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Abstract 

Several phenomena occurring throughout the life of living things start and end with proteins. Various proteins form 
one complex structure to control detailed reactions. In contrast, one protein forms various structures and implements 
other biological phenomena depending on the situation. The basic principle that forms these hierarchical structures 
is protein self-assembly. A single building block is sufficient to create homogeneous structures with complex shapes, 
such as rings, filaments, or containers. These assemblies are widely used in biology as they enable multivalent binding, 
ultra-sensitive regulation, and compartmentalization. Moreover, with advances in the computational design of protein 
folding and protein–protein interfaces, considerable progress has recently been made in the de novo design of pro-
tein assemblies. Our review presents a description of the components of supramolecular protein assembly and their 
application in understanding biological phenomena to therapeutics.
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1  Introduction
Supramolecular assembly is a very common phenomena 
in nature and these natural supramolecular proteins have 
various structures, from simple structures to complex 
structures [1, 2]. As the increasing development of struc-
tural analysis, such as Cryo-EM, it is possible to observe 
the conformation of supramolecular assembled structure 
[3]. Before the 1990s, protein structures were scarcely 
elucidated; however, more protein structures have been 
identified by advanced technology (Fig.  1). More struc-
tures emerge from oligomeric proteins than monomeric 
proteins, providing us more opportunities to study pro-
tein assembly [3]. In this paper, we will discuss about the 
component of supramolecular protein assembly and clas-
sify their conformation according to structural dimen-
sionality. Lastly, we speculate the biological phenomena 

from organism and their application with their own 
properties.

2 � The component of protein assembly
We define the components of protein assembly in three 
aspects: folding structure unit, protein–protein interface, 
and assembly symmetry (Fig. 2). Each components deter-
mine the overall structure of supramolecular protein 
structure and their functions.

2.1 � Folding structure unit 
The folding unit is the basic building block for supramo-
lecular protein assembly [4]. These building blocks are 
mostly composed of α-helices, β-sheets, or a mixture of 
them (Fig.  3A). The symmetry of the units and dimen-
sions of the supramolecular protein are determined, 
depending on how the folding unit is configured. A bet-
ter understanding of the proteins contributes to design-
ing new supramolecular structures from rational design 
to de novo design. Rational design is inspired by com-
mon features and motifs from existing proteins [5, 6]. 
The α-helical structure is well characterized by Crick 
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parameterization, and the sequence pattern of heptad 
repeats has been widely studied [7]. This enables the 
rational design of the alpha helical coiled-coil motif. 
Recently, the de novo design of proteins that start from 
scratch can create a new topology beyond experimentally 

determined structures. De novo design generates a 
building block based on the basic physical principle of 
protein by using computational power. There are many 
open-source programs that can help us build α-helices or 
β-sheets and complex forms of building units. To build 
a coiled-coil motif, we can easily build unit structures 
from CCCP (Coiled-coil Crick Parameterization) [7], 
CCBuilder2.0 [8] This allows researchers to build gener-
alized models of coiled coils based on the Crick param-
eters or to calculate the folding stability of the resulting 
coiled coils [9]. The design of the β-sheet structure has 
non-local interactions where more β-sheet fractions give 
some sequence distance between each β-sheet unit, lead-
ing to slower folding rate [10] or misfolding [11, 12]. So, 
we need to predict and calculate the proper distance for 
every different scaffold of β-sheet structures. ‘BluePrint-
BDR’ mover in rosetta makes it easier to create a new 
topology structure based on the 2D map indicating which 
residue is pairing with a particular residue. The devel-
opment of computational power and increased protein 

Fig. 1  Statistical analysis of annually defined structure in Protein Data 
Bank (PDB) (Data obtained from https://​www.​rcsb.​org/​stats)

Fig. 2  Schematic image for description of three components of supramolecular protein assembly

https://www.rcsb.org/stats
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structure databases has expanded our knowledge to 
understand and design folding units.

2.2 � Protein–protein interface
The protein interface is a major determinant of the struc-
ture and function of natural proteins [13]. In nature, the 
signal transduction pathway is determined very precisely 
according to the difference in the protein interface of 
each ligand at the binding site of the multiligand recep-
tor [14]. Among them, the supramolecular building block 
determines the binding stoichiometry between unit 
structures and controls the overall morphology accord-
ing to the energetic favorability of each facet. The protein 
interface is delicately determined according to the size of 
the exposed solvent-accessible area [15, 16], hydrophobic 
packing [17, 18], and the existence of hot-spot residues 
[19, 20]. It can be classified into three categories based 
on importance and structure: helix interface, beta-sheet 
elongation, and metal coordinates.

2.2.1 � Helical interface
The helical interface is the most common structure of the 
protein interface [21–24]. It is used in various structural 
regulations, from the very small protein assembly struc-
ture of the coiled-coil to heterogenous protein assembly, 
such as bacteriophage virion coating. The helix structure 

appears to be a simple helical structure; however, it is 
based on how each helix structure is connected in the 
helix-turn-helix structure and new interface such as par-
allel/antiparallel alignment can be created.

Amphiphilic interfaces of the helix are important for 
designating the directionality of the assembly. Hydro-
phobic patches at the protein–protein interface allow the 
monomers to form stable complexes [25]. In contrast, 
unfavorable buried polar residues destabilize the bond-
ing interface [26]. Therefore, modulating the amphi-
philic interface, which includes both hydrophobic and 
hydrophilic interactions, is a key component of protein 
assembly.

