
Shin et al. Nano Convergence            (2021) 8:25  
https://doi.org/10.1186/s40580-021-00276-5

FULL PAPER

Omni‑directional wind‑driven triboelectric 
nanogenerator with cross‑shaped dielectric film
Yoseop Shin, Sungjun Cho, Sejin Han and Gun Young Jung*   

Abstract 

Triboelectric nanogenerators (TENGs) are actively being researched and developed to become a new external power 
unit for various electronics and applications. Wind is proposed as a mechanical energy source to flutter the dielectric 
film in wind-driven TENGs as it is clean, abundant, ubiquitous, and sustainable. Herein, we propose a TENG structure 
with dielectric films bent in four directions to collect the wind energy supply from all directions, unlike the conven-
tional wind-driven TENGs which can only harvest the wind energy from one direction. Aluminum (Al) layer was inter-
calated within the dielectric film to improve electrostatic induction, resulting in improved triboelectric performances. 
Maximum open-circuit voltage (Voc) of 233 V, short-circuit current (Isc) of 348 µA, and output power density of 46.1 W 
m− 2 at an external load of 1 MΩ under a wind speed of 9 m s− 1 were revealed, and it faithfully lit “LED” characters 
composed of 25 LEDs.
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1  Introduction
With the advent of the fourth industrial revolution, the 
Internet of Things (IoT) technology that allows data to 
be sent and received in real time by attaching sensors to 
objects is developing rapidly [1–3]. Wearable devices that 
are directly related to IoT are also being rapidly commer-
cialized [4–6] and are attached close to the body of users 
in the forms of glasses [7], wristwatches [8], and shoes [9] 
for data collection from the surroundings. Therefore, the 
wearables must be small, light, and wireless [10]. Lith-
ium-ion batteries are normally used as an external power 
source to operate these sensors and portable devices [11], 
but have the disadvantages of recharging requirement, 
replacement due to the limited lifetime and power capac-
ity, and the risk of explosion [10, 12]. Therefore, devel-
opment of new power supplies that can overcome the 
limitations of lithium-ion batteries is essential.

Currently, a variety of wireless sensors using IoT are 
ubiquitously utilized in military [13], industrial [14], aca-
demic [15], and leisure [16] fields, rendering a growing 
interest in permanent energy harvesting, in which the 
wasted and natural energies can be collected and utilized 
from the surrounding environment. Energy harvesting 
technologies convert heat [17], light [18], and mechani-
cal energy [19] into electrical energy. Today, solar cells 
are one of the representative energy harvesting devices 
[20] using the photoelectric effect theory. However, the 
solar cells have drawbacks such as high weather-depend-
ence and geographical limitations. New energy harvest-
ing devices are required to alternate the solar cells, giving 
rise to interest in mechanical energy harvesting.

Two approaches for the mechanical energy harvesting, 
which can be generated by various human movements 
[21] and wind [22], and piezoelectric [23] and triboelec-
tric [24] effects. Piezoelectric nanogenerators (PENGs) 
generate electrical signals upon receiving external stress 
or vibration [9, 25–28]. Triboelectric nanogenerators 
(TENGs) use an electrostatic phenomenon generated by 
the contact of two different materials, leading to a poten-
tial difference between the materials [29–31]. Various 
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triboelectric nanogenerators have been reported using 
human mechanical stimuli and various natural energies, 
such as wind, ultrasonic, raindrops, and water waves [22]. 
Wind has recently been utilized as a mechanical energy 
source to flutter the dielectric film for wind-driven 
TENGs because wind is clean, abundant, ubiquitous, 
and sustainable [32–34]. The wind-driven TENGs have 
advantages of simple manufacturing at low cost, low 
weight, and no explosion risk compared to the lithium-
ion batteries [35–38].

Interest in mobility is growing in modern era; for exam-
ple, drones with numerous wireless sensors are used in a 
wide variety of fields, including the observation of activi-
ties, video filming, and offline delivery [39–41]. Accord-
ingly, an auxiliary power supply providing sustainable 
energy is required to increase the limited flight time of 
drones, which are indispensable in the fourth industrial 
age [42].

