

CORRECTION Open Access

Check for updates

Correction to: WS₂-WC-WO₃ nano-hollow spheres as an efficient and durable catalyst for hydrogen evolution reaction

Tuan Van Nguyen¹, Ha Huu Do¹, Mahider Tekalgne¹, Quyet Van Le², Thang Phan Nguyen³, Sung Hyun Hong², Jin Hyuk Cho², Dung Van Dao², Sang Hyun Ahn^{1*} and Soo Young Kim^{2*}

Correction to: Nano Convergence (2021) 8:28 https://doi.org/10.1186/s40580-021-00278-3

Following publication of the original article [1], the affiliation of the authors was incorrectly published in the article. The affiliation which was shown in supplementary information is correct. This has been corrected with this erratum.

Author details

¹School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea. ²Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea. ³Department of Chemical and Biological Engineering, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.

Published online: 19 October 2021

Reference

 Van Nguyen T, Do HH, Tekalgne M, Van Le Q, Nguyen TP, Hong SH, Cho JH, Van Dao D, Ahn SH, Kim SY. WS₂–WC–WO₃ nano-hollow spheres as an efficient and durable catalyst for hydrogen evolution reaction. Nano Convergence. 2021; 8:28. https://doi.org/10.1186/s40580-021-00278-3

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article can be found online at https://doi.org/10.1186/s40580-021-00278-3.

Full list of author information is available at the end of the article

Seoul 02841, Republic of Korea

© The Author(s) 2021. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

^{*}Correspondence: shahn@cau.ac.kr; sooyoungkim@korea.ac.kr

¹ School of Chemical Engineering and Materials Science, Chung-Ang
University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea

² Department of Materials Science and Engineering, Institute of Green
Manufacturing Technology, Korea University, 145 Anam-ro, Seongbuk-gu,