2.2.2 � Beta‑strand elongation
The beta-strand interface, which intermolecular network 
of hydrogen bonds, are widely occur in protein assem-
bly. With the development of protein structure analysis 
technology, the morphology of the beta-sheet fiber struc-
ture of various structures was discovered and classified 
according to the beta strand elongation direction (par-
allel/antiparallel) and the symmetry of the steric zippers 
forming the core of the fiber structure [27]. The interface 
of beta-strand used to design many artificial amyloid-
like structures assembled in the form of fibrils [28, 29] 
and gel [30, 31] and tandem repeat structures of ring or 
pore shape. The design of the beta-strand interface is 
very complex because the sheets bond intermolecularly 
and do not elongate except when the beta-strand is fully 
aligned within an axis. Recently, Baker et  al. demon-
strated the first de novo designed beta-barrel structures 
by establishing the geometric parameters of antiparal-
lel beta-barrels to build an ideal backbone template and 
assign residues for structural stabilization [32].

2.2.3 � Metal coordinates
Metal coordination plays an essential role in develop-
ing unit protein structures for regulatory and enzymatic 
reactions, including metalloenzymes, chloroplasts, and 
zinc-finger families [33]. Metal coordinates that exist 
in nature are necessary for properly folding proteins 
and creating complex quaternary structures through 
the bridging of metal ions [34, 35]. As a representative 
example of metal coordination, zinc finger proteins uti-
lize a coordination zinc ion to maintain the folded struc-
ture, which is important for recognizing target DNA 
for transcriptional regulation [36, 37]. In addition, since 
metal coordination reacts very sensitively to pH change, 
the assembly pattern is diversified according to the tis-
sue environment. Salgado et  al. suggested the concept 
of MeTIR, metal-templated interface redesign, which 
induces self-assembly of the supramolecular structure in 
the presence or absence of metals [35].

Fig. 3  Representative example of folding unit: α-helix, β-sheet, and 
α/β mixed structure
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2.3 � Assembly symmetry
The overall assembly structure is strongly limited by the 
number of ways in which protein subunits may associate 
in three dimensions. Protein assembly can have various 
structures that can create a more complex and high-
order hierarchical structure through a combination of the 
symmetry of the folding unit. For example, if a possible 
combination is predicted with two oligomeric compo-
nents, each with C2 symmetry and D3 symmetry, a total 
of 11 candidates such as p312, P622, and P4132 are pos-
sible (Fig. 4) [38]. This combination modulates the overall 
size by controlling the number of folding units that deter-
mine the overall supramolecular structure according to 
the difference in the affinity of the interface. Moreover, 
an internally symmetric folding unit can designate the 
dimensions of the assembly pattern with open or closed 
symmetries. When the interface of the folding unit is 
open, because the unit is assembled in one direction, 
the entire structure is propagated in the form of a fibril 
or 2D sheet to form an assembled structure of various 
sizes. However, in the case of a closed interface, a cage or 
cyclic structure, in which the size of the entire structure 
is defined, is formed.

3 � Various structures of supramolecular protein 
assembly

Supramolecular protein assemblies can be classified 
according to their orientation along a dimensional axis 
(Fig. 5). Dimensions are defined in the direction of overall 

structural expansion as the folding structural units are 
assembled. Dimensions are classified according to the 
number of axes that contribute to the addition of units 
and expansion of the overall structure: Unidimensional 
assembly, in which units assemble along a single axis to 
elongate the protein, Bidimensional assembly, in which 
units join together along a dual axis to expand a pro-
tein, and omnidimensional assembly, in which units are 
assembled along three or more axes to extend a protein.

3.1 � Unidimensional assembly
Proteins with a unidimensional assembly are elongated 
as the unit structures are added along a single axis. 
Typical examples of unidimensional assembly are fiber 
structures, including collagen [39–43], amyloid [28, 29, 
44–48], and actin filament [49–52]. Collagen is a lin-
ear triple-helix structured protein [39] that accounts 
for approximately 70% of the extracellular matrix dry 
weight; thus, it is the most abundant protein in mam-
mals. The single left-handed polyproline II-type helix 
composed of the repetition of Xaa-Yaa-Gly assemble 
into triple helix bundle with right-handed conforma-
tion through the hydrogen bonds between neighboring 
strands, especially N–H(Gly)⋯O = C(Xaa), to bury Gly 
residues toward the core of the triple helix and expose 
the other residues to the outer surface. Amyloids are 
elongated, unbranched β-sheet fibrils that can cause vari-
ous diseases. There are many different protein units that 
form amyloid structures, such as β-amyloid peptide(Aβ) 
[29, 46], α-synuclein [47], and tau protein [48]. Individual 
β-strands assemble through hydrogen bonds to generate 
β-sheets, and several β-sheets twist around a central axis, 
assembling through a steric zipper interface, which is a 
tight dehydrated packing between neighboring β-sheets. 
Actin filament (F-actin) is a two-long-pitch helically 
stranded microfilament composed of an actin monomer 
called G-actin, which is an important component of the 
cell cytoskeleton and muscle tissue [50, 51]. Sault bridges, 
geometric surface complementarity, and hydrophobic 
interactions on the interstrand and intrastrand interface, 
particularly the loop compartment on the interface, sta-
bilize F-actin.

Unidimensional assembly proteins, such as fibrils 
and fibers, can be designed to be extended along a one-
dimensional axis to compensate for the short length, low 
mechanical strength, and stability of self-assembled pro-
tein in nature. Nanofibers are designed to form a desired 
structure and assembly with unique properties only 
under intended conditions such as temperature and pH 
to have high utility and specificity; therefore, they can be 
utilized in various fields such as biomaterials and medi-
cine. In addition, the information obtained in the design 
process can provide a chance to reveal the mechanisms 

