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Functionalized microneedles 
for continuous glucose monitoring
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Abstract 

Microneedles (MNs) have been established as promising medical devices as they are minimally invasive, cause less 
pain, and can be utilized for self-administration of drugs by patients. There has been rapid development in MNs for 
transdermal monitoring and diagnostic systems, following the active research on fabrication methods and applica-
tions for drug delivery. In this paper, recent investigations on bio-sensing using MNs are reviewed in terms of the 
applicability to continuous glucose monitoring system (CGMS), which is one of the main research focuses of medi-
cal engineering technologies. The trend of the functionalized MNs can be categorized as follows: (i) as a sensing 
probe, and (ii) as a biological fluid collector. MNs as in vivo sensors are mainly integrated or coated with conductive 
materials to have the function as electrodes. MNs as fluid collectors are given a certain geometrical design, such as a 
hollow and porous structure aided by a capillary action or negative pressure, to extract the interstitial fluids or blood 
for ex vivo analysis. For realization of CGMS with MNs, a long-term accurate measurement by the MN-based sens-
ing probe or a fluidic connection between the MN-based fluid collector and the existing microfluidic measurement 
systems should be investigated.
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1  Introduction
Diagnostic systems using bio-sensing technologies have 
been the main focus of research for the last few decades 
owing to the high demand for more rapid, precise, and 
easy-to-use applications for the well-being of society. 
One of the aims in the development of recent diagnos-
tic devices is to achieve a shorter time period of analysis 
with a reduced amount of the required biological samples 
by microfluidic and electrochemical components real-
ized by new fabrication technologies, such as the CMOS 
and MEMS. However, in spite of the advantages of such 
diagnostic systems, called micro total analysis systems 
(pTASs), the methodologies of body fluid sampling is 
limited to conventional methods such as hypodermic 
needles.

Conventional needles have several disadvantages such 
as the associated unavoidable pain, and requirement of a 
high level of skilled training of the medical professionals, 

even though they extract too much amount of the body 
fluids for pTASs. Hence, microneedles (MNs) have 
attracted significant attention as next-generation devices 
to access biological tissues through the skin without 
pain due to their microsized dimension, e.g. typically a 
length of less 1  mm and diameter of less 500  pm. Sub-
sequent to the reports of MNs being novel tools to pen-
etrate the skin and to deliver drugs and vaccines with a 
minimal invasion and pain, a wide range of research has 
focused on the methods of their fabrication, supported 
by micromachining technologies and the applications for 
transdermal, self-administration of drugs [1–12].

In addition to the medical drug delivery, MNs, e.g., dis-
solvable MN patches, are also well known as commer-
cialized cosmetic products for skin treatments [13, 14] 
nowadays, enabling an efficient localized drug delivery 
process, self-administered by the patient, with less fear of 
skin penetration [15].

Of late, MNs are expected to be applied to the extrac-
tion of biological information out of human skin in 
contrast to drug delivery into the skin through micro-
sized pores. The targets of MN bio-sensing are blood or 
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interstitial fluids (ISFs), as the MNs can reach a depth of 
approximately 1  mm where the vessels are located and 
ISF surrounds the cells in the epidermis. The analysis 
methodologies of such biological fluids are well devel-
oped with the advancement of both enzymatic and non-
enzymatic electrochemical science for the detection and 
measurement of medical biomarkers such as metabolites, 
ions, proteins, and glucose. In the field of MN-based 
diagnostic systems, ISF is the main target sample since 
ISF contains various valuable biomarkers such as K+ and 
Na+ ions, nitrogen oxide, and glucose, the analysis, as 
well as that of blood [16].

 In particular, the glucose measurement is the focus of 
research on the bio-sensing in accordance with societal 
demands, as Type 1 and 2 diabetes are, nowadays, one 
of the most serious diseases due to its long-term effects 
on the health of patients, the large number of patients 
involved, and the huge amount of social and economi-
cal expenses. Currently, the blood glucose level is moni-
tored by self-monitoring blood glucose (SMBG) devices 
in which the patients are required to prick their fingers 
to extract a drop of blood 2–5 times a day for colorimet-
ric or enzymatic electrochemical measurements, which 
results in a physical and mental strain on the patients 
[17].

Furthermore, the concept of continuous glucose moni-
toring system (CGMS) has been initiated as a more effi-
cient methodology to control the blood glucose level for 
prevention, diagnosis, and treatment of diabetes. CGMS 
allows a seamless observation of a change in the blood 
glucose level, even when the patients are not able to 
measure the glucose level by themselves [18–21]. How-
ever, the process of monitoring is carried out by conven-
tional needles that restrict the activities of the patients, as 
certain movements of the body may cause some pain or 
dislodge the implanted needle.

