependence of 
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parameters. The width of the packet for the superposi-
tion of the DSNSs becomes large as the squeezing param-
eter r increases. By analyzing the exponential function 
given in Eq. (41), we conclude that the squeezing effect 
depends on d. The packet exhibits the q-squeezing for 
d < 1 whereas the p-squeezing for d > 1. If we consider 
the fact that d varies more or less over time [see Eq. (42)], 
the degree of squeezing is not constant.

Some interference structures in the superposition 
states have appeared when the two distinct component 
states meet together in space. We can see the interference 
structures from Figs. 1, 2, 3, and 4, which took place near 
the spot of q = 0. These indicate novel characteristics of 
the superposition states that can not be explained on the 
basis of classical mechanics. Such interference is a kind of 
nonclassical property like antibunching, sub-Poissonian 
statistics, and various others as well. In particular, these 
interferences bring about negativity of the Wigner func-
tion in phase space, which is a strong signature of non-
classicality for the state. Recent reports [35, 36] indicate 
that the nonclassical effects of dynamical systems play 
an important role on upcoming quantum information 
science performing computational and cryptographic 
tasks on the basis of a fantastic paradigm essentially 
different from traditional ones. Thanks to the techni-
cal and theoretical advancement relevant to this, new 
ways for manipulating difficult computational tasks will 
be opened, leading to a dramatical change of our way to 
view information.

Extensive research for the nonclassicality of superpo-
sition states have been carried out over the years and 
several schemes for producing such states have been 
proposed. The experimental observation of quantum 
interferences is a difficult task because the superposition 
of the two distinct states is apt to reduce to a simple mix-
ture during measurements. One of the possible schemes 
in this line is to observe quantum interference by 
amplifying the states in a phase-sensitive manner [34]. 
Apparently, quantum mechanics is a pivotal achieve-
ment of modern physics where the novel outcomes of 
quantization, such as the superposition principle and 
interference are verified by the elegant experimental 
observations associated with nonclassical states of quan-
tum systems. Theoretical developments for manipulating 
quantum phenomena is crucial for the proper analysis of 
nanoscale systems like nanoelectronic circuits which we 
have treated here.

4 � Methods
Some of mathematical formulae that are useful for deriv-
ing several results in the text are provided here.
Mathematical Formulae A: The following identity is nec-
essary for deriving Eq. (20) [20, 37]

where θ = (c2 − ab)1/2.
Mathematical Formulae B: An alternative representation 
of the displacement operator is given by [38]

Sometimes, when unfolding the quantum theory, this 
representation is more useful than the one given in Eq. 
(22).
Mathematical Formulae C: To derive Eqs. (59) and (60) 
from Eq. (58), we need several successive unitary trans-
formations. At first, the unitary transformations of the 
canonical variables by Û are

For evaluating the time evolution of the canonical vari-
ables, we can use the following formulas

Further, we need the algebra of the forms [39]

(65)

exp

(

1

2�
[aq̂2 + ic(q̂p̂+ p̂q̂)− bp̂2]

)

= 1

[cosh θ − (c/θ) sinh θ ]1/2

× exp

(

a

2θ�

sinh θ

cosh θ − (c/θ) sinh θ
q̂2
)

× exp

(

− i

�
ln [cosh θ − (c/θ) sinh θ ]q̂p̂

)

× exp

(

− b

2θ�

sinh θ

cosh θ − (c/θ) sinh θ
p̂2
)

,

(66)

D̂(α) = exp

(

−i
Qt,c(0)Pt,c(0)

2�

)

× exp

(

i
Pt,c(0)q̂

�

)

exp

(

−i
Qt,c(0)p̂

�

)

.

(67)Û †q̂Û =ρ(t)

ρ0
q̂ + Qp(t),

(68)Û †p̂Û = ρ0

ρ(t)
p̂+ Lρ̇(t)

ρ0
e(R/L)t q̂ + Pp(t).

(69)T̂ ′†q̂T̂ ′ =
√

�

2Lω0
[â†(0)ei�(t) + â(0)e−i�(t)],

(70)T̂ ′†p̂T̂ ′ = i

√

�Lω0

2
[â†(0)ei�(t) − â(0)e−i�(t)].

(71)D̂†(α)âD̂(α) = â+ α,

(72)D̂†(α)âD̂(−α) = (â+ α)e2(α
∗â−αâ†),

(73)D̂†(−α)âD̂(α) = (â− α)e−2(α∗â−αâ†),

(74)D̂†(−α)âD̂(−α) = â− α,

(75)D̂†(α)â†D̂(α) = â† + α∗,
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In addition, the final step requires

Time-Dependent Parameters: For the understanding of 
our development, let us consider a solvable case that is 
characterized by the parameters of the form [20]

where C0 = C(0), β, Q, and ω1 are real constants. Under 
these choices, we have

The quantum behavior of the system in this case is illus-
trated in detail in the text.
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