Leamy HJ, Wernick JH: Semiconductor silicon: the extraordinary made ordinary. MRS Bull. 1997, 22: 47–55.
Google Scholar
Huff HR: An electronics division retrospective 1952–2002 and future opportunities in the twenty-first century. J. Electrochem. Soc. 2002, 149: S35-S58.
Google Scholar
Morgan TP: Intel Xeon Phi Battles GPUs, Defends x86 in Supercomputers. 2012.
Google Scholar
Rogers JA, Someya T, Huang Y: Materials and mechanics for stretchable electronics. Science 2010, 327: 1603–1607.
Google Scholar
Someya T, Kato Y, Sekitani T, Iba S, Noguchi Y, Murase Y, Kawaguchi H, Sakurai T: Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. U. S. A. 2005, 102: 12321–12325.
Google Scholar
Kim D-H, Rogers JA: Stretchable electronics: materials strategies and devices. Adv. Mater. 2008, 20: 4887–4892.
Google Scholar
Shah A, Meier J, Buechel A, Kroll U, Steinhauser J, Meillaud F, Schade H, Dominé D: Towards very low-cost mass production of thin-film silicon photovoltaic (PV) solar modules on glass. Thin Solid Films 2006, 502: 292–299.
Google Scholar
Jacunski MD, Shur MS, Hack M: Threshold voltage, field effect mobility, and gate-to-channel capacitance in polysilicon TFT's. IEEE Trans. Electron. Devices. 1996, 43: 1433–1440.
Google Scholar
Oh DH, Lee YH: Stability and cap formation mechanism of single-walled carbon nanotubes. Phys. Rev. B 1998, 58: 7407–7411.
Google Scholar
Artukovic E, Kaempgen M, Hecht DS, Roth S, GrUner G: Transparent and flexible carbon nanotube transistors. Nano Lett. 2005, 5: 757–760.
Google Scholar
Hu L, Yuan W, Brochu P, Gruner G, Pei Q: Highly stretchable, conductive, and transparent nanotube thin films. Appl. Phys. Lett. 2009, 94: 161108.
Google Scholar
Liu Q, Liu Z, Zhang X, Yang L, Zhang N, Pan G, Yin S, Chen Y, Wei J: Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv. Funct. Mater. 2009, 19: 894–904.
Google Scholar
Durkop T, Getty SA, Cobas E, Fuhrer MS: Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4: 35–39.
Google Scholar
Mayorov AS, Gorbachev RV, Morozov SV, Britnell L, Jalil R, Ponomarenko LA, Blake P, Novoselov KS, Watanabe K, Taniguchi T, Geim AK: Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano letters. 2011, 11: 2396–2399.
Google Scholar
Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146: 351–355.
Google Scholar
Javey A, Qi P, Wang Q, Dai H: Ten- to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography. Proc. Natl. Acad. Sci. U. S. A. 2004, 101: 13408–13410.
Google Scholar
Yu J, Liu G, Sumant AV, Goyal V, Balandin AA: Graphene-on-diamond devices with increased current-carrying capacity: carbon sp2-on-sp3 technology. Nano letters. 2012, 12: 1603–1608.
Google Scholar
Pop E, Mann D, Wang Q, Goodson KE, Dai HJ: Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 2006, 6: 96–100.
Google Scholar
Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN: Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8: 902–907.
Google Scholar
Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK: Fine structure constant defines visual transparency of graphene. Science 2008, 320: 1308–1308.
Google Scholar
Lee C, Wei X, Kysar JW, Hone J: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321: 385–388.
Google Scholar
Park JU, Meitl MA, Hur SH, Usrey ML, Strano MS, Kenis PJ, Rogers JA: In situ deposition and patterning of single-walled carbon nanotubes by laminar flow and controlled flocculation in microfluidic channels. Angew. Chem. 2006, 45: 581–585.
Google Scholar
Meitl MA, Zhou YX, Gaur A, Jeon S, Usrey ML, Strano MS, Rogers JA: Solution casting and transfer printing single-walled carbon nanotube films. Nano Lett. 2004, 4: 1643–1647.
Google Scholar
Moon JM, An KH, Lee YH, Park YS, Bae DJ, Park GS: High-yield purification process of singlewalled carbon nanotubes. J. Phys. Chem. B 2001, 105: 5677–5681.
Google Scholar
Vajtai R, Wei BQ, Ajayan PM: Controlled growth of carbon nanotubes. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2004, 362: 2143–2160.
Google Scholar
Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE: Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts. Chem. Phys. Lett. 2000, 317: 497–503.
Google Scholar
Thess A, Lee R, Nikolaev P, Dai HJ, Petit P, Robert J, Xu CH, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE: Crystalline ropes of metallic carbon nanotubes. Science 1996, 273: 483–487.
Google Scholar
Bronikowski MJ, Willis PA, Colbert DT, Smith KA, Smalley RE: Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study. J. Vac. Sci. Technol. A: Vac, Surf. Films. 2001, 19: 1800.
Google Scholar
Jin Z, Chu H, Wang J, Hong J, Tan W, Li Y: Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays. Nano Lett. 2007, 7: 2073–2079.
Google Scholar
Zhou W, Han Z, Wang J, Zhang Y, Jin Z, Sun X, Zhang Y, Yan C, Li Y: Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 2006, 6: 2987–2990.
Google Scholar
Hong BH, Lee JY, Beetz T, Zhu YM, Kim P, Kim KS: Quasi-continuous growth of ultralong carbon nanotube arrays. J. Am. Chem. Soc. 2005, 127: 15336–15337.
Google Scholar
Kang SJ, Kocabas C, Ozel T, Shim M, Pimparkar N, Alam MA, Rotkin SV, Rogers JA: High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature nanotechnology. 2007, 2: 230–236.
Google Scholar
Lee I-H, Im J-W, Kim U-J, Bae E-J, Kim K-K, Lee E-H, Lee Y-H, Hong S-H, Min Y-S: Low temperature growth of single-walled carbon nanotube forest. Bull. Kor. Chem. Soc. 2010, 31: 2819–2822.
Google Scholar
Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004, 306: 1362–1364.
Google Scholar
Ren ZF: Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 1998, 282: 1105–1107.
