V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Uspekhi 10, 509–514 (1968)
Article
Google Scholar
J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)
Article
Google Scholar
J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773 (1996)
Article
Google Scholar
D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000)
Article
Google Scholar
R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)
Article
Google Scholar
J Bassan, V Srinivasan, in 3D Printing and the Future of Manufacturing. CSC Web, 2012. http://www.csc.com/innovation/insights/92142-3d_printing_and_the_future_of_manufacturing. Accessed 29 Nov 2012
H. Lipson, M. Kurman, Fabricated: The New World of 3D Printing, 1st edn. (Wiley, Hoboken, 2013), p. 320
Google Scholar
E Matias, B Rao, in 3D Printing: On Its Historical Evolution and the Implications for Business. Paper Presented at the 15th Portland international conference on management of engineering and technology (PICMET), Hilton Portland and Executive Tower, Portland, 2–6 August 2015
J. Li, L. Fok, X. Yin, G. Bartal, X. Zhang, Experimental demonstration of an acoustic magnifying hyperlens. Nat. Mater. 8, 931–934 (2009)
Article
Google Scholar
J. Christensen, F.J.