Fig. 4  Schematic image of symmetric oligomeric building blocks 
and example two-component assembled structure. A Illustration of 
point group symmetries. B Representative example of octahedral 
symmetry constructed by combining C3 trimer and C4 tetramer (left), 
p6 symmetry constructed by combining C3 trimer and C6 hexamer 
(middle), and p422 symmetry assembled by combining D2 tetramer 
and D4 octamer (right) (Image reprinted with permission from Ref 
[38])
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and properties of self-assembled nanofibers that exist 
in nature like collagen [39–43], amyloid [28, 29, 44–48], 
and actin filament [49–52], previously described, which 
are difficult to understand only with structural informa-
tion [53, 54]. Based on this information, self-assembled 
nanofibers composed of simple alpha helix [55–57] or 
beta-strand [58–64] can be designed. For example, Ronak 
et al. designed de novo three-stranded β-sheet nanofibrils 
(TSS1) composed of 29 amino acids, mostly lysine and 
valine for self-assembling mechanically rigid hydrogel 
fabrication [58]. Novel self-assembled nanofibers com-
posed of complex structures that do not exist in nature 
can be designed over self-assembled nanofibers com-
posed of simple alpha helices or beta sheets. Sabine et al. 
designed complex βαβ unit structures that self-assemble 
into fibers with an alpha helical outer surface by linking 
two β-fibrillizing peptides to the alpha helix for stabiliza-
tion and easier functionalization of the nanofiber [53].

3.2 � Bidimensional assembly
Proteins with a bidimensional assembly are widened 
as unit structures are added along the two axes. One 
example of a bidimensional assembly is a sheet struc-
ture, including bacterial S-layers [65–70], which are 
two-dimensional arrays that coat the surface of bacteria 

or archaea [68]. S-layers are generated by the assembly 
of S-layer protein subunits through van der Waals force, 
ionic bonds, and hydrogen bonds [67], which develop 
various types of lattice structures from hexagonal (p3, 
p6), square (p4), and tilted (p1, p2) space groups [70].

The ring structure is another example of a bidimen-
sional assembly, and it includes DNA clamps [71–73], 
helicases [74–77], nucleases [78–80], which are ring-
shaped protein complexes that contribute to the meta-
bolic process of DNA or RNA. DNA clamps are formed 
by the tight assembly of subunits that are composed of 
the α-helix and β-strand complex to generate a closed 
ring encircling DNA strand [71–73]. Subunits assemble 
into a ring structure with a positively charged inner sur-
face; therefore, the ring can electrostatically interact with 
the negatively charged DNA strand [71]. In the case of 
helicase, four out of six superfamilies have a ring-shaped 
assembly structure [77], and they commonly take the 
form of a hexameric structure with a central pore. The 
core of the ring contains nucleotide binding sites between 
the subunits, which usually have an arginine finger that is 
involved in nucleoside triphosphate (NTP) binding and 
hydrolysis [74–77]. Several types of nucleases, includ-
ing bacteriophage λ-exonuclease [78], E. coli RecE [79], 
and Cas4 nuclease SSO0001 [80], have a pore-containing 

Fig. 5  Various assembled structure and their folding unit of supramolecular protein assembly
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toroid structure, and they exhibit diverse morphologies 
such as trimer [78], tetramer [79], and pentamer [80]. 
The assembly of these structures is mediated by subunit 
interfaces with hydrogen bonding, ion pairs, and hydro-
phobic interactions [79]. Some nucleases have unique 
funnel-shaped pores, which have a wide entrance and a 
narrow exit that can accept double-stranded DNA at the 
entrance and pass only the single-stranded DNA through 
exit [78, 79].

The other representative morphology of the bidimen-
sional assembly is a beta-barrel structure. Beta barrel 
structures include β-barrel transmembrane proteins [81–
85] and green fluorescence protein (GFP) [86–88]. Trans-
membrane proteins with β-barrel structure are located 
in the outer membranes of chloroplasts, gram-negative 
bacteria, and mitochondria [85], and most β-barrel trans-
membrane proteins are composed of an even number of 
strands arranged in anti-parallel [81–85]. β-barrel trans-
membrane proteins have abundant intrastrand hydrogen 
bond networks; therefore, they are stable in the mem-
brane environment. GFP is a β-barrel protein that emits 
green fluorescence, and 11 strands of β-sheet form a 
cylindrical outer surface connected by short helical loop 
structures, protecting 3-amino acid fluorophores inside 
the barrel [86–88]. The polar interactions surrounding 
the central fluorophore mediate proton rearrangements, 
leading to the activation of GFP [87].

Through the two-dimensional protein array assembly 
design, proteins are repeated in a specific order. Thus, 
specific proteins designated by the tailor can be arranged 
in a constant valency and order. However, 2D protein 
arrays are very rare in nature, such as the exoskeleton of 
the surface layer of many bacteria; therefore, it is essen-
tial to design the properties of 2D protein arrays [89]. 
Modulating two docking axes and interfaces can deter-
mine the self-assembly mechanism and overall symme-
try structure of bidimensional proteins and make them 
more diverse and controllable structural and functional 
2D materials such as 2D arrays [90–93] that do not exist 
in nature. For example, Chen et al. designed 2D arrays of 
homodimer protein building blocks by modulating the 
4-binding interface of the helix bundle following the C12 
layer symmetry group [90].

The ring structure, which are bidimensionally assem-
bled in a cyclic arrangement, is another representative 
example of a bidimensional assembly protein design. The 
protein pore size of the designed self-assembled nanor-
ing can be controlled by the relationship between the 
oligomer state and pore diameter [94]. However, the de 
novo design of nanoring with large pores is challeng-
ing for thermodynamic stabilization because the large 
surface-area-to-volume ratio of the nanoring results in 
a low stabilizing interaction density [95]. The design of 

the alpha-helix ring structure [94–98] is simple owing to 
the specific parameter type of the backbone by the crick 
and versatility of the application using an outer alpha-
helical surface. The beta barrel ring is very complicated 
because it tends to cause misfolding and aggregation 
easily if not properly controlled [32]. After developing 
structural understanding and computational design, the 
design of beta barrels to utilize rigid self-assembly abil-
ity has started [32, 99, 100]. In addition, through devel-
opment of design method containing both alpha helix 
and beta sheets [101, 102], self-assembling proteins with 
both secondary structures can be designed for easier sta-
bilization even with compact protein and expansion of 
design available protein structure pool. For example, Lim 
et al. increased the binding stability and strength of the 
unstable short alpha helix bundle by linking beta sheets 
as a self-assemble inducing segment with an alpha helix, 
which eventually forms a beta barrel inside the alpha ring 
[103].