Google Scholar
Kim UJ, Lee IH, Bae JJ, Lee S, Han GH, Chae SJ, Guenes F, Choi JH, Baik CW, Kim SI, Kim JM, Lee YH: Graphene/Carbon nanotube hybrid-based transparent 2D optical array. Adv. Mater. 2011, 23: 3809−+.
Google Scholar
Wang D, Song P, Liu C, Wu W, Fan S: Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology 2008, 19: 075609.
Google Scholar
Lim SC, Lee K, Lee IH, Lee YH: Field emission and application of carbon nanotubes. Nano 2007, 2: 69–89.
Google Scholar
Lim SC, Choi HK, Jeong HJ, Song YI, Kim GY, Jung KT, Lee YH: A strategy for forming robust adhesion with the substrate in a carbon-nanotube field-emission array. Carbon 2006, 44: 2809–2815.
Google Scholar
Hu L, Hecht DS, Gruner G: Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 2004, 4: 2513–2517.
Google Scholar
Moisala A, Nasibulin AG, Kauppinen EI: The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes - a review. J. Phys-Condense Matter. 2003, 15: S3011-S3035.
Google Scholar
Tenent RC, Barnes TM, Bergeson JD, Ferguson AJ, To B, Gedvilas LM, Heben MJ, Blackburn JL: Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv. Mater. 2009, 21: 3210–3216.
Google Scholar
Geng H-Z, Kim KK, So KP, Lee YS, Chang Y, Lee YH: Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 2007, 129: 7758−+.
Google Scholar
Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG: Transparent, conductive carbon nanotube films. Science 2004, 305: 1273–1276.
Google Scholar
Jong Yu W, Yol Jeong S, Kang Kim K, Ram Kang B, Jae Bae D, Lee M, Hong S, Prabhu Gaunkar S, Pribat D, Perello D, Yun M, Choi J-Y, Hee Lee Y: Bias-induced doping engineering with ionic adsorbates on single-walled carbon nanotube thin film transistors. New J. Phys. 2008, 10: 113013.
Google Scholar
Kordas K, Mustonen T, Toth G, Jantunen H, Lajunen M, Soldano C, Talapatra S, Kar S, Vajtai R, Ajayan PM: Inkjet printing of electrically conductive patterns of carbon nanotubes. Small 2006, 2: 1021–1025.
Google Scholar
Biswas C, Lee YH: Graphene versus carbon nanotubes in electronic devices. Adv. Funct. Mater. 2011, 21: 3806–3826.
Google Scholar
Zhou YX, Gaur A, Hur SH, Kocabas C, Meitl MA, Shim M, Rogers JA: p-channel, n-channel thin film transistors and p-n diodes based on single wall carbon nanotube networks. Nano Lett. 2004, 4: 2031–2035.
Google Scholar
Glerup M, Steinmetz J, Samaille D, Stéphan O, Enouz S, Loiseau A, Roth S, Bernier P: Synthesis of N-doped SWNT using the arc-discharge procedure. Chem. Phys. Lett. 2004, 387: 193–197.
Google Scholar
Zhang G, Mann D, Zhang L, Javey A, Li Y, Yenilmez E, Wang Q, McVittie JP, Nishi Y, Gibbons J, Dai H: Ultra-high-yield growth of vertical single-walled carbon nanotubes: hidden roles of hydrogen and oxygen. Proc. Natl. Acad. Sci. U. S. A. 2005, 102: 16141–16145.
Google Scholar
Zhang M, Atkinson KR, Baughman RH: Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 2004, 306: 1358–1361.
Google Scholar
Liu K, Sun Y, Zhou R, Zhu H, Wang J, Liu L, Fan S, Jiang K: Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology 2010, 21: 045708.
Google Scholar
Zhang X, Jiang K, Feng C, Liu P, Zhang L, Kong J, Zhang T, Li Q, Fan S: Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater. 2006, 18: 1505–1510.
Google Scholar
Jiang K, Wang J, Li Q, Liu L, Liu C, Fan S: Superaligned carbon nanotube arrays, films, and yarns: a road to applications. Adv. Mater. 2011, 23: 1154–1161.
Google Scholar
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA: Electric field effect in atomically thin carbon films. Science 2004, 306: 666–669.
Google Scholar
Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA: Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438: 197–200.
Google Scholar
Chae SJ, Güneş F, Kim KK, Kim ES, Han GH, Kim SM, Shin H-J, Yoon S-M, Choi J-Y, Park MH, Yang CW, Pribat D, Lee YH: Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation. Adv. Mater. 2009, 21: 2328–2333.
Google Scholar
Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9: 30–35.
Google Scholar
Han GH, Chae SJ, Kim ES, Guenes F, Lee IH, Lee SW, Lee SY, Lim SC, Jeong HK, Jeong MS, Lee YH: Laser thinning for monolayer graphene formation: heat sink and interference effect. Acs Nano. 2011, 5: 263–268.
Google Scholar
Han GH, Gunes F, Bae JJ, Kim ES, Chae SJ, Shin HJ, Choi JY, Pribat D, Lee YH: Influence of copper morphology in forming nucleation seeds for graphene growth. Nano letters. 2011, 11: 4144–4148.
Google Scholar
Duong DL, Han GH, Lee SM, Gunes F, Kim ES, Kim ST, Kim H, Ta QH, So KP, Yoon SJ, Chae SJ, Jo YW, Park MH, Chae SH, Lim SC, Choi JY, Lee YH: Probing graphene grain boundaries with optical microscopy. Nature 2012, 490: 235–239.
Google Scholar
Ly TH, Duong DL, Ta QH, Yao F, Vu QA, Jeong HY, Chae SH, Lee YH: Nondestructive characterization of graphene defects. Adv. Funct. Mater. 2013, 23: 5183–5189.
Google Scholar
Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun'Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN: High-yield production of graphene by liquid-phase exfoliation of graphite. Nature nanotechnology. 2008, 3: 563–568.
Google Scholar
Wang X, Zhi L, Muellen K: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8: 323–327.
Google Scholar
Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O, Mastrogiovanni D, Granozzi G, Garfunkel E, Chhowalla M: Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 2009, 19: 2577–2583.
Google Scholar
Eda G, Fanchini G, Chhowalla M: Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3: 270–274.
Google Scholar
Jin M, Jeong H-K, Kim T-H, So KP, Cui Y, Yu WJ, Ra EJ, Lee YH: Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature. J. Phys. D. Appl. Phys. 2010, 43: 275402.
