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Abstract 

Using reinforcement learning, a deep Q-network was used to design polarization-independent, perfect solar absorb-
ers. The deep Q-network selected the geometrical properties and materials of a symmetric three-layer metamate-
rial made up of circular rods on top of two films. The combination of all the possible permutations gives around 
500 billion possible designs. In around 30,000 steps, the deep Q-network was able to produce 1250 structures that 
have an integrated absorption of higher than 90% in the visible region, with a maximum of 97.6% and an integrated 
absorption of less than 10% in the 8–13 µm wavelength region, with a minimum of 1.37%. A statistical analysis of the 
distribution of materials and geometrical parameters that make up the solar absorbers is presented.
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1  Introduction
In the pursuit of renewable and green energy sources, 
the sun provides an enormous amount of energy wait-
ing to be harvested in a meaningful way. Perfect solar 
absorbers play an important role in solar energy harvest-
ing by converting photons into thermal energy [1, 2]. 
Using perfect solar absorbers allows all of the absorbed 
energy to be used in the conversion process. An ideal 
solar energy absorber should have two main properties. 
First, it should absorb all wavelengths of electromagnetic 
radiation that reach the Earth, and second it should not 
radiate that absorbed energy away as heat. This process 
allows the absorbed solar energy to be completely con-
verted to other forms of energy for practical everyday 
use. The proposed materials in this work can also be used 
as perfect absorbers in the visible region.

One way to produce such solar absorbers is through 
metamaterials. Since their introduction by Pendry et  al. 
[3], metamaterials have been used for numerous appli-
cations, such as light absorbers [4–15], cloaking devices 
[16, 17], and nonlinear optics [18, 19]. By carefully 
designing the subwavelength geometrical properties of 
metamaterials, their optical properties can be manipu-
lated for specific purposes. The design process is usu-
ally performed using knowledge from previous research 
and the intuition of the researcher. This can be an ardu-
ous process for more complex designs. Recently, artificial 
intelligence (AI) has been used to help find solutions to 
complex problems and uncover underlying relationships 
between the design parameter space and the optical 
properties in the field of nanophotonics [20]. Neural net-
works have been used for research in optics recently to 
design nanophotonic structures [21–27] and chiral meta-
materials [28], predict the optical properties of structures 
[29], and for signal processing [30].

The deep Q-network (DQN), a reinforcement learning 
algorithm is a powerful tool that can be used to optimize 
solutions for a problem [29, 31–35] by acting as an intel-
ligent search. Through exploration, the network takes 
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actions and receives feedback, allowing it to learn about 
the parameter space and make intelligent choices. This 
method and its benchmarks have been explained in more 
detail in a number of articles [32, 33, 36, 37]. In contrast 
to other deep learning, reinforcement learning does not 
learn the hidden nonlinear relationships in a predeter-
mined dataset but uses rewards and punishments in 
order to maximize a given reward. To start with there 
is no dataset, but through exploration and exploitation 
of the data space by an agent, it learns how to traverse 
the space and make good decisions to maximize its long-
term reward.

2 � Methods
2.1 � Structure
A schematic of the initial structure is shown in Fig.  1a. 
It is composed of an array of nanocylinders on top of a 
silver back reflector and 2 film layers, all on a glass sub-
strate. This structure was inspired by our previous exper-
imental experience. The starting point can be chosen 
arbitrarily, but a well-educated guess can help to reach 
final results faster. The cylinders assure that the final 
structure will be polarization independent, while the bot-
tom layer is a 200 nm silver back reflector, as is common 
in the design of many perfect absorbers. Lots of research 
has been published based on this type of structure with 
a variety of different number of layers and shapes [6, 38, 
39]. Here, the geometrical parameters and materials of 
the nanocylinders and layers are chosen by the DQN.

2.2 � Deep Q‑network (DQN)
The DQN was originally introduced as an AI agent that 
can play videogames at a level that can rival human play-
ers [33, 40]. The DQN has been able to complete different 
games with the same algorithm. In videogames, each new 
screen is a new state where the agent can take an action, 
since there are so many possible states and actions, it is 
impossible to explore them all, or to use conventional 
algorithms to solve the game. A DQN starts by explor-
ing a game and gradually learning the mechanics of it, the 
more the agent plays this game, the more it learns and is 
able to achieve higher scores. In this work, the DQN will 
learn the connection between the change of geometrical 
properties and their effect on final results through full 
wave FDTD simulations, and then use that knowledge to 
design structures that produce the optical responses that 
we desire. First, the environment is set up, this includes 
the initial structure design and the simulation envi-
ronment, second, the actions that the agent can take to 
change the structure are decided and finally, the reward 
system is defined. The DQN algorithm that connects all 
these parts together is shown in Fig. 1b.