3.3 � Omnidimensional assembly
Proteins with an omnidimensional assembly are 
expanded as the unit structures are added along three 
or more axes. Tube structures, examples of omnidimen-
sional assemblies, include helical virus capsid [104–107] 
and microtubules [108, 109]. Helical viruses, represented 
by the mosaic virus family [104–107], are composed of 
helical nucleic acid coils and capsid proteins, where cap-
sid protein subunits cover the nucleic acid. The assembly 
of the helical virus is mediated by subunit-RNA interac-
tions and subunit-subunit charge interactions. An abun-
dant salt bridge from intersubunit ion pairs stabilizes the 
interface between the subunits. In addition, the electro-
static interactions between the RNA backbone and posi-
tively charged part of the protein derive the subunit-RNA 
interaction. Microtubules are cellular structures that 
form the cytoskeleton of eukaryotic cells [108, 109], and 
α/β-tubulin dimers polymerize into a cylindrical com-
plex in a specific direction, leading the microtubule to 
have a subunit-adding site and subunit-dissociation site. 
Subunits assemble in a way that enables the additional 
attachment of several microtubule-binding proteins by 
negatively charged the outer microtubule surface by plac-
ing the acidic residues on the subunit C-terminal tails 
[109].

Another typical example of omnidimensional assem-
bly is a cage structure, including polyhedral virus cap-
sid [110–113], ferritin [114–120], lumazine synthase 
[121, 122], vaults [123–126], clathrin lattice [127], and 
heat shock proteins [128–130]. Polyhedral viruses 
are composed of central nucleic acids and surround-
ing polyhedral capsids, whose subunits are assembled 
through subunit-subunit interactions and subunit-RNA 



Page 7 of 17Kim et al. Nano Convergence             (2022) 9:4 	

interactions [110]. Subunit-subunit interactions origi-
nate from integrating electrostatic repulsions and hydro-
phobic attractions, where the subunit-RNA electrostatic 
interactions originate from the interface between the 
negative-charge RNA backbone and the positive-charge 
N-terminal of the subunits [110–113]. For the other 
examples of cage structure, there are various protein 
complexes that control the life activities of diverse organ-
isms, by storing the specific target material [114–120], 
performing enzymatic activities [121, 122], mediat-
ing cellular processes [123–126], coating vesicles [127], 
and protecting cell components from the stressful envi-
ronment [128–130]. Ferritin is a hollow cage structure 
composed of a four-helix bundle subunit assembly, con-
taining sufficient metal-protein interactions to generate 
iron binding sites, since this protein structure encapsu-
lates iron [114–120]. The lumazine synthase cage is gen-
erated from the assembly of the pentamer consisting of 
five subunits, which are built with several β-strands and 
α-helixes [121, 122] abundant hydrogen bonds and ionic 
contacts between subunits allow lumazine synthase to 
function as favorably binding inhibitors [122]. Vaults are 
created by assembling three subunit proteins, includ-
ing the major vault protein (MVP), a subunit consisting 
of several β-strands [123]. Assembly of vaults is mainly 
derived by helix-helix interactions, with polar residues 
facing the surface of the whole structure and hydropho-
bic residues located on the interface between neighbor-
ing helixes [123–126]. The clathrin lattice is an assembly 
of the clathrin subunits, which can form various cage 
structures from small cages of 28 and 36 assembly units 
to hexagonal arrays and soccer ball structures. They are 
stabilized through fixed contact patterns adjacent to each 
end of the strand [127]. Heat shock proteins, particularly 
chaperonin (HSP60), are another representative exam-
ple of cage structure assembly. Chaperonins consist of 
two consecutive stacked rings composed of seven, eight, 
or nine subunits [128–130]. The inter-ring interface, 
which consists of electrostatic interactions between the 
positively charged residue in one ring and the negatively 
charged residue of the other ring, provides the structural 
basis of chaperonins [129].

In addition to the structural limitations of nature-
derived self-assembled hierarchical nanostructures 
that have not suitable valency or size for various appli-
cations, researchers have designed highly ordered de 
novo supramolecular omnidimensional assembly struc-
tures such as nanotubes [55, 91, 131–134] and nanoc-
age [135–143] with variable size, shape, and symmetry 
using computational tools. Designing omidimensional 
self-assembly structures with regularly repeating subu-
nits in tailor-defined constant valency makes them suit-
able for use in various fields through interior or exterior 

surface functionalization. The subunit structure design of 
hierarchical nanostructures determines the overall size 
and shape of self-assembled nanostructures, such as the 
subunits per helical turn, helical pitch, and pore size of 
nanotubes, or the high-order symmetry of nanocages 
such as dihedral, tetrahedral, octahedral, and icosahe-
dral. In designing a self-assembling nanocage, combining 
two types of symmetrical subunits can create nanoc-
age structures with diverse high-order symmetry, size, 
and valency. [136–141, 144]. However, even if the same 
symmetric building blocks are used, they can be assem-
bled into nanocages of different high-order structures 
with different valencies, depending on which symmetry 
axis alignment the blocks are arranged. For example, C3 
and C2 building blocks with tetrahedral or icosahedral 
axes assembled in tetrahedral and icosahedral nanoc-
ages, respectively [137, 138]. In a different way, a single 
type of symmetrical subunit can also form a hierarchical 
supramolecular nanocage alone by designing the sym-
metric building block unit interface to self-assemble each 
other that does not participate in the previous assembly. 
Using this method, placing trimer proteins as C3 sym-
metry building blocks to three-fold rotational symmetry 
axes of tetrahedral or octahedral point group symmetry 
can form supramolecular nanocages with only one new 
interface design between the trimeric building blocks for 
self-assembly [140, 142].