Google Scholar
Jeong H-K, Jin M, Ra EJ, Sheem KY, Han GH, Arepalli S, Lee YH: Enhanced electric double layer capacitance of graphite oxide intercalated by poly(sodium 4-styrensulfonate) with high cycle stability. Acs Nano. 2010, 4: 1162–1166.
Google Scholar
Jeong H-K, Colakerol L, Jin MH, Glans P-A, Smith KE, Lee YH: Unoccupied electronic states in graphite oxides. Chem. Phys. Lett. 2008, 460: 499–502.
Google Scholar
Jeong H-K, Lee YP, Jin MH, Kim ES, Bae JJ, Lee YH: Thermal stability of graphite oxide. Chem. Phys. Lett. 2009, 470: 255–258.
Google Scholar
Jeong H-K, Jin MH, An KH, Lee YH: Structural stability and variable dielectric constant in poly sodium 4-styrensulfonate intercalated graphite oxide. J. Phys. Chem. C 2009, 113: 13060–13064.
Google Scholar
Shin H-J, Kim KK, Benayad A, Yoon S-M, Park HK, Jung I-S, Jin MH, Jeong H-K, Kim JM, Choi J-Y, Lee YH: Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 2009, 19: 1987–1992.
Google Scholar
Jin M, Kim TH, Lim SC, Duong DL, Shin HJ, Jo YW, Jeong HK, Chang J, Xie S, Lee YH: Facile physical route to highly crystalline graphene. Adv. Funct. Mater. 2011, 21: 3496–3501.
Google Scholar
Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Rohrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T: Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 2009, 8: 203–207.
Google Scholar
Ouerghi A, Silly MG, Marangolo M, Mathieu C, Eddrief M, Picher M, Sirotti F, El Moussaoui S, Belkhou R: Large-area and high-quality epitaxial graphene on off-axis SiC wafers. Acs Nano. 2012, 6: 6075–6082.
Google Scholar
Moon JS, Curtis D, Hu M, Wong D, McGuire C, Campbell PM, Jernigan G, Tedesco JL, VanMil B, Myers-Ward R, Eddy C Jr, Gaskill DK, Epitaxial-Graphene RF: Field-effect transistors on Si-Face 6H-SiC substrates. IEEE Electr. Device L. 2009, 30: 650–652.
Google Scholar
Wu Y, Lin YM, Bol AA, Jenkins KA, Xia F, Farmer DB, Zhu Y, Avouris P: High-frequency, scaled graphene transistors on diamond-like carbon. Nature 2011, 472: 74–78.
Google Scholar
Hackley J, Ali D, DiPasquale J, Demaree JD, Richardson CJK: Graphitic carbon growth on Si(111) using solid source molecular beam epitaxy. Appl. Phys. Lett. 2009, 95: 133114.
Google Scholar
Lee YH, Yu L, Wang H, Fang W, Ling X, Shi Y, Lin CT, Huang JK, Chang MT, Chang CS, Dresselhaus M, Palacios T, Li LJ, Kong J: Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano letters. 2013, 13: 1852–1857.
Google Scholar
Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner RD, Colombo L, Ruoff RS: Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9: 4359–4363.
Google Scholar
Hur S-H, Park OO, Rogers JA: Extreme bendability of single-walled carbon nanotube networks transferred from high-temperature growth substrates to plastic and their use in thin-film transistors. Appl. Phys. Lett. 2005, 86: 243502.
Google Scholar
Han GH, Shin H-J, Kim ES, Chae SJ, Choi J-Y, Lee YH: Poly(Ethylene Co-Vinyl Acetate)-Assisted one-step transfer of ultra-large graphene. Nano 2011, 06: 59–65.
Google Scholar
Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5: 574–578.
Google Scholar
Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma LP, Zhang Z, Fu Q, Peng LM, Bao X, Cheng HM: Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3: 699.
Google Scholar
Wang DY, Huang IS, Ho PH, Li SS, Yeh YC, Wang DW, Chen WL, Lee YY, Chang YM, Chen CC, Liang CT, Chen CW: Clean-lifting transfer of large-area residual-free graphene films. Adv. Mater. 2013, 25: 4521–4526.
Google Scholar
Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5: 722–726.
Google Scholar
Wang L, Meric I, Huang PY, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos LM, Muller DA, Guo J, Kim P, Hone J, Shepard KL, Dean CR: One-dimensional electrical contact to a two-dimensional material. Science 2013, 342: 614–617.
Google Scholar
Wang L, Chen Z, Dean CR, Taniguchi T, Watanabe K, Brus LE, Hone J: Negligible environmental sensitivity of graphene in a hexagonal Boron Nitride/Graphene/h-BN Sandwich structure. Acs Nano. 2012, 6: 9314–9319.
Google Scholar
Taychatanapat T, Watanabe K, Taniguchi T, Jarillo-Herrero P: Electrically tunable transverse magnetic focusing in graphene. Nat. Phys. 2013, 9: 225–229.
Google Scholar
Hunt B, Sanchez-Yamagishi JD, Young AF, Yankowitz M, LeRoy BJ, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori RC: Massive Dirac fermions and Hofstadter butterfly in a van der Waals Heterostructure. Science 2013, 340: 1427–1430.
Google Scholar
Rao PS, Sathyanarayana DN: Synthesis of electrically conducting copolymers of o-/m-toluidines and o-/m-amino benzoic acid in an organic peroxide system and their characterization. Synth. Met. 2003, 138: 519–527.
Google Scholar
Wang XS, Tang HP, Li XD, Hua X: Investigations on the mechanical properties of conducting polymer coating-substrate structures and their influencing factors. Int. J. Mol. Sci. 2009, 10: 5257–5284.
Google Scholar
Wu YL, Li YN, Ong BS: Printed silver ohmic contacts for high-mobility organic thin-film transistors. J. Am. Chem. Soc. 2006, 128: 4202–4203.
Google Scholar
Fortunato E, Pimentel A, Gonçalves A, Marques A, Martins R: High mobility amorphous/nanocrystalline indium zinc oxide deposited at room temperature. Thin Solid Films 2006, 502: 104–107.
Google Scholar
Yaglioglu B, Yeom H-Y, Paine DC: Crystallization of amorphous In[sub 2]O[sub 3]–10 wt % ZnO thin films annealed in air. Appl. Phys. Lett. 2005, 86: 261908.