The decision of which action to take in a given state 
is decided by a neural network that is updated based on 
what it has learned. To improve the performance of the 
DQN, an auxiliary model is used alongside. This net-
work is used to select the action for the agent to take, 
while the main DQN network is used to predict the 
Q-value of the state-action pair. This prevents the over-
estimation that is a problem in general DQN. At each 
iteration, two models are trained, and the weights of the 

Fig. 1  a A schematic of the structure for the DDQN model to optimize and b the algorithm flowchart of the DDQN model
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target model are gained from the combination of the 
main model weights and the target model weights. This 
method helped the overestimation caused by using just 
one model. The auxiliary network is updated periodi-
cally with the parameters of the DQN. Since there are 
two networks working together, this is known as a dou-
ble deep Q-network (DDQN) [41]. The rule for how an 
action is chosen is called the policy and the set of action, 
state, and policy form a Markov decision process (MDP). 
An MDP means that in a given state, the policy that is 
used to decide which action to take is based on the previ-
ous rewards gained from previous states and actions. The 
full details of this model and a pictorial comparison of 
the two q-network models is given in our previous work 
[24, 42]. Each neural network has 3 hidden layers with 12 
neurons.

2.3 � State
The state, which is an array of the materials and geomet-
rical properties of the structure, its variations, and limits 
are defined as follows:

•	 Cylinder material: 1 of 13 materials (Table 1).
•	 Film #1 material: 1 of 13 materials (Table 1).
•	 Film #2 material: 1 of 13 materials (Table 1).
•	 Cylinder diameter: 0–200 nm, step size: 10 nm.
•	 Cylinder thickness: 0–200 nm, step size: 10 nm.
•	 Film #1 thickness: 0–2000 nm, step size: 10 nm.
•	 Film #2 thickness: 0–2000 nm, step size: 10 nm.
•	 Gap between cylinders: 50–200 nm, step size: 10 nm.

The total number of possible states is therefore, 13 × 
13 × 13 × 20 × 20 × 200 × 200 × 15 = 527,280,000,000. 
Manually searching all of these states is impossible, but 
the DDQN can produce desirable results in a reasonable 
time. This will be discussed in more detail in the results 
section. It should be noted that the number of materi-
als and geometrical properties can be chosen arbitrarily. 

Choosing a larger range of values could lead to better 
results but would take longer to train and converge. This 
is limited only by the available resources.

The initial state is defined as the central value of each 
parameter, i.e. cylinder, film #1 and film #2 materials: 
material 7 (GaAs), cylinder diameter: 100  nm, cylin-
der thickness: 100  nm, film #1 and film #2 thicknesses: 
1000 nm and the spacing between cylinders: 100 nm

2.4 � Actions
The actions available to the agent to change the geo-
metrical properties of the design at each step are shown 
in Table  2. As with all numerical methods, the param-
eter space is continuous, so it is discretized into smaller 
steps, as defined in “State” section. A step size of 10 nm 
for the cylinder diameter is chosen as it was deemed an 
appropriate accuracy through testing. At each update, 
the model learns from its previous states, actions and 
rewards and decides the best action to take next.

2.5 � Reward system
The reward system gives feedback to the agent by giving 
information about how well it is learning. This is where 
the problem is set up to find a perfect solar absorber. A 
perfect solar absorber should have perfect absorption in 
the visible regime (350 to 800 nm) to absorb all the solar 
energy, while having minimum absorption in the mid-IR 
range of 8 µm to 13 µm to not radiate it back out as heat. 
An area under the curve (AUC) value for each absorption 
spectrum was calculated in each region and the reward 
function was designed as follows:

Table 1  The materials available to  be used for  the  films 
and nanocylinders

ID# Material ID# Material

1 ZnS 8 InAs

2 TiO2 9 InP

3 PDMS 10 Ge

4 Al2O3 11 Si

5 ZnO 12 Si3N4

6 TiN 13 SiO2

7 GaAs

Table 2  Definitions of the actions available to the agent

Action no. Action definition

0 Decrease the spacing between cylinders by 10 nm.

1 Increase the spacing between cylinders by 10 nm.

2 Decrease the height of the cylinder by 10 nm.

3 Increase the height of the cylinder by 10 nm.

4 Decrease the diameter of the cylinders by 10 nm.

5 Increase the diameter of the cylinders by 10 nm.

6 Decrease the thickness of film #1 by 10 nm.

7 Increase the thickness of film #1 by 10 nm.

8 Decrease the thickness of film #2 by 10 nm.

9 Increase the thickness of film #2 by 10 nm.

10 Decrease the material ID of cylinders by 1.

11 Increase the material ID of cylinders by 1.

12 Decrease the material ID of the film #1 by 1.

13 Increase the material ID of the film #1 by 1.

14 Decrease the material ID of the film #2 by 1.

15 Increase the material ID of the film #2 by 1.
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200 is added to the reward to make sure that it remains 
positive. An ideal structure will gain a reward of 300, 
while the worst structure gets a reward of 100 (since the 
AUC ranges from 0 to 100%). The absorption over each 
range of wavelengths was calculated with power moni-
tors for reflection (R) and transmission (T), taking the 
absorption (A) to be A = 1−R−T.