4 � Biology of supramolecular protein assembly
Naturally derived protein self-assembly or rationally 
designed folding units have shown the strength to con-
struct various sophisticated protein nanostructures. It 
can produce enormous properties that cannot be created 
within a single monomeric protein conformer. Nature 
utilizes protein assembly to build complex biological 
phenomena such as signal transduction, cell growth, and 
immunology. Furthermore, protein assemblies can be 
applied as templates for development from functional 
biomaterials such as biomimetic materials to drug deliv-
ery platforms, biomedical diagnostics, and therapeutic 
platforms including vaccines. Here, we classify repre-
sentative biology of supramolecular protein assemblies, 
such as matrix scaffolds of cell growth, encapsulation 
of functional cargo inside supramolecular structures, 
and hybridize designed proteins with unprecedented 
materials.

4.1 � Matrix scaffold in cell growth
The nature-derived self-assembly of various proteins 
and peptides, such as collagens, proteoglycans, laminins, 
and fibronectin form the extracellular matrix (ECM) of 
each tissue, and their association determines the struc-
ture, function, and organization of the tissue. Hence, 
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elucidating the mimic of ECM-derived biomolecules is an 
important aspect of cell biology and growth [145–148]. 
The utilization of naturally derived ECM as a cell culture 
substrate has become a viable option for cell growth. To 
this end, the self-assembly properties of various peptides, 
such as RAD16 [149–151], amyloids [152–154], have 
been utilized as substrates to control cell growth. Fur-
thermore, ECM based on various adhesion proteins, such 
as collagen [155], fibronectin [156], and laminin [157] has 
been utilized as a scaffold for cell growth [158]. These 
proteins utilize cell-binding epitopes for binding to integ-
rins, which consists of an adhesion protein derived small 
peptide sequence. For instance, the peptide sequence 
derived from collagen, fibronectin and laminin is RGD, 
RGDS and IKVAV/YIGSR, respectively. [159]. In addi-
tion, the self-assembly property of silk like protein (FN-
silk from fibronectin) to form networks of microfibers 
has been utilized as an ECM. This association provides a 
three-dimensional (3D) microfiber network with specific 
sites for cell anchorage, which makes the cells remain 
viable for more than 90 days [160]. In addition, the spon-
taneous self-association of peptides can be utilized for 
cell growth facilities by employing matrix-like platforms. 
Particularly, the peptides with elongated hydrophobic 
hydrocarbon chains (HHC) or having hydrophilic groups 
on ends, -self-assembled with—external hydrophilic sur-
faces. These peptides, known as bolaamphiphile pep-
tides, have a higher propensity to form flat layers upon 
self-assembly, making them a good candidate for work-
ing as substrates [161–163]. Recently, da Silva et al. uti-
lized the self-assembly property of a bolaamphiphile 
peptide which form well defined nanosheets in water 
via association of the peptide backbone. The assembly is 
driven by the nucleation phase and serves as a substrate 
for cell growth matrix, which—proved its worth with 
human corneal stromal fibroblast (hCSF) cell growth 
[164]. On the other hand, the self-assembly property of 
laminin-derived peptides, triggered by slight hydropho-
bic modification, has been utilized for the formation 
of supramolecular structures suitable for cell growth 
applications [165–167]. To this field, most recently, Jain 
et al. controlled neuronal cell growth by a peptide-based 
supramolecular self-assembled matrix. The developed 
supramolecular gel was composed of self-assembly of 
two peptides (IKVAV and YIGSR), which facilitated the 
interaction between cells and the matrix. Their devel-
oped gel not only proved its worth by controlling neu-
ronal cell growth and SHSY5Y neuroblastoma cells but 
also the proliferation in C6-glial cells [168]. In the field 
of gel-based matrices, another group of scientists made 
hydrogels from self-assembled peptides [167, 169, 170]. 
Recently, Aye et  al. proposed the use of peptide-based 
hydrogels as biocompatible scaffolds for regenerative 

medicine. They developed a hydrogel composed of bio-
mimetic inclusion of three different peptide sequences. 
During the in-vitro testing with human mammary fibro-
blasts cell culture, the hydrogel proved its worth by 
improved cell adhesion, growth, and proliferation [171]. 
Meanwhile, a group of scientists have explored the self-
assembly of a set of dipeptides (X-ΔPhe) containing ΔPhe 
(α,β-dehydrophenylalanine) at their C-terminus and their 
possible use in drug delivery [172–175]. Inspired by the 
self-assembly property of dipeptides, Yadav et al. utilized 
a 3D platform, composed of dipeptide‑based hydrogel 
[174] as a scaffold for three dimensional cell growth. They 
utilized a leucine-α,β-dihydrophenylalanine (Leu-ΔPhe)-
based hydrogel capable of forming hydrogels in the MPa 
range required for bone-like engineering stiffness at 
relatively low concentrations. Their results indicated the 
healthy condition of cells with good functionality, mak-
ing Leu-Δphe hydrogel a suitable dipeptide candidate for 
three dimensional scaffold for cell culture [176].

4.2 � Membrane associated protein assembly
Membrane proteins are proteins that span the cell mem-
brane and play important roles in controlling cellular 
behavior, including selective molecular transport through 
the bilayer, nutrient uptake, and signal transduction [177, 
178]. In particular, the transmembrane domain regulates 
cellular activity by organizing oligomers with specific 
symmetry. Most transmembrane domains have a α-helix 
structure and are reverse amphiphilic, with hydrophilic 
surfaces facing inward and hydrophobic surfaces facing 
outward. There were many attempts to mimic and engi-
neer the nature-derived transmembrane protein, such 
as exporting key motifs of E.coli Wza to conduct ion and 
bind blocker [97], deleting specific domain of FhuA to 
conduct ion [179], attaching ligands on Salmonella typhi 
ClyA to selectively shuttle the large analyte proteins[180] 
or DNA molecules [181], and adding subunits of ClyA to 
vary the size of pore [182].