Google Scholar
Minami T, Yamamoto T, Toda Y, Miyata T: Transparent conducting zinc-co-doped ITO films prepared by magnetron sputtering. Thin Solid Films 2000, 373: 189–194.
Google Scholar
Yao F, Lim SC, Yu WJ, Lee IH, Guenes F, Hwang HR, Yang SB, So KP, Han GH, Lee YH AC: Response to gas exposure in vertically aligned multiwalled carbon nanotube electrode. J. Phys. Chem. C 2010, 114: 3659–3663.
Google Scholar
Ghosh A, Lee YH: Carbon-based electrochemical capacitors. Chem Sus Chem 2012, 5: 480–499.
Google Scholar
Jeong HJ, Choi HK, Kim GY, Song YI, Tong Y, Lim SC, Lee YH: Fabrication of efficient field emitters with thin multiwalled carbon nanotubes using spray method. Carbon 2006, 44: 2689–2693.
Google Scholar
Xiao L, Chen Z, Feng C, Liu L, Bai Z-Q, Wang Y, Qian L, Zhang Y, Li Q, Jiang K, Fan S: Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett. 2008, 8: 4539–4545.
Google Scholar
Zhang D, Ryu K, Liu X, Polikarpov E, Ly J, Tompson ME, Zhou C: Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 2006, 6: 1880–1886.
Google Scholar
Chen J, Liu Y, Minett AI, Lynam C, Wang J, Wallace GG: Flexible, aligned carbon nanotube/conducting polymer electrodes for a lithium-ion battery. Chem. Mater. 2007, 19: 3595–3597.
Google Scholar
Feng C, Liu K, Wu J-S, Liu L, Cheng J-S, Zhang Y, Sun Y, Li Q, Fan S, Jiang K: Flexible, Stretchable, Transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 2010, 20: 885–891.
Google Scholar
Lee J-Y, Connor ST, Cui Y, Peumans P: Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8: 689–692.
Google Scholar
Geng H-Z, Lee DS, Kim KK, Han GH, Park HK, Lee YH: Absorption spectroscopy of surfactant-dispersed carbon nanotube film: modulation of electronic structures. Chem. Phys. Lett. 2008, 455: 275–278.
Google Scholar
Geng H-Z, Kim KK, Lee K, Kim GY, Choi HK, Lee DS, An KH, Lee YH, Chang Y, Lee YS, Kim B, Lee YJ: Dependence of material quality on performance of flexible transparent conducting films with single-walled carbon nanotubes. Nano 2007, 2: 157–167.
Google Scholar
Razeghi M, Geng H-Z, Kim KK, Lee YH, Pribat D, Lee YH: Recent progress in carbon nanotube-based flexible transparent conducting film. Proc. of SPIE 2008, 7037: 70370A-1–70370A-14.
Google Scholar
Kim KK, Yoon S-M, Park HK, Shin H-J, Kim SM, Bae JJ, Cui Y, Kim JM, Choi J-Y, Lee YH: Doping strategy of carbon nanotubes with redox chemistry. New J. Chem. 2010, 34: 2183–2188.
Google Scholar
Kim SM, Kim KK, Jo YW, Park MH, Chae SJ, Duong DL, Yang CW, Kong J, Lee YH: Role of anions in the AuCl3-Doping of carbon nanotubes. Acs Nano. 2011, 5: 1236–1242.
Google Scholar
Kim KK, Bae JJ, Park HK, Kim SM, Geng H-Z, Park KA, Shin H-J, Yoon S-M, Benayad A, Choi J-Y, Lee YH: Fermi level engineering of single-walled carbon nanotubes by AuCl3 doping. J. Am. Chem. Soc. 2008, 130: 12757–12761.
Google Scholar
Yao F, Gunes F, Ta HQ, Lee SM, Chae SJ, Sheem KY, Cojocaru CS, Xie SS, Lee YH: Diffusion mechanism of lithium ion through basal plane of layered graphene. J. Am. Chem. Soc. 2012, 134: 8646–8654.
Google Scholar
Kumar B, Lee KY, Park H-K, Chae SJ, Lee YH, Kim S-W: Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. Acs Nano. 2011, 5: 4197–4204.
Google Scholar
Choi D, Choi MY, Choi WM, Shin HJ, Park HK, Seo JS, Park J, Yoon SM, Chae SJ, Lee YH, Kim SW, Choi JY, Lee SY, Kim JM: Fully rollable transparent nanogenerators based on graphene electrodes. Adv. Mater. 2010, 22: 2187–2192.
Google Scholar
Kim KK, Reina A, Shi Y, Park H, Li LJ, Lee YH, Kong J: Enhancing the conductivity of transparent graphene films via doping. Nanotechnology 2010, 21: 285205.
Google Scholar
Shin H-J, Choi WM, Choi D, Han GH, Yoon S-M, Park H-K, Kim S-W, Jin YW, Lee SY, Kim JM, Choi J-Y, Lee YH: Control of electronic structure of graphene by various dopants and their effects on a nanogenerator. J. Am. Chem. Soc. 2010, 132: 15603–15609.
Google Scholar
Guenes F, Han GH, Kim KK, Kim ES, Chae SJ, Park MH, Jeong H-K, Lim SC, Lee YH: Large-area graphene-based flexible transparent conducting films. Nano 2009, 4: 83–90.
Google Scholar
Gunes F, Shin H-J, Biswas C, Han GH, Kim ES, Chae SJ, Choi J-Y, Lee YH: Layer-by-layer doping of few-layer graphene film. Acs Nano. 2010, 4: 4595–4600.
Google Scholar
Lee WH, Park J, Sim SH, Jo SB, Kim KS, Hong BH, Cho K: Transparent flexible organic transistors based on monolayer graphene electrodes on plastic. Adv. Mater. 2011, 23: 1752–1756.
Google Scholar
Chen Y, Xu Y, Zhao K, Wan X, Deng J, Yan W: Towards flexible all-carbon electronics: flexible organic field-effect transistors and inverter circuits using solution-processed all-graphene source/drain/gate electrodes. Nano Res. 2010, 3: 714–721.
Google Scholar
Li C, Li Z, Zhu H, Wang K, Wei J, Li X, Sun P, Zhang H, Wu D: Graphene Nano-"patches" on a carbon nanotube network for highly transparent/conductive thin film applications. J. Phys. Chem. C 2010, 114: 14008–14012.