For these reasons, monitoring of the blood glucose 
level is the main objective of research in MN-based bio-
sensing, due to its applicability to point-of-care or con-
tinuous diagnostic devices without pain. Even though 
ISF reflects the change in the blood glucose level after a 
4–10 min delay [22], it is still the target of the MN-based 
glucose sensors, so as to avoid significant pain by the 
penetration. The basic strategy of the MN-based glucose 
sensor is to utilize the amperometric measurement with 
immobilized glucose oxidase (GOx) for the detection of 
H2O2 generated by the reaction given below:

The generated H2O2 is detected by a working electrode 
(WE), following the re-action given below [23]:

(1)Glucose +O2

GOx
−−→ Gluconic acid + H2O2.

(2)H2O2

+700mV
−−−−−→O2 + 2H

+
+ 2e

−
.

In addition to the amperometric measurement, poten-
tiometric and optical methods such as enzyme field effect 
transistor (FET)-based [24, 25], ion selective field effect 
transistor (ISFET)-based [26, 27], and infrared (IR) light-
based measurements [28, 29] have been widely explored. 
Thus, in order to develop clinically diagnostic systems 
using MNs, the MNs should have specific functions 
according to those methodologies, in addition to their 
own capability of penetrating the skin.

On the basis of this concept, MNs have been inte-
grated with a variety of measurement systems by a spe-
cialized design of the material of MN, its configuration, 
and structure. These studies are emerging rapidly from 
the level of laboratory to clinical tests. Therefore, even 
though there are excellent review papers already avail-
able on bio-sensing using MNs [30–32], it is necessary to 
summarize the present-day investigations to have a full 
picture of the research conducted so far on MN-based 
glucose sensors, especially CGMS.

In this paper, a review of the recent progress on the 
MN devices functionalized for diagnostic systems, espe-
cially glucose monitoring, is presented. The functionally 
developed MNs for diagnostic bio-sensing are catego-
rized into MNs as (i) sensing probes and (ii) biological 
fluids collectors, according to their applications. Those 
functionalized MNs are discussed from the perspective 
of the applicability for CGMS devices.

2 � MNs as sensing probes
2.1 � MNs coated with conductive materials
Miniaturization of a sensing probe to form an MN con-
figuration is a natural way for minimally invasive medi-
cal monitoring, as successful results on the detection 
and measurement of biomarkers such as glucose were 
achieved by using implantable biosensors [21, 33]. As the 
scientific methodology for the measurement of analytes 
in ISF using electrochemical components has been highly 
developed, it is justifiable to functionalize MNs as in vivo 
sensing probes beneath the skin, enabling point-of-care 
measurement owing to their easy penetration into the 
skin. For this, MNs should be combined with conductive 
materials as electrodes to connect electrochemical reac-
tions in the body and external amperometric or potentio-
metric measurement systems.

One of the methods to provide MNs electric function 
is to coat the MN with electrochemical components. As 
a result of the development in micro fabrication technol-
ogy, MN configurations of biocompatible materials are 
typically achieved using relatively simple methodologies 
such as mold casting [34–37] and drawing lithography 
[38, 39]. However, these methods are not suitable for con-
ductive materials including metals compared to removal 
machining including MEMS processes. Furthermore, an 
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electrochemical interface should be realized at the inter-
face between MN-based electrodes and biological flu-
ids. For this reason, many studies focus on the coating of 
MNs with conductive materials represented by Au, Pt, 
and Ag/AgCl as the WEs, counter electrodes (CEs), and 
reference electrodes (REs), respectively, in order to ena-
ble an MN to function as an electrochemical electrode. 
In this methodology, metal [40–46], epoxy [47–49], SU-8 
[50–53], and polymer [53–59] MNs are coated with 
metal layers using electroplating or vapor deposition. The 
covering metal layers are connected to the extract elec-
trodes and the measurement system to conduct the input 
and output signals.

MNs coated with conductive materials to be used as 
glucose sensors have in been realized mainly by using 
the immobilized GOx on the surface of the MN [44, 46, 
51–53, 55–58, 60]. The Cass’s group developed the poly-
carbonate [60] and epoxy-based MN array [52] coated 
with Pt as WE and CE, and Ag/AgCl as the reference 
electrodes for CGMS application. The MN array was 
designed with three separate electrode areas and fabri-
cated by the mold casting method, as shown in Fig.  1a. 
This coated MN-based glucose sensor is developed with 
the measuring setup enabling long-term glucose moni-
toring in a mobile and wearable system. The polycarbon-
ate-based MN array was evaluated for its performance in 
Type 1 diabetes patients for 24 h after conducting safety 
tests on healthy human bodies for 6 and 24 h. The result 
shows the feasible accuracy of the glucose monitoring for 
Type 1 diabetes, as described in Fig. 1b.