The de novo design can artificially build up the trans-
membrane protein with desired function or structure 
that is hardly found in nature. 12-helical potassium con-
ducting protein that performs superior conductance of 
K+ over CH3NH3+, Cs+, Na+, Ba2+ is computationally 
designed and inserted into membrane through reposi-
tioning hydrophobic residues [95], and four-helical bun-
dle containing two di-metal binding sites that selectively 
passes Zn2+ and Co2+ is reported [183]. The structure of 
concentric ring [95] and polar ionizable ligand contain-
ing complex [183] can be further utilized as a platform 
to selectively conduct various target ions, in ways that 
are not possible with native channels. The study of trans-
membrane pore that is large enough to pass the small 
molecule [95] can be further applicated in small molecule 
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delivery system, which is attractive in medical and phar-
maceutical fields. Furthermore, by computationally 
designing combinations of non-natural iron diphenylpor-
phyrins and D2-symmetric four-helix bundles, it is possi-
ble to mimic the transmembrane electron transportation, 
a key component of ATP production and photosynthesis. 
This unique metaloprotein complex successfully trans-
ported electrons, which opens up the possibility of fur-
ther designing artificial photosystems [96].

4.3 � Nano‑cage structure for surface displaying epitopes, 
encapsulation and cell signaling

Nanocage structures can be used for displaying epitopes, 
encapsulation, and cell signaling using multivalency, 
highly ordered repetitive arrays, and hollow structures. 
Multivalency and highly ordered repetitive arrays of clus-
tered epitopes displayed on the surface of self-assembled 
nanostructures can increase avidity compared to single 
epitopes alone [184–189]. In addition, multiple types 
of surface functionalization units attached to the sur-
face allow supramolecular structures to become multi-
functional nanocarriers [190]. In addition, the hollow 
structure of the hierarchical structure reassembly and 
disassembly under specific conditions by subunit inter-
face interactions can be used to encapsulate drugs or 
genes that make nanocages an effective delivery platform 
[191, 192].

Naturally derived self-assembly proteins such as fer-
ritin and lumazine synthase have been used for cell 
signaling [186] and display of epitopes (antigens) from 
influenza [193], HIV-1 [194], Epstein-Barr virus [195], 
SARS-CoV-2 spike protein [188, 189], and Enterovirus 
71 (EV71) [196] for immune response activation due to 
their biocompatibility, stability, and easy modification 
[197] (Fig. 6). The hollow structure of nature-derived self-
assembly supramolecular proteins are also suitable for 
internal modification for delivery of chemicals or other 
protein delivery, such as GFP [198], HIV protease [199], 
daunomycin [192] carboplatin [191] and even show pos-
sibility of gene delivery [200] using a hollow supramo-
lecular structure. For example. Uchida et al. synthesized 
human H-chain ferritin with iron oxide in the hollow and 
cancer cell-targeting peptide RGD-4C attached to the 
surface. This supramolecular showed increased cancer 
targeting ability without perturbation of the self-assem-
bly of ferritin structure. [201] In addition, nanocage can 
be an effective drug delivery vehicle with a targeting 
function using the characteristic of self-assembled supra-
molecular at once [202].

Although the application of self-assembled hierarchi-
cal nanocages derived from nature also shows a high 
utility value, it is unsuitable for various applications 
because of the limited number of structural elements 

in nature. However, de novo designed nanocages have 
various controllable shapes, sizes, and high-order sym-
metries, providing different surfaces and structures 
for antigen valency and spacing. Different valency and 
spacing of the functionalization unit can enhance the 
effect of drugs by allowing the desired nanocage to 
be selected according to the characteristics of the tar-
get ligand distance or uptake optimal size [184]. The 
application of various symmetric multivalent antigens 
presenting designed nanocages as vaccines was devel-
oped by genetic conjugation between the N-terminus 
of the trimer subunit and the C-terminal of trimeric 
viral glycoproteins and improved immunogenicity. 
(Fig.  6B) [203, 204] In a different way, Divine et  al. 
designed self-assembled nanocage with various sym-
metry using antibody-Fc binders as a building block. 
They demonstrated enhanced target avidity experimen-
tally by activating Tie-2 pathway (Fig. 6C) and enhanc-
ing SARS-CoV-2 neutralization with self-assembled 
supramolecular structures with each targeting anti-
body [135]. Through this, the de novo supramolecular 
protein cage could serve a significant role in improv-
ing effectiveness of immune activity and drug delivery 

Fig. 6  Schematic image of application of a nanocage. A The ferritin 
nanocages displaying EV71 antigens on the surface as epitopes for 
the use of vaccine. B The BG505 SOSIP displaying de novo designed 
icosahedral nanocage. C The octahedral (up) and icosahedral (down) 
antibody nanocages with fusion of angiopoietin-1 F-domain (A1F) 
and Fc (Image reprinted with permission from Ref [135, 196, 203])
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since they have optimal size and superior avidity, which 
can effectively treat cancer and virus-derived diseases 
suffering from low rates of drug delivery rates.