Google Scholar
Hong T-K, Lee DW, Choi HJ, Shin HS, Kim B-S: Transparent, flexible conducting hybrid multi layer thin films of multiwalled carbon nanotubes with graphene nanosheets. Acs Nano. 2010, 4: 3861–3868.
Google Scholar
Tung VC, Chen L-M, Allen MJ, Wassei JK, Nelson K, Kaner RB, Yang Y: Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 2009, 9: 1949–1955.
Google Scholar
Yu WJ, Lee SY, Chae SH, Perello D, Han GH, Yun M, Lee YH: Small hysteresis nanocarbon-based integrated circuits on flexible and transparent plastic substrate. Nano letters. 2011, 11: 1344–1350.
Google Scholar
Zhu Y, Sun Z, Yan Z, Jin Z, Tour JM: Rational design of hybrid graphene films for high-performance transparent electrodes. Acs Nano. 2011, 5: 6472–6479.
Google Scholar
Cao Q, Han SJ, Tulevski GS, Zhu Y, Lu DD, Haensch W: Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8: 180–186.
Google Scholar
Sangwan VK, Ortiz RP, Alaboson JMP, Emery JD, Bedzyk MJ, Lauhon LJ, Marks TJ, Hersam MC: Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. Acs Nano. 2012, 6: 7480–7488.
Google Scholar
Meric I, Han MY, Young AF, Ozyilmaz B, Kim P, Shepard KL: Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 2008, 3: 654–659.
Google Scholar
Biswas C, Lee SY, Thuc Hue L, Ghosh A, Quoc Nguyen D, Lee YH: Chemically doped random network carbon nanotube p-n junction diode for rectifier. Acs Nano. 2011, 5: 9817–9823.
Google Scholar
Javey A, Kim H, Brink M, Wang Q, Ural A, Guo J, McIntyre P, McEuen P, Lundstrom M, Dai H: High-k dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 2002, 1: 241–246.
Google Scholar
Javey A, Guo J, Farmer DB, Wang Q, Yenilmez E, Gordon RG, Lundstrom M, Dai HJ: Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett. 2004, 4: 1319–1322.
Google Scholar
Klinke C, Chen J, Afzali A, Avouris P: Charge transfer induced polarity switching in carbon nanotube transistors. Nano Lett. 2005, 5: 555–558.
Google Scholar
Tans SJ, Verschueren ARM, Dekker C: Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393: 49–52.
Google Scholar
Javey A, Guo J, Wang Q, Lundstrom M, Dai HJ: Ballistic carbon nanotube field-effect transistors. Nature 2003, 424: 654–657.
Google Scholar
Bachtold A, Hadley P, Nakanishi T, Dekker C: Logic circuits with carbon nanotube transistors. Science 2001, 294: 1317–1320.
Google Scholar
Perello DJ, Lim SC, Chae SJ, Lee I, Kim MJ, Lee YH, Yun M: Thermionic field emission transport in carbon nanotube transistors. Acs Nano. 2011, 5: 1756–1760.
Google Scholar
Kocabas C, Kang SJ, Ozel T, Shim M, Rogers JA: Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors. J. Phys. Chem. C 2007, 111: 17879–17886.
Google Scholar
Ding L, Yuan D, Liu J: Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J. Am. Chem. Soc. 2008, 130: 5428−+.
Google Scholar
Yu WJ, Kim UJ, Kang BR, Lee IH, Lee E-H, Lee YH: Adaptive logic circuits with doping-free ambipolar carbon nanotube transistors. Nano Lett. 2009, 9: 1401–1405.
Google Scholar
Lee SW, Lee SY, Lim SC, Y-d K, Yoon J-S, Uh K, Lee YH: Positive gate bias stress instability of carbon nanotube thin film transistors. Appl. Phys. Lett. 2012, 101: ᅟ.
Google Scholar
Kim BJ, Jang H, Lee SK, Hong BH, Ahn JH, Cho JH: High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano letters. 2010, 10: 3464–3466.
Google Scholar
Geim AK, Novoselov KS: The rise of graphene. Nat. Mater. 2007, 6: 183–191.
Google Scholar
Lee J, Ha TJ, Parrish KN, Chowdhury SF, Tao L, Dodabalapur A, Akinwande D: High-performance current saturating graphene field-effect transistor with hexagonal boron nitride dielectric on flexible polymeric substrates. IEEE Electron. Dev. L. 2013, 34: 172–174.
Google Scholar
Yan C, Cho JH, Ahn JH: Graphene-based flexible and stretchable thin film transistors. Nanoscale. 2012, 4: 4870–4882.
Google Scholar
Schwierz F: ELECTRONICS Industry-compatible graphene transistors. Nature 2011, 472: 41–42.
Google Scholar
Chico L, Crespi VH, Benedict LX, Louie SG, Cohen ML: Pure carbon nanoscale devices: nanotube heterojunctions. Phys. Rev. Lett. 1996, 76: 971–974.
Google Scholar
Dai HJ, Wong EW, Lieber CM: Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 1996, 272: 523–526.
Google Scholar
Collins PG, Arnold MS, Avouris P: Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292: 706–709.
Google Scholar
Avouris P: Carbon nanotube electronics. Chem. Phys. 2002, 281: 429–445.
Google Scholar
Cao Q, Kim HS, Pimparkar N, Kulkarni JP, Wang C, Shim M, Roy K, Alam MA, Rogers JA: Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454: 495–500.
Google Scholar
Green AA, Hersam MC: Processing and properties of highly enriched double-wall carbon nanotubes. Nat. Nanotechnol. 2009, 4: 64–70.
Google Scholar
Ghosh S, Bachilo SM, Weisman RB: Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat. Nanotechnol. 2010, 5: 443–450.
Google Scholar
Liu H, Nishide D, Tanaka T, Kataura H: Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2011, 2: 309.
Google Scholar
Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC: Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1: 60–65.
Google Scholar
Oostinga JB, Heersche HB, Liu X, Morpurgo AF, Vandersypen LM: Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 2008, 7: 151–157.
Google Scholar
Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E: Controlling the electronic structure of bilayer graphene. Science 2006, 313: 951–954.
Google Scholar
Velasco J Jr, Jing L, Bao W, Lee Y, Kratz P, Aji V, Bockrath M, Lau CN, Varma C, Stillwell R, Smirnov D, Zhang F, Jung J, MacDonald AH: Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nat. Nanotechnol. 2012, 7: 156–160.