2.2 � MNs integrated with electrodes
Another approach to devise an MN as a sensing probe 
is to integrate a MN-based mechanical guide with the 
micro-sized electrodes. The non-MN shaped electrodes 
are integrated with the MNs by being enclosed in the 
hollow MNs [61–66]. In this method, the hollow MNs 
work as mechanical guides for the enclosed conductor 
(e.g. carbon paste) to puncture the skin and support the 
electrodes inside the MNs because, as mentioned above, 
the electrode materials are not suitable for the MN fab-
rication by a simple process. This approach provides the 
advantage that the immobilized enzyme and the elec-
trodes are protected by the surrounding hollow structure 
of MNs during the penetration into the skin and in the 
measurement process.

On the contrary to the hollow MNs enclosing con-
ductive components, a few studies focused on the 
fabrication of electrodes on in-plane probes, which is 
obtained from a Si wafer by CMOS and MEMS-based 
process [66, 67]. These MN-shaped sensing probes can 
be likened to conventional sensing probes for neural 

signal measurement [68–71]. In this approach, gold or 
platinum electrodes with circuits and contact pads are 
fabricated on in-plane micro-sized probes, which are 
provided a configuration of MNs or assembled with 
hollow MNs. Although this concept leads to a lesser 
number of MNs compared to out-of-plane MN arrays 
in accordance with the fabrication principle, CMOS-
based probes are relatively suitable for integration with 
the setup of the measurement system compared to 
other MN-based sensors.

 Ribet et  al. reported the fabrication of a Si-based 
hollow MN with side openings that encloses the plati-
num WE and CE and the iridium oxide RE on a micro-
sized probe fabricated by the CMOS processes (Fig. 2a) 
[66]. In this approach, ISF permeates the side openings 
and is sequentially measured by the three electrodes 
enclosed in the hollow MN, as illustrated in Fig. 2b, c. 
The device successfully detects the amperometric sig-
nal according to the given glucose concentration even 
though only short time measurement is performed, as 
shown in Fig. 2d.

Fig. 1  a Schematic of the coated MN-based electrodes, b 
Measurement of Clarke error in the 24 h clinical test of the glucose 
monitoring system with the MN array (Reproduced with permission 
[52]. Copyright 2018, the Royal Society of Chemistry)
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3 � MNs as a biological fluid collectors
3.1 � Hollow MNs
An alternative way to access biological information is to 
extract body fluids through the micro pores punctured by 
the MNs. In this category, the MNs are defined as bio-
logical fluid collectors creating a transdermal fluidic path 
at the interface between the inner tissue including the 
dermis and the outer part of the skin. The MNs collect-
ing biological fluids such as blood and ISF have attracted 
the interest of researchers as they have the potential to be 
utilized in the existing ex vivo diagnostic systems includ-
ing pTAS devices. However, it is necessary for the MN-
based collector to collect at least a few pL of liquid for 
a reliable measurement of the analytes [72–74], whereas 
the MN-based sensing probes have a high availability of 
biological fluids under the surface of the skin. Therefore, 
the sampling performance is critical to the MN-based 
fluid collectors.

Research on the application of hollow MNs for the col-
lection of biological fluid was initiated earlier than that 
of other types of MNs, probably due to their suitability 
to the sampling of a sufficient amount of the biological 
fluid in a manner similar to conventional hypodermic 
needles. The hollow MNs extract ISF or blood into their 
bores by a capillary action or external negative pressure. 

As the hollow MNs were put to use as micro injection 
needles for localized drug delivery into the skin at the ini-
tial stage of the development of research in MNs [3, 75], 
the methods of fabrication and theoretical analysis of the 
hollow MNs are well investigated [4, 76–81]. As a result, 
the hollow MNs for fluid extraction are mainly made of 
Si or metals using MEMS-based micromachining tech-
nologies, including chemical etching or electroplating. 
In addition, bores in hollow MNs need to be precisely 
aligned on inlets of fluidic measurement systems to col-
lect biological fluids for a rapid analysis. According to 
this strategy, hollow MN-based sensing systems are 
highly developed for the measurement of protein [82], 
ions [83], glucose [84–90], and other analytes [91–93] in 
either blood or ISF.