4.4 � Epitope recognition for immunology and diagnosis
Proteins are macromolecules that perform complex but 
essential tasks in living cells through the formation of 
protein clusters via self-assembly. For instance, naturally 
existing hemoproteins that can specifically recognize and 
associate with heme groups to capture oxygen molecules 
by their heme-prosthetic groups [205]. Moreover, the 
self-association of proteins or peptides, naturally existing 
or de novo designed, can be utilized to improve the diag-
nostic potential, especially in the detection of bacterial 
infection at the initial stage. Like, Liu et  al. utilized the 
self-assembly of a rhodamine-modified peptide deriva-
tive for detecting bacterial infections in gram-positive 
bacteria [206]. For the same purpose, Qianet developed 
a method for sensitive and specific detection of infected 
phagocytic cells (Staphylococcus aureus), owing to 
molecular self-assembly [207]. Recently, Yang et al. devel-
oped a self-assembling peptide based probe for vanco-
mycin in which a luminogen with aggregation-induced 
emission (AIEgen) was used as a responsive fluorescence 
turn-on motif [208]. Furthermore, the nanotubes com-
posed of various self-assembled peptide have also been 
utilized for the detection of various bacterial pathogens, 
like E. coli [209] and other nitro-functionalized neurotox-
ins [210]. The self-assembly of another class of peptides, 
ion-complementary, has also been utilized for immobi-
lization of various biomolecules, including enzymes and 
analytes. After its self-assembly, the peptides have out-
wardly oriented charged residues (K and E), which can be 
utilized for binding moieties such as glucose [211]. How-
ever, many researchers have utilized the self-assembly of 
proteins or peptides for the recognition of target species 
of concern. For instance, Bianchi et al. detected the oxi-
dation of ammonia (sensitivity 2.83 L−1  cm−2) and urea 
(sensitivity 81.3 L−1 cm−2) through aligned deposition of 
peptide (diphenylalanine) microstructures onto thiolated 
gold electrodes [212]. Furthermore, Zhang et al. utilized 
the self-assembly of streptavidin protein to create arrays, 
facilitated by a DNA lattice, and utilized it for efficient 
protein detection. The developed system detects protein 
arrays (biotin) aided by rhodamine or other fluorescent 
probes [213]. Recently, Arai et  al. developed a protein-
sensing device from a self-organized glycopeptide bun-
dle with glucose or galactose at the C-terminals. Because 
of this insertion, the glycopeptides rearranged to form a 
bundle that acted as an ion channel due to the interaction 
between the target protein (peanut lectin and concanava-
lin A) and the terminal sugar groups of the glycopeptides 
[214]. Furthermore, self-assembly has been utilized to 

diagnose the structural details of small proteins. Like, Liu 
et al. utilized protein engineering to create a self-assem-
bled scaffolding system, making possible to see structural 
details of a small sized protein via cryo-EM. Assisted by 
a rigid alpha helical linker, they utilized the self-assembly 
of 17-KDa DARPin protein to create a cage with cubic 
symmetry. The resulting construct was analyzed via cryo-
EM to explore the structural details of DARPin at near-
atomic level (3.5-to 5-Å resolution) [215].

In addition, the self-assembled structures of peptides 
have been used to flexibly functionalize the devices 
for various biomolecular detections, avoiding complex 
lithography, and improving selectivity and performance. 
The functionalizations obtained from such self-assem-
blies are stable, both thermally and electrochemically. 
Like, Ryu et.al utilized the self-assembly of peptide build-
ing blocks into vertically aligned nanowires (thermally 
stable up to 200 °C) to enhance their capability for elec-
trochemical detection of biomolecules. For this purpose, 
they utilized aromatic dipeptides such as diphenylalanine 
in aqueous solutions under ambient conditions [216]. 
The same class of peptides has been utilized for develop-
ing organic field effect transistors (O-FETs) for electrical 
measurements in which a self-assembled peptide layer 
was used as a dielectric in FET to sustain electric fields 
[217]. A similar approach was utilized by Gupta et  al. 
as they developed the self-assembly of di-peptide based 
building blocks into ordered nanotubes with expanding 
stability over a wide range of pH [172].

4.5 � Supramolecular assembly in enzymatic function
In fact, ribosomal proteins (r-proteins) self-assemble 
to produce large protein content in cells by catalyz-
ing ribosome production, which drives this process. 
This nature-derived catalytic process helps ribosomes 
to reduce the time required to produce a new set of 
r-proteins, facilitating cell growth [218]. Inspired by 
this nature-derived self-assembly process for catalyzing 
cell growth, researchers have utilized the self-assem-
bly of designer proteins or peptides to create catalytic 
sites [35, 219], especially metallo enzyme [220–222], 
which can efficiently tune the properties of a metal ion 
to catalyze difficult chemical transformations (Fig.  7). 
Like, Woon et  al. utilized the self-assembly of mono-
meric redox protein already possessing catalytic zinc 
sites at its interfaces, to design an artificial metallo-β-
lactamase enzyme. The designed catalyst was not only 
functional in the periplasm of gram negative bacteria 
(Escherichia coli), enabling them to survive in the pres-
ence of antibiotic like ampicillin, but also displayed 
catalytic proficiency for ampicillin hydrolysis [223]. 
The designed metalloenzyme has also been utilized to 
catalyze oxidation reactions. As Olga et  al. designed 
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the supramolecular self-assembly of a peptide assisted 
by copper, for efficient catalysis of oxidation of dimeth-
oxyphenol in the presence of dioxygen [224]. In the 
recent Lee et al., have also contributed to the work by 
improving the efficiency of the oxygen reduction reac-
tion (ORR) by designing a self-assembly (Hexcoil-Ala) 
peptide. The designed peptide readily assembles on sin-
gle-walled carbon nanotubes and helps in dispersion in 
aqueous solutions. Moreover, through mutation of the 
cysteine residue, a size-controlled and well-dispersed 
arrangement of AuNPs around the designed peptide has 
made possible which in turns gives improved electronic 
properties for enhanced oxygen reduction reaction 
performance in fuel cells [225]. Meanwhile, another 
group of scientists utilized the self-assembly property 
of designed collagen-mimetic peptides (CMPs) to cre-
ate a supramolecular structure. They improved the 
self-assembly property of CMPs via metal-histidine 
coordination method and utilized the resultant super-
structure for to catalyze ester hydrolysis in the presence 
of Zn(II) ions [226]. Recently, Hyun et  al. designed a 
metallo-catalyst for efficient and industrially applicable 
biological conversion of methane to methanol. For the 
purpose, they reassemble the native catalytic domains 
of an already existing enzyme (methane monooxyge-
nase). Through their construct, they not only success-
fully synthesize a stable and soluble protein construct 
in Escherichia coli, but also improved the yield of 
methanol while retaining enzymatic activity [227]. In 
addition, another group of scientists utilized the self-
assembly of naturally existing proteins to create catalyt-
ically active sites for their application in catalysis. Like, 
Rubinov et al. utilized the self-assembly of amphiphilic 
peptides to form various well-defined structures like 
β-sheets, β-plates, fibrils and nanotubes, etc. Through 
these structures, they synthesized monomeric peptides, 
starting from basic building blocks [228]. To this end, 
a group of scientists explored another pathway of uti-
lizing the self-assembly of two structurally different 

proteins (for instance Bovine Serum Albumin and 
bacterial microcompartment domain protein, PduBB), 
which do not possess any catalytic activity individu-
ally. However, upon self-assembly, a floral nanohybrid 
is formed which can catalyze the oxidation of pyro-
gallol to purpurogallin [229]. Despite of the way, many 
researchers have utilized the self-assembly phenom-
ena of designer proteins to enhance the catalytic activ-
ity of various enzymes. Like, Zhang et  al. designed an 
artificial hydrolase via self-assembled peptide nanofib-
ers as biological enzymes for catalyzing ester hydroly-
sis [219]. Also, Wang et  al. utilized the self-assembly 
of de novo designed helical hepta-peptides to create 
a phosphate mimic. The hydrolysis efficiency of these 
designer catalysts is comparable to already available 
enzymes like adenosine triphosphatase (ATPase) and 
alkaline phosphatase (ALPase), and hence can serve 
as a substitute [230]. Meanwhile, another group of sci-
entists utilized naturally existing proteins to enhance 
their native catalytic activity via self-assembly. Like, 
Soares et  al. explored the self-assembly of lipopep-
tides in water and utilized them for catalysis (yield was 
raised to 499% with selectivity up to 85%) of aldol reac-
tion, using cyclohexanone and p-nitrobenzaldehyde as 
reactants [231]. In addition, Shan et  al. utilized self-
assembled films made from three distinct proteins (chi-
tosan, laponite, and hemoglobin) for their application 
in electrochemistry and catalysis for hydrogen perox-
ide production. The film exhibited long-term stability, 
while the cyclic voltammetry peak potentials remained 
unchanged, and the cathodic peak currents remained 
undeclined even after 60 days [232].

4.6 � Protein design in the unprecedented material
Inspired by the binding of amphipathic peptides with nat-
ural carbon materials such as graphite [233, 234], de novo 
designed peptides have been developed to induce self-
assembled 2D structures on the surface of various carbon 
materials, such as graphene [235–237] or graphite (Fig. 8) 
[238, 239]. Remarkably, Grigoryan et  al. designed pep-
tides having capability of creating well textured surface 
by wrapping single-walled carbon nanotubes (SWNTs) in 
a structurally specific manner, creating a richly textured 
molecular surface. For binding with SWNTs, despite 
selecting peptides by phage-display or synthesizing pep-
tides favoring SWNT binding, they developed a new 
design rule by utilizing a computational approach with an 
intrinsic recognition motif. They achieved higher-order 
assembly and dense packing by placing Gly and Ala in a 
repeating manner on a helix as the elementary structural 
unit [240]. Ko et  al. thus, synthesized peptides that can 
self-assemble onto carbon nanotubes, the gold–platinum 

Fig. 7  Example of enzymatic supramolecular structure via metal 
coordinate interaction (Image reprinted with permission from Ref 
[34])
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(AuPt) bimetallic nanostructures of which can induce a 
catalytic response to oxygen reduction [241].Meanwhile, 
a group of scientists developed the designer proteins or 
peptides that can direct self-assembly to produce ordered 
structures. Garima et  al. developed a self-assembled 
monolayer induced by human serum albumin protein, 
that can convert 2D polyethylene glycol into discrete 
ring structures [242]. Similarly, Kim et al. demonstrated 
that the formation of ordered superstructures of buck-
minsterfullerene (C60) can also be directed by proteins 
[243]. In addition, researchers have utilized the self-
assembly properties of proteins or peptides to hybrid-
ize other 2-dimensional carbon-based materials, such 
as graphene [244–246]. In this regard, Mustata et  al. 
designed peptides forming two-dimensional monolayer 
crystals via self-assembly, eventually forming long, paral-
lel, in-register b-sheets [247]. Despite designing peptides 
to self-assemble on graphene or graphite surfaces, some 
researchers have targeted pristine graphene owing to its 
excellent electrical properties and absence of any kind 
of functional moieties. For instance, No et al. developed 
nature-inspired designer peptides through the optimi-
zation of peptide-peptide and peptide-graphene inter-
actions. Further, through the simulation, followed by 
experimentation, they proved that the designer peptides 
can self-assemble on to pristine graphene [248].

5 � Conclusions
To date, utilizing protein self-assembly from nature to 
designed supramolecular interfaces has been widely 
developed and has been proven to be a powerful tool 
for various application. Recently, as protein folding pre-
diction using artificial intelligence, such as Alphafold 
[249] and RoseTTAFold [250], and computational tools 

have become very sophisticated, it is possible to make 
folding units with more diverse structures. This enables 
the assembly of proteins with more complex structures 
and functions. Folding units with structural flexibility 
or allosteric properties are among the most fascinat-
ing research directions. With these noble folding units, 
many researchers have designed protein assemblies that 
have more clinical and therapeutic applications beyond 
academic curiosity. For example, while maintaining sta-
bility in the in vivo environment, the assembly pattern is 
changed, the drug contained in the structure is delivered 
into the body, or the ligand related to signal transduction 
and receptor signal transduction in the body is labeled on 
the surface of the supramolecule.
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