Google Scholar
Zhang Y, Tang TT, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F: Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459: 820–823.
Google Scholar
Xia F, Farmer DB, Lin YM, Avouris P: Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 2010, 10: 715–718.
Google Scholar
Li X, Borysenko KM, Nardelli MB, Kim KW: Electron transport properties of bilayer graphene. Phys. Rev. B 2011, 84: ᅟ.
Google Scholar
Park J, Jo SB, Yu YJ, Kim Y, Yang JW, Lee WH, Kim HH, Hong BH, Kim P, Cho K, Kim KS: Single-Gate Bandgap Opening of Bilayer Graphene by Dual Molecular Doping. Advanced materials. 2011, ᅟ: ᅟ.
Google Scholar
Duong DL, Lee SM, Chae SH, Ta QH, Lee SY, Han GH, Bae JJ, Lee YH: Band-gap engineering in chemically conjugated bilayer graphene: Ab initio calculations. Phys. Rev. B 2012, 85: ᅟ.
Google Scholar
Jiao L, Zhang L, Wang X, Diankov G, Dai H: Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458: 877–880.
Google Scholar
Li X, Wang X, Zhang L, Lee S, Dai H: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319: 1229–1232.
Google Scholar
Han M, Özyilmaz B, Zhang Y, Kim P: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98: ᅟ.
Google Scholar
Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H: Room-temperature all-semiconducting Sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 2008, 100: ᅟ.
Google Scholar
Bai J, Zhong X, Jiang S, Huang Y, Duan X: Graphene nanomesh. Nat. Nanotechnol. 2010, 5: 190–194.
Google Scholar
Kim M, Safron NS, Han E, Arnold MS, Gopalan P: Fabrication and characterization of large-area, semiconducting nanoperforated graphene materials. Nano letters. 2010, 10: 1125–1131.
Google Scholar
Tang Y-B, Yin L-C, Yang Y, Bo X-H, Cao Y-L, Wang H-E, Zhang W-J, Bello I, Lee S-T, Cheng H-M, Lee C-S: Tunable band gaps and p-Type transport properties of boron-doped graphenes by controllable ion doping using reactive microwave plasma. Acs Nano. 2012, 6: 1970–1978.
Google Scholar
Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G: Synthesis of N-Doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9: 1752–1758.
Google Scholar
Balog R, Jorgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen TG, Hofmann P, Hornekaer L: Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 2010, 9: 315–319.
Google Scholar
Chen J, Klinke C, Afzali A, Avouris P: Self-aligned carbon nanotube transistors with charge transfer doping. Appl. Phys. Lett. 2005, 86: 123108.
Google Scholar
Strano MS, Dyke CA, Usrey ML, Barone PW, Allen MJ, Shan H, Kittrell C, Hauge RH, Tour JM, Smalley RE: Electronic structure control of single-walled carbon nanotube functionalization. Science 2003, 301: 1519–1522.
Google Scholar
Duong DL, Lee IH, Kim KK, Kong J, Lee SM, Lee YH: Carbon nanotube doping mechanism in a salt solution and hygroscopic effect: density functional theory. Acs Nano. 2010, 4: 5430–5436.
Google Scholar
Yoon S-M, Kim UJ, Benayad A, Lee IH, Son H, Shin H-J, Choi WM, Lee YH, Jin YW, Lee E-H, Lee SY, Choi J-Y, Kim JM: Thermal conversion of electronic and electrical properties of AuCl3-Doped single-walled carbon nanotubes. Acs Nano. 2011, 5: 1353–1359.
Google Scholar
Heinze S, Tersoff J, Martel R, Derycke V, Appenzeller J, Avouris P: Carbon nanotubes as schottky barrier transistors. Phys. Rev. Lett. 2002, 89: ᅟ.
Google Scholar
Takenobu T, Kanbara T, Akima N, Takahashi T, Shiraishi M, Tsukagoshi K, Kataura H, Aoyagi Y, Iwasa Y: Control of carrier density by a solution method in carbon-nanotube devices. Adv. Mater. 2005, 17: 2430–2434.
Google Scholar
Derycke V, Martel R, Appenzeller J, Avouris P: Controlling doping and carrier injection in carbon nanotube transistors. Appl. Phys. Lett. 2002, 80: 2773.
Google Scholar
Zhou C: Modulated chemical doping of individual carbon nanotubes. Science 2000, 290: 1552–1555.
Google Scholar
Lee IH, Kim UJ, Bin Son H, Yoon S-M, Yao F, Yu WJ, Duong DL, Choi J-Y, Kim JM, Lee EH, Lee YH: Hygroscopic effects on AuCl3-Doped carbon nanotubes. J. Phys. Chem. C 2010, 114: 11618–11622.
Google Scholar
Kim SM, Jang JH, Kim KK, Park HK, Bae JJ, Yu WJ, Lee IH, Kim G, Loc DD, Kim UJ, Lee E-H, Shin H-J, Choi J-Y, Lee YH: Reduction-controlled viologen in bisolvent as an environmentally stable n-Type dopant for carbon nanotubes. J. Am. Chem. Soc. 2009, 131: 327–331.
Google Scholar
Lee SY, Lee SW, Kim SM, Yu WJ, Jo YW, Lee YH: Scalable complementary logic gates with chemically doped semiconducting carbon nanotube transistors. Acs Nano 2011, 5: 2369–2375.
Google Scholar
Kang BR, Yu WJ, Kim KK, Park HK, Kim SM, Park Y, Kim G, Shin H-J, Kim UJ, Lee E-H, Choi J-Y, Lee YH: Restorable type conversion of carbon nanotube transistor using pyrolytically controlled antioxidizing photosynthesis coenzyme. Adv. Funct. Mater. 2009, 19: 2553–2559.
Google Scholar
Kim SM, Jo YW, Kim KK, Duong DL, Shin H-J, Han JH, Choi J-Y, Kong J, Lee YH: Transparent organic P-Dopant in carbon nanotubes: Bis(trifluoromethanesulfonyl)imide. Acs Nano. 2010, 4: 6998–7004.
Google Scholar
Jeong HK, Kim K-j, Kim SM, Lee YH: Modification of the electronic structures of graphene by viologen. Chem. Phys. Lett. 2010, 498: 168–171.