Herein, we propose a wind-driven TENG structure 
with a cross-shaped dielectric film bent in four direc-
tions (C-TENG), which can produce a suitable external 
power supply in all wind directions, unlike the vehicles 
or subways that can run in only one direction. The TENG 
could efficiently harvest wind energy from all direction, 
suitable for drones flying in arbitrary directions. Addi-
tionally, another TENG, in which an Al layer is inter-
calated within a polytetrafluoroethylene (PTFE) film 
(CIA-TENG), was produced to improve electrostatic 
induction, resulting in improved triboelectric perfor-
mances. Al and PTFE were selected as the triboelectric 
materials. The triboelectric performances of C-TENG 
and CIA-TENG were compared in this study. The effect 
of wind direction on the triboelectric performances was 
also tested, demonstrating that the wind energy can be 
harvested omnidirectionally.

2 � Experimental details
2.1 � C‑film and CIA‑film fabrication
A PTFE film tape (3 M™, thickness of 50 μm) was used 
as a triboelectric material. The C-film was produced by 
sticking two PTFE film tapes each other and cutting them 
in the form of a cross-shape. The central square area of 
the C-film is 2 × 2 cm2. An Al foil (HANSUNG, thickness 
of 15 μm) was used for the intercalated metal layer within 
the PTFE film. The CIA-film was produced by attaching 
the two PTFE tapes to both sides of the Al foil. The Al 
foil was protruded 5 mm from the PTFE film for the con-
nection to the Al bottom electrode electrically. Dry etch-
ing was performed using a reactive ion echer (Plasmart, 
MINIPLASMA station) under following conditions; O2, 
CF4, and Ar gases (10, 30, and 15 sccm, respectively), 20 
mTorr, and 400 W for 60 s.

2.2 � CIA‑TENG fabrication
The Al tape (DUCSUNG HITECH, thickness of 50 μm) 
was used both top and bottom electrodes as well. After 
bending the cross-shaped CIA-film in four directions, 
the Al foil protruded from the CIA-film was electrically 
connected to the Al tape (attched to the bottom glass 
plate working as the bottom electrode) with a conductive 
carbon adhesive tape (SHILPA ENTERPRISES, thickness 
of 15 μm). Another Al tape (for the role of top electrode) 
was attached to the top glass plate with a size of 2 × 2 
cm2.

2.3 � Triboelectric performance measurements
An oscilloscope (Tektronix, DPD4014B) and pre-ampli-
fier (Stanford Research, SR570) were used to measure the 
output voltage and current. During the measurement, 
wind was supplied with a commercial nitrogen blow gun, 
and the wind speed was measured using a commercial 
anemometer (Testo, Testo 417). The PTFE surface rough-
ness was analyzed using AFM equipment (Park’s system, 
XE-100).

3 � Results and discussion
3.1 � Structure design and triboelectric materials for C‑TENG 

and CIA‑TENG
Figure  1 shows the structures and photographs of two 
wind-driven TENGs using different dielectric films bent 
into four directions for pursuing the omnidirectional 
fluctuation by the wind. PTFE and Al were used as the 
triboelectric materials; the PTFE is a dielectric polymer 
composed of monomers of tetrafluoroethylene, which 
has abundant fluorines (F). The F atom has the highest 
electron affinity among many atoms, resulting in accu-
mulated electron charges on the PTFE surface after 
touching the Al electrode, which is positively charged by 
electrification. The Al acts as bottom- and top electrodes 
as well in this study; thus, it simplifies the manufacturing 
process of the TENG. Inductively coupled plasma-reac-
tive ion etching (ICP-RIE) was performed on the PTFE 
surface to increase the contact surface area for enhancing 
the triboelectric performance. The RMS roughness of the 
PTFE surface was measured as 35.1 nm (before etching) 
and 53.0 nm (after etching) at a scan area of 15 × 15 µm2 
(Additional file 1: Fig. S1).