 The Jung’s group presented a vacuum-pressure aided 
blood extraction system with Ni hollow MN for a colori-
metric glucose sensor [89]. They connected the hollow 
MN fabricated by electroplating to a PDMS micro cham-
ber, which is elastically deformable by a finger push to 
evacuate the air inside, as illustrated in Fig. 3a. The man-
ually generated negative pressure drives the blood from 
the vessel into the chamber via the hollow MN, followed 
by a capillary transport of the blood through a filtering 
and GOx-immobilized paper channel. The glucose level 

Fig. 2  a Cross-sectional fabrication process of the electrodes on the Si MN. b An optical image of the assembled hollow MN and measurement 
setups. SEM image of the hollow MN is shown on right hand, c A micrograph of the fabricated electrodes on the Si probe, d Amperometric 
measurement of glucose by the hollow MN-based sensor (Reproduced with permission [66]. Copyright 2018, IEEE)



Page 5 of 10Takeuchi and Kim ﻿Nano Convergence            (2018) 5:28 

is observed by comparing the colorimetric change of the 
paper (Fig. 3b), which results in a blood glucose measure-
ment of a rabbit ear (Fig.  3c). In terms of point-of-care 
glucose sensors, the hollow-MN based measurement sys-
tem showed the potential to be applied for clinical use as 
a miniaturized system of the present glucose monitoring 
kit using finger pricks and colorimetric reactions.

3.2 � Swelling MNs
An alternative method to the collection of ISF by using 
an MN array is to employ swelling materials for the body 
for the MN. It has been demonstrated that hydrogel MNs 
are capable to extract ISF by swelling, which results in a 
fluidic conduit [94–97], as well as to release the drug con-
tained in the MN matrix at the same time [98–101].

ISF is absorbed in the dry hydrogel MNs by diffu-
sion, after their penetration into the skin, which has to 
be followed by the process of separation of the sampled 
ISF from the MN array, by using centrifugation, either 
with or without immersion into a solvent. Although the 
swelling MNs intrinsically need the additional process 
to remove the analytes, the main fabrication process by 
mold casting is relatively simple and they have the ability 
to collect ISF efficiently due to the relatively large capac-
ity of the sampling volume. This approach is also applied 
to the measurement of glucose levels [96, 97].

3.3 � Porous MNs
Although the porous MNs were widely considered as 
drug delivery devices [34, 102–106], the porous MN 
array as an ISF collector has only been developed in 
recent years [107–110]. Porous MNs have the capabil-
ity to absorb ISF by a capillary action depending on the 
geometry of pores in MN bodies and their hydrophi-
licities. Although the concept of ISF extraction by the 

porous MNs has been proposed before, conventional 
porous MNs need to be centrifuged or dipped in a sol-
vent to separate the absorbed ISF, in the same manner as 
in the case of the swelled MNs, which leads to an increase 
in the number of steps involved in analysis.

The first successful study of a porous MN array for ISF 
collection and a fluidic connection to a external meas-
urement system was reported by the Nishizawa’s group 
[109, 110]. As the efficiency of collection by the capil-
lary action into the porous MNs is rated lower than that 
by the hollow MNs [111], the present study employs 
the porous MN array only as a transdermal fluidic path 
and not for the direct outward flow of ISF, as illustrated 
in Fig.  4a. The absorbed ISF in the polyethylene glycol 
(PEG) MN array (Fig.  4b) was fluidically connected to 
a hydrogel located on the rear side of the MN array, so 
that the electrolytes conduct current from electrodes 
to the dermis through the porous structure. Figure  4c 
describes the schematic of the measurement of the DC 
electric resistance on human skin, whose results showed 
the detection of an intercellular swelling according to the 
change of distance between two porous MN array on a 
leg skin, as illustrated in Fig. 4d. Even though the target of 
the measurement was not glucose but electrolytes in ISF 
in this report, the transdermal fluidic path created by the 
porous MN array made of biodegradable materials such 
as PEG is very promising for CGMS. In addition to this 
approach, Takeuchi et al. reported the fluidic connection 
between a porous structure and a microfluidic channel 
network fabricated by a MEMS process [112].

4 � Towards CGMS using MNs
Considering the research history of the micro-sized glu-
cose sensors, MNs functionalized for bio-sensing systems 
are comparatively recent. Hence, there are still challenges 

Fig. 3  a The sampling and measurement process of blood using a hollow MN and paper-based sensor. b The change of color (above) and 
calibration curves for glucose measurement (below). c A series of optical images of the blood sampling and glucose measurement in a rabbit ear 
with the integrated hollow MN and the paper-based sensor (Reproduced with permission [89]. Copyright 2015, the Royal Society of Chemistry)
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to be faced in the development of MN-based bio-sensing 
devices, especially for CGMS.