Google Scholar
Benayad A, Shin H-J, Park HK, Yoon S-M, Kim KK, Jin MH, Jeong H-K, Lee JC, Choi J-Y, Lee YH: Controlling work function of reduced graphite oxide with Au-ion concentration. Chem. Phys. Lett. 2009, 475: 91–95.
Google Scholar
Yu WJ, Liao L, Chae SH, Lee YH, Duan X: Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping. Nano letters. 2011, 11: 4759–4763.
Google Scholar
Derycke V, Martel R, Appenzeller J, Avouris P: Carbon nanotube inter- and intramolecular logic gates. Nano Lett. 2001, 1: 453–456.
Google Scholar
Sumanasekera GU, Adu CKW, Fang S, Eklund PC: Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes. Phys. Rev. Lett. 2000, 85: 1096–1099.
Google Scholar
Collins PG: Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 2000, 287: 1801–1804.
Google Scholar
Yu WJ, Kang BR, Lee IH, Min YS, Lee YH: Majority carrier type conversion with floating gates in carbon nanotube transistors. Adv. Mater. 2009, 21: 4821–4824.
Google Scholar
Yu WJ, Lee YH: Strategy for carrier control in carbon nanotube transistors. ChemSusChem 2011, 4: 890–904.
Google Scholar
Bockrath M, Hone J, Zettl A, McEuen PL, Rinzler AG, Smalley RE: Chemical doping of individual semiconducting carbon-nanotube ropes. Phys. Rev. B 2000, 61: 10606–10608.
Google Scholar
Yang MH, Teo KBK, Milne WI, Hasko DG: Carbon nanotube Schottky diode and directionally dependent field-effect transistor using asymmetrical contacts. Appl. Phys. Lett. 2005, 87: 253116.
Google Scholar
Nosho Y, Ohno Y, Kishimoto S, Mizutani T: Relation between conduction property and work function of contact metal in carbon nanotube field-effect transistors. Nanotechnology 2006, 17: 3412–3415.
Google Scholar
Lee Y, Bae S, Jang H, Jang S, Zhu SE, Sim SH, Song YI, Hong BH, Ahn JH: Wafer-scale synthesis and transfer of graphene films. Nano letters. 2010, 10: 490–493.
Google Scholar
Cao Q, Rogers JA: Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv. Mater. 2009, 21: 29–53.
Google Scholar
Jang S, Jang H, Lee Y, Suh D, Baik S, Hong BH, Ahn JH: Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes. Nanotechnology 2010, 21: 425201.
Google Scholar
Chen JH, Ishigami M, Jang C, Hines DR, Fuhrer MS, Williams ED: Printed Graphene Circuits. Adv. Mater. 2007, 19: 3623–3627.
Google Scholar
Park JU, Nam S, Lee MS, Lieber CM: Synthesis of monolithic graphene-graphite integrated electronics. Nat. Mat. 2012, 11: 120–125.
Google Scholar
Sun DM, Liu C, Ren WC, Cheng HM: A review of carbon nanotube- and graphene-based flexible thin-film transistors. Small 2013, 9: 1188–1205.
Google Scholar
Lu C-C, Lin Y-C, Yeh C-H, Huang J-C, Chiu P-W: High mobility flexible graphene field-effect transistors with self-healing gate dielectrics. Acs Nano. 2012, 6: 4469–4474.
Google Scholar
Kim T, Kim H, Kwon SW, Kim Y, Park WK, Yoon DH, Jang AR, Shin HS, Suh KS, Yang WS: Large-scale graphene micropatterns via self-assembly-mediated process for flexible device application. Nano letters. 2012, 12: 743–748.
Google Scholar
Park SJ, Kwon OS, Lee SH, Song HS, Park TH, Jang J: Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano letters. 2012, 12: 5082–5090.
Google Scholar
Cao Q, Hur SH, Zhu ZT, Sun YG, Wang CJ, Meitl MA, Shim M, Rogers JA: Highly Bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv. Mater. 2006, 18: 304–309.
Google Scholar
Sun DM, Timmermans MY, Tian Y, Nasibulin AG, Kauppinen EI, Kishimoto S, Mizutani T, Ohno Y: Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotechnol. 2011, 6: 156–161.
Google Scholar
Kim BJ, Lee S-K, Kang MS, Ahn J-H, Cho JH: Coplanar-gate transparent graphene transistors and inverters on plastic. Acs Nano. 2012, 6: 8646–8651.
Google Scholar
Wang H, Nezich D, Kong J, Palacios T: Graphene frequency multipliers. IEEE Electron. Dev. L. 2009, 30: 547–549.
Google Scholar
Yang X, Liu G, Balandin AA, Mohanram K: Triple-mode single-transistor graphene amplifier and its applications. Acs Nano. 2010, 4: 5532–5538.
Google Scholar
Wang Z, Zhang Z, Xu H, Ding L, Wang S, Peng L-M: A high-performance top-gate graphene field-effect transistor based frequency doubler. Appl. Phys. Lett. 2010, 96: 173104.
Google Scholar
Wang H, Hsu A, Wu J, Kong J, Palacios T, Graphene-Based Ambipolar RF: Mixers. IEEE Electron. Dev. Lett. 2010, 31: 906–908.
Google Scholar
Hsu A, Wang H, Kim KK, Kong J, Palacios T: High frequency performance of graphene transistors grown by chemical vapor deposition for mixed signal applications. Jpn. J. Appl. Phys. 2011, 50: 070114.
Google Scholar
Lee S, Lee K, Liu CH, Kulkarni GS, Zhong Z: Flexible and transparent all-graphene circuits for quaternary digital modulations. Nat. Commun. 2012, 3: 1018.
Google Scholar
Takahashi T, Takei K, Gillies AG, Fearing RS, Javey A: Carbon nanotube active-matrix backplanes for conformal electronics and sensors. Nano letters. 2011, 11: 5408–5413.
Google Scholar
Rogers JA, Bao Z, Baldwin K, Dodabalapur A, Crone B, Raju VR, Kuck V, Katz H, Amundson K, Ewing J, Drzaic P: Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl. Acad. Sci. U. S. A. 2001, 98: 4835–4840.
Google Scholar
Wang C, Hwang D, Yu Z, Takei K, Park J, Chen T, Ma B, Javey A: User-interactive electronic skin for instantaneous pressure visualization. Nat Mater. 2013, 12: 899–904.