The C-TENG with the cross-shaped PTFE film 
(C-film) bent in four directions is depicted and shown 
in Fig.  1a and b. The contact friction is generated by 
the wind-driven fluctuation of the C-film at the inter-
face with the Al top electrode. The cross-shaped C-film 
allows the TENG to collect mechanical energy regard-
less of wind direction and is suitable for vehicles (e.g., 
drones) moving in arbitrary directions. The effective 
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triboelectric contact area of the C-film is the center 
part (2 × 2 cm2) that actually touches the Al top elec-
trode. Figure  1c and d show another TENG with the 
intercalated Al layer within the C-film (CIA-film) that 
is hereafter called CIA-TENG. These two device struc-
tures are identical except for the existence of the inter-
calated Al layer within the PTFE dielectric film. The 
four wings of CIA-film were bent in four directions 
and electrically connected to the Al bottom electrode 
through the protruded intercalated Al layer. The fixed 
CIA-film is not free from lateral movement but has an 

elasticity advantageous for the up/down vertical vibra-
tion by the wind (Additional file 2: Movie S1).

3.2 � Triboelectric performance of C‑TENG and CIA‑TENG
Figure  2 shows the triboelectric performances of the 
etched C-TENG and CIA-TENG at a wind speed of 
9  m s-1. In the case of the C-TENG, a maximum open-
circuit voltage (Voc) of 153  V and short-circuit current 
(Isc) of 51.8 µA were measured (Fig.  2a and b). For the 
CIA-TENG, the maximum Voc and Isc were 233  V and 
348 µA, respectively, which were 1.52 and 6.72 fold larger 

Fig. 1  Illustrations and photographs of the fabricated a, b C-TENG and C-film, and c, d CIA-TENG and CIA-film; (i) diagonal and (ii) top view of C- and 
CIA-film, and (iii) side view of the C- and CIA-TENG



Page 4 of 10Shin et al. Nano Convergence            (2021) 8:25 

than those of the C-TENG (Fig. 2d and e). External resist-
ances to the TENGs were applied to measure the out-
put power density. At an external resistance of 1 MΩ, 
the maximum output power density of the CIA-TENG 
was 46.1  W m-2, which is approximately 20-fold higher 
than the 2.33 W m-2 of the C-TENG (Fig. 2c and f ). The 
Isc increased noticeably when using the intercalated Al 
layer. A maximum average output power derived from 
the root-mean-square (RMS) voltage was 2.36 mW at an 
external resistance of 1 MΩ in CIA-TENG (Additional 
file 1: Fig. S2).

To identify the effect of surface roughness, two TENGs 
with the unetched C-film and CIA-film were also meas-
ured. The maximum Voc and Isc of the unetched C-TENG 
were 104  V and 24.4 µA, respectively. In the case of 
unetched CIA-TENG, those were 149  V and 126.4 µA, 
respectively (Additional file  1: Fig. S3). These triboelec-
tric properties are significantly inferior to those of cor-
responding references with the etched dielectric film 
(Fig. 2). The improved PTFE surface roughness increases 
the contact surface area to the Al top electrode, result-
ing in more triboelectric charges on the PTFE surface. 
It is noticeable that the degree of short-circuit current 
enhancement is larger than that of open-circuit voltage 
enhancement, which can be explained by the following 
equation: [43]

 where, Seff, d0, σtribo, and x(t) are the effective contact area 
of the dielectric film to the electrode, the effective die-
lectric thickness constant (d/ε, d: dielectric thickness, ε: 
relative dielectric constant), triboelectric charges, and the 
separation distance depending on the time, respectively. 
In the open-circuit condition, the transferred charges (Q) 
between electrodes are 0; therefore, the Voc is affected by 
only σtribo and thus linearly proportional to only σtribo by 
Eq. (1). At a short-circuit condition, Isc is given by: [43]

 where v(t) is the fluttering speed of the dielectric film. 
According to Eq.  (2), Isc is linearly proportional to the 
multiplied value of Seff and σtribo. The etching process 
increased the surface roughness, inducing more contact 
surface area during electrification, and more triboelec-
tric charges on the PTFE surface, resulting in the higher 
increment of Isc in comparison to the Voc increment.