As discussed above, the MN-based electrodes, espe-
cially MNs coated with conductive layers, have been suc-
cessfully indicated to monitor the blood glucose level 
continuously. This is because the MN-based electrodes 
are in direct contact with a sufficient amount of fluids 
beneath the skin for a reliable measurement of glucose, 
in a similar manner to conventional implantable sen-
sors. However, from the perspective of the application 
of CGMS devices, the MN-based electrodes have certain 
drawbacks. One is a common problem of implantable 
sensors, that is, the loss of the sensitivity owing to sur-
face fouling and enzyme inactivation induced by proteins 
and immune response [113–115]. This can be an obsta-
cle in the use of a CGMS device in the current situation, 
as a longer period is required for glucose monitoring as 
commercially available devices achieving up to 14 days of 
monitoring of blood glucose [21]. Additionally, measure-
ment methodologies of biological analytes, in the use of 
MNs as in vivo sensing probes, are basically limited to the 
enzymatic electrochemical measurement. This is because 
such MN-based electrode sensors are compatible not 
with complicated measurement systems but with rela-
tively simple sensing principle such as electrochemical 

reactions at the surface of MNs. The limited measure-
ment methodology, using only electrochemical sensing 
with conventional electrodes, restricts the use of more 
accurate methods of measurements such as FET-based 
sensors [116–118], which results in a limited number of 
measurable biomarkers.

On the other hand, the use of MNs as biological fluid 
collectors have an advantage over their use as sensing 
probes because of the developed technology of ex vivo 
analysis of extracted biological samples. In particular, 
pTAS devices meet the purpose of the MN-based fluid 
collector by achieving a small amount of direct flow 
of ISF or blood from inside the skin to measurement 
systems. From this perspective, the hydrogel-forming 
swellable MNs have a disadvantage of the require-
ment of an additional step to separate the absorbed 
ISF from the MN array. As microfluidic CGMS devices 
composed of microchannels have already been pro-
posed using infrared light [119], viscosity-sensitive 
cantilever [120, 121], and enzymatic electrochemical 
measurement [122–124], the integration of the fluid 
collecting MNs with these devices would substantiate 
minimally invasive CGMS devices. However, the fabri-
cation of such MNs is relatively complicated because, 
in order to integrate a MN array as a fluid collector 

Fig. 4  a Schematic of the porous MN-based intercellular swelling measurement system. b A micrograph of the porous PEG MN. c Schematic of the 
DC resistance measurement by two porous MN array. d The DC resistance measured by the porous MN array and the circumference changed by a 
movement (Reproduced with permission [110]. Copyright 2015, Springer Science + Business Media, LLC)
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with CGMS devices, fluidic channels in MNs should be 
precisely connected to the microchannels in the device. 
Furthermore, the sampling rate of MNs is crucial for 
CGMS. As reported by Samant and Prausnitz, the rank 
order of the amount of ISF collected by MNs is as fol-
lows: hydrogel MN (0.0030 pL per MN (12  h inser-
tion)) < paper-based porous MN (0.0033 pL per MN 
(20 min insertion)) < hollow MN (0.01–0.03 pL per MN 
(20  min insertion)) [111]. According to this analysis, 
hollow MNs enable sufficient extraction of ISF while 
the porous MN sampling rate is limited by a diffusion 
through the dermis. However, the porous MN provides 
advantages such as its applicability for biodegradable 
materials including PEG and the simple fabrication and 
assembly with microfluidic systems, whereas the hol-
low MN must be made of non-biocompatible materials 
and fabricated by a complex process which limits the 
microfluidic system design.

5 � Conclusion
In this paper, the applicabilities of functionalized MNs 
to CGMS were discussed. The MN-based in  vivo sen-
sors have been applied to diagnostic systems even in a 
clinical experiment level, by being functionalized as elec-
trodes, especially for glucose measurement. However, the 
MNs as sensing probes have been facing the challenges 
similar to those of the implantable sensors, such as the 
impaired sensitivity and the limited measurement meth-
odology. On the other hand, the MN-based trans-dermal 
fluidic channels can be highlighted with the potential to 
be combined with recently developed pTAS technologies. 
Therefore, the use of MNs as biological fluid collectors 
should be investigated for integration with the existing 
ex vivo diagnostic systems and for a more efficient sam-
pling mechanism of ISF. The development of functional-
ized MNs in those ways will contribute to the realization 
of commercially available CGMS devices in a minimally 
invasive manner instead of conventional glucose moni-
toring devices with pain.
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