Google Scholar
Wang Z-g, Chen Y-f, Li P-j, Hao X, Liu J-b, Huang R, Li Y-r: Flexible Graphene-Based Electroluminescent Devices. Acs Nano. 2011, 5: 7149–7154.
Google Scholar
Sire C, Ardiaca F, Lepilliet S, Seo JW, Hersam MC, Dambrine G, Happy H, Derycke V: Flexible gigahertz transistors derived from solution-based single-layer graphene. Nano letters. 2012, 12: 1184–1188.
Google Scholar
Nayfeh OM: Graphene transistors on mechanically flexible polyimide incorporating atomic-layer-deposited gate dielectric. IEEE Electron. Dev. L. 2011, 32: 1349–1351.
Google Scholar
Lee J, Ha T-J, Li H, Parrish KN, Holt M, Dodabalapur A, Ruoff RS, Akinwande D: 25 GHz embedded-gate graphene transistors with high-K dielectrics on extremely flexible plastic sheets. Acs Nano. 2013, 7: 7744–7750.
Google Scholar
Petrone N, Meric I, Hone J, Shepard KL: Graphene field-effect transistors with gigahertz-frequency power gain on flexible substrates. Nano letters. 2013, 13: 121–125.
Google Scholar
Liao L, Lin YC, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang KL, Huang Y, Duan X: High-speed graphene transistors with a self-aligned nanowire gate. Nature 2010, 467: 305–308.
Google Scholar
Heo C, Lee SY, Jo A, Jung S, Suh M, Lee YH: Flexible, transparent, and noncytotoxic graphene electric field stimulator for effective cerebral blood volume enhancement. Acs Nano. 2013, 7: 4869–4878.
Google Scholar
Yu WJ, Chae SH, Lee SY, Duong DL, Lee YH: Ultra-transparent, flexible single-walled carbon nanotube non-volatile memory device with an oxygen-decorated graphene electrode. Adv. Mater. 2011, 23: 1889–1893.
Google Scholar
Park B, Cho K, Kim S, Kim S: Transparent nano-floating gate memory on glass. Nanotechnology 2010, 21: 335201.
Google Scholar
Ji Y, Lee S, Cho B, Song S, Lee T: Flexible organic memory devices with multilayer graphene electrodes. Acs Nano. 2011, 5: 5995–6000.
Google Scholar
Jeong HY, Kim JY, Kim JW, Hwang JO, Kim JE, Lee JY, Yoon TH, Cho BJ, Kim SO, Ruoff RS, Choi SY: Graphene oxide thin films for flexible nonvolatile memory applications. Nano letters. 2010, 10: 4381–4386.
Google Scholar
Hansen TS, West K, Hassager O, Larsen NB: Highly stretchable and conductive polymer material made from Poly(3,4-ethylenedioxythiophene) and polyurethane elastomers. Adv. Funct. Mater. 2007, 17: 3069–3073.
Google Scholar
Xu F, Lu W, Zhu Y: Controlled 3D buckling of silicon nanowires for stretchable electronics. Acs Nano. 2011, 5: 672–678.
Google Scholar
Lee P, Lee J, Lee H, Yeo J, Hong S, Nam KH, Lee D, Lee SS, Ko SH: Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 2012, 24: 3326–3332.
Google Scholar
Yu C, Masarapu C, Rong J, Wei B, Jiang H: Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms. Adv. Mater. 2009, 21: 4793–4797.
Google Scholar
Xu F, Wang X, Zhu Y, Zhu Y: Wavy ribbons of carbon nanotubes for stretchable conductors. Adv. Funct. Mater. 2012, 22: 1279–1283.
Google Scholar
Xiao J, Carlson A, Liu ZJ, Huang Y, Jiang H, Rogers JA: Stretchable and compressible thin films of stiff materials on compliant wavy substrates. Appl. Phys. Lett. 2008, 93: 013109.
Google Scholar
Jeong J, Kim S, Cho J, Hong Y: Stable stretchable silver electrode directly deposited on wavy elastomeric substrate. IEEE Electron. Dev. Lett. 2009, 30: 1284–1286.
Google Scholar
Sun Y, Kumar V, Adesida I, Rogers JA: Buckled and wavy ribbons of gaas for high-performance electronics on elastomeric substrates. Adv. Mater. 2006, 18: 2857–2862.
Google Scholar
Khang DY, Jiang HQ, Huang Y, Rogers JA: A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006, 311: 208–212.
Google Scholar
Hierold C, Jungen A, Stampfer C, Helbling T: Nano electromechanical sensors based on carbon nanotubes. Sensors Actuators A Phys. 2007, 136: 51–61.
Google Scholar
Tombler TW, Zhou CW, Alexseyev L, Kong J, Dai HJ, Lei L, Jayanthi CS, Tang MJ, Wu SY: Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 2000, 405: 769–772.
Google Scholar
Maune H, Bockrath M: Elastomeric carbon nanotube circuits for local strain sensing. Appl. Phys. Lett. 2006, 89: 173131.
Google Scholar
Lipomi DJ, Vosgueritchian M, Tee BC, Hellstrom SL, Lee JA, Fox CH, Bao Z: Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6: 788–792.
Google Scholar
Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457: 706–710.
Google Scholar
Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10: 424–428.
Google Scholar
Roberts ME, Queralto N, Mannsfeld SCB, Reinecke BN, Knoll W, Bao Z: Cross-linked polymer gate dielectric films for low-voltage organic transistors. Chem. Mater. 2009, 21: 2292–2299.
Google Scholar
Sun DM, Timmermans MY, Kaskela A, Nasibulin AG, Kishimoto S, Mizutani T, Kauppinen EI, Ohno Y: Mouldable all-carbon integrated circuits. Nat. Commun. 2013, 4: 2302.
Google Scholar
Lee SK, Kim BJ, Jang H, Yoon SC, Lee C, Hong BH, Rogers JA, Cho JH, Ahn JH: Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano letters. 2011, 11: 4642–4646.
Google Scholar
Chae SH, Yu WJ, Bae JJ, Duong DL, Perello D, Jeong HY, Ta QH, Ly TH, Vu QA, Yun M, Duan X, Lee YH: Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat. Mater. 2013, 12: 403–409.
Google Scholar
Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K: A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6: 296–301.
Google Scholar