(1)

reward = 200+ absorptionAUC(350− 800nm)%

− absorptionAUC(8− 13µm)%

3 � Results and discussion
The simulations were performed using a computer with 
a 3.40  GHz 16-core processor, 64  GB of RAM, and an 
NVIDIA RTX 2070 GPU with 8 GB DDR6 RAM. At each 
step, the DDQN code was run in Python for the AI calcu-
lations and connected to Lumerical, a commercial FDTD 
solver, to evaluate its predictions. All material data was 
taken from the inbuild database. This method requires 
a PC with both a strong CPU for the FDTD simulations 
and GPU for the neural network calculations. With this 

Fig. 2  a, c Histograms of film #1 and film #2 thickness distributions, and b, d cylinder height, diameter, and lattice constant distributions for two 
criteria. a, c show the distributions for the structures with an AUC higher than 90% from 350–800 nm and lower than 10% from 8–13 μm (1,250 
structures). b, d show distributions structures with an AUC higher than 95% from 350–800 nm and an AUC lower than 5% from 8–13 μm (119 
structures)
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setup it took around 1  month, where around 35,000 
steps were taken. In the process of uncovering the best 
structures, the DDQN finds many similar solutions with 
small differences in their rewards. This means that many 
structures with acceptable results and different geomet-
rical properties are discovered, allowing for a statistical 
analysis. A situation called backflipping occurred, which 

means that the model is stuck in a single configuration. 
This issue was fixed by tuning the hyperparameters. Fig-
ure  2 shows histograms of the distributions of different 
geometrical properties for film #1, film #2, the cylinder 
and the lattice constant. These graphs are prepared for 
two different categories. The first shows the top 10% of 
structures, which have an AUC of higher than 90% in the 

Fig. 3  Pie charts of (a) the material distributions of film #1, film# 2 and the cylinder for structures with an AUC higher than 90% from 350 to 800 nm 
and an AUC lower than 10% from 8 to 13 μm (1250 structures) and (b) for the structures with an AUC higher than 95% from 350 to 800 nm and an 
AUC lower than 5% from 8 to 13 μm (119 structures)

Table 3  Some of highest efficiency structures by the DDQN

Film #1 mat. Film #2 mat. Film #1 
height 
(nm)

Film #2 
height 
(nm)

Cylinder mat. Cylinder 
height 
(nm)

Cylinder 
diameter 
(nm)

Lattice 
spacing 
(nm)

Abs. AUC (350 
– 800 nm)  %

Abs. AUC (8 
– 13 µm)  %

Ge GaAs 1120 40 InAs 100 100 50 97.61 1.37

InAs InP 1000 240 InAs 100 100 50 97.32 1.50

GaAs InP 1120 40 InAs 100 100 50 97.05 2.48

InAs GaAs 1120 40 InAs 100 100 50 96.75 2.56

InAs GaAs 1110 40 InAs 100 100 50 96.74 2.67

GaAs GaAs 1120 40 InAs 100 100 50 96.57 2.58

InAs ZnO 1300 290 TiN 140 100 120 96.54 2.83

InAs InAs 1000 160 InAs 100 100 50 96.53 2.85
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350 to 800 nm wavelength region and lower than 10% in 
the 8  µm to 13  µm region. The second displays the top 
5% of structures, which have an AUC higher than 95% in 
the 350 to 800 nm wavelength region and lower than 5% 
in the 8 µm to 13 µm region. The DDQN produced 119 
structures with these properties. The DDQN uncovered 
1250 structures with these properties. shows histograms 
of the distributions of different geometrical properties 
for film #1, film #2, the cylinder and the lattice constant. 
These graphs are prepared for two different categories. 
The first shows the top 10% of structures, which have an 
AUC of higher than 90% in the 350 to 800 nm wavelength 
region and lower than 10% in the 8 µm to 13 µm region. 
The second displays the top 5% of structures, which have 
an AUC higher than 95% in the 350 to 800  nm wave-
length region and lower than 5% in the 8  µm to 13  µm 
region. The DDQN produced 119 structures with these 
properties. The DDQN uncovered 1250 structures with 
these properties.

The distributions of the material choices for film #1, 
film #2 and the cylinder are displayed in the pie charts 
in Fig. 3 for the same categories as previously described. 
These plots reflect which materials should be chosen to 
obtain perfect solar absorbers. Table  3 shows the mate-
rials and geometric parameters of the top 8 performing 
structures discovered by the DDQN, with the absorption 
curves of the top 2 shown in Fig. 4. In comparison with 
human findings, A. Al-Rjoub et al. [43] reported almost 
identical theoretical and experimental results of a 95.2% 
and 9.8% absorption in the first and second wavelength 
regions.

4 � Conclusions
A DDQN was used to design structures to be used as 
solar perfect absorbers in a parameter space that allows 
for 527 billion possible designs. Using a variety of mate-
rials, it was able to produce around 1250 perfect solar 
absorbers in around 35,000 steps. Each structure has 
an AUC higher than 90% in the visible region with low 
absorption in the 8  µm to 13  µm region. A statistical 
analysis was produced to help readers choose suitable 
geometrical properties and materials based on their fab-
rication limitations to design a perfect solar absorber.
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