(1)V = −
Q

Seff ǫ0
(d0 + x(t))+

σtribox(t)

ǫ0

(2)

Isc =
dQsc

dt
= −

Seff σtribod0

(d0 + x(t))2
dx

dt
=

Seff σtribod0v(t)

(d0 + x(t))2

Fig. 2  Output performances of the C-TENG and CIA-TENG using the etched PTFE film at a wind speed of 9 m s− 1; Voc, Isc and output power density 
of a–c C-TENG, and d–f CIA-TENG, respectively
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3.3 � Operating mechanism of the C‑TENG and CIA‑TENG
To understand the effect of the intercalated Al layer, the 
operating mechanism of the C-TENG and CIA-TENG 
was analyzed as depicted in Additional file 1: Fig. S4 and 
Fig. 3. Two primary mechanisms are used for the opera-
tion of the wind-driven TENG. The first mechanism is 
the electrification of the dielectric film through the con-
tact between the two triboelectric materials. The second 
step is electrostatic induction, in which the free electrons 
at the electrode surface are repulsed by the negative tri-
boelectric charges sitting on the dielectric film when it 

approaches the electrode. As a result, an equal amount of 
positive charges remains on the electrode surface.

In the C-TENG, when the C-film contacts the Al top 
electrode, negative triboelectric charges are accumulated 
on the surface of the C-film by withdrawing free elec-
trons from the Al top electrode (Additional file  1:  Fig. 
S4a and b). During the initial electrification cycles, tribo-
electric charges are accumulated on both surfaces of the 
C-film and Al top electrode. When detaching, as the dis-
tance between the C-film and Al top electrode increases, 
the electrostatic induction to the Al top electrode by the 

Fig. 3  Operating mechanisms of CIA-TENG; a, b initial electrification step and c–f repetitive triboelectric step
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negative charges of the C-film is gradually weakened, 
resulting in a flow of electrons from the bottom to the 
top electrode (Additional file  1: Fig. S4c) until the elec-
trostatic induction is no longer active on the surface of 
the Al top electrode (Additional file 1: Fig. S4d). On the 
contrary, when the negatively charged C-film approaches 
the Al top electrode, electrons move from the top to the 
bottom electrode, because Coulomb repulsion occurs 
between the negative triboelectric charges of the C-film 
and the free electrons of the Al top electrode (Additional 
file 1: Fig. S4e and f ).

The same mechanism is applicable to the CIA-TENG 
during the initial few cycles, giving rise to negative tribo-
electric charges on the CIA-film surface (Fig. 3a and b). 
As soon as the negatively charged CIA-film is detached 
from the Al top electrode, more electrons move from the 
bottom to the top electrode than those of the C-TENG 
because sudden electrostatic equilibrium was generated 
at the interface between the negatively charged CIA-film 
and the intercalated Al layer, generating positive charges 
on the intercalated Al surface (Fig. 3c). Concurrently, the 
Coulomb repulsion between the triboelectric electrons 
of the CIA-film and free electrons of the intercalated 
Al layer occurs. These two combined effects (electro-
static induction and Coulomb repulsion) induce more 
electrons’ flow to the Al top electrode until electrostatic 
equilibrium is reached at which the net current is zero 
(Fig. 3d and e). Therefore, the intercalated Al layer within 
the PTFE film generates more electricity in comparison 
to the C-TENG. When the CIA-film touches the top 
electrode in the next oscillation, electrons immediately 
move from the top electrode to the intercalated Al layer 
to maintain electrostatic equilibrium at the interface 
between the CIA-film and Al top electrode (Fig. 3f ). This 
triboelectric mechanism continues in the following oscil-
lation. A detailed explanation of the effect of intercalated 
Al layer within the PTFE film was given in a previously 
reported paper [44].

3.4 � Effect of gap, wind speed, and wind direction 
on the triboelectric performances of the CIA‑TENG

The CIA-TENG was operated under various conditions 
to check the effect of the gap, wind speed, and wind 
direction. Figure 4a and b show the Voc and Isc of CIA-
TENG measured at various gaps. The Voc and Isc were 
188, 233, 155, and 120 V and 271, 348, 205, and 122 µA 
at the gap of 3, 4, 5, and 6 mm, respectively, revealing the 
maximum triboelectric performance at a gap of 4 mm. 
The fluttering frequencies of CIA-film were 260, 306, 
242, and 204 Hz at the corresponding gaps of 3, 4, 5, and 

6 mm at a wind speed of 9 m s-1 (Fig. 4c). The fluttering 
frequency was calculated by counting the number of Isc 
peaks at an interval of 0.05 s (Additional file 1: Fig. S5). 
The highest fluttering frequency of 306 Hz was measured 
at a gap of 4 mm at which the best wind-driven triboelec-
tric performance was demonstrated. The narrower gap 
(3 mm) disturbed the fluttering of the CIA-film, result-
ing in a lower fluttering frequency, which implies that the 
dielectric film impacts the Al top electrode with a lower 
speed of v(t), rendering a drop in Isc according to Eq. (2). 
The Voc, Isc, and fluttering frequency were measured at 
various wind speeds (Fig. 4d–f). As expected, the flutter-
ing frequency increased with the wind speed; thus, both 
Voc and Isc increased with wind speed.

To verify that the CIA-TENG enables energy harvest-
ing in all wind directions, the triboelectric performance 
was measured depending on the wind angles (Fig. 4 g and 
h). The wind angle (θ) was defined as illustrated in Fig. 4i. 
The maximum Voc and Isc were revealed at 0, 90, 180, 
and 270°, where the wind blows vertically to the CIA-
film plane. In contrast, the minimum Voc and Isc, which 
were approximately 58 and 32 % of the maximum Voc and 
Isc, respectively, were recorded at 45, 135, 225, and 305°, 
where the wind blows diagonally to the void between the 
CIA-films. These results indicate that wind energy can be 
harvested regardless of the wind direction with the cross-
shaped dielectric film.

3.5 � Application of the CIA‑TENG
A continuous operation was performed at a wind speed of 
9 m s-1 to test the durability of the CIA-TENG. Figure 5a 
shows that the Voc was maintained for approximately 
1650  s, corresponding to 500,000 fluttering cycles, and 
gradually decreased. For practical application, the CIA-
TENG was connected to a bridge rectifier to convert the 
AC to a DC signal, and 25 light-emitting diodes (LED) 
bulbs in series (Fig.  5b). The resulting maximum Voc of 
120.4 V and Isc of 237.6 µA were 48 and 32 % lower than 
those of the AC signal, respectively (Fig.  5c and d). The 
CIA-TENG supplied a stable power to 25 LEDs to light 
“LED” characters (Fig. 5e and Additional file 3: Movie S2).

4 � Conclusions
In this study, wind-driven C-TENG and CIA-TENG were 
fabricated and their triboelectric performances were 
compared. Cross-shaped dielectric films bent in four 
directions were proposed to harvest the wind energy 
regardless of wind directions. By inserting an Al layer 
within the dielectric film, the combined effects of electro-
static equilibrium and Coulomb repulsion between the 
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CIA-film and the intercalated Al layer generated more 
electrons for the triboelectric performance. When com-
paring the triboelectric performances of the C-TENG 
and CIA-TENG, the Voc, Isc, and output power density 
of the CIA-TENG were 1.52, 6.72, and 20 times higher 

than those of the C-TENG, respectively. The CIA-TENG 
could harvest energies sustainably by the wind blowing 
in arbitrary directions; the CIA-TENG could be installed 
and supply an auxiliary power to the vehicles moving in 
arbitrary ways.

Fig. 4  Triboelectric performances of the CIA-TENG at various a–c gaps, d–f wind speeds, and g–i wind directions shown from the top view of 
CIA-TENG
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within a PTFE film; F: Fluorine; ICP-RIE: Inductively coupled plasma-reactive ion 
etching; C-film: Cross-shaped PTFE film; CIA-film: C-film having the interca-
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electrification step and (c–f ) repetitive triboelectric step. Fig. S5. Compari-
son of Isc at different (a) gaps and (b) wind speeds (interval: 0.05 s.

Additional file 2: Movie S1. Vertical vibration of the CIA-TENG at a wind 
speed of 9 m s-1.

Additional file 3: Movie S2. Demonstration of powering 25 LEDs by a 
CIA-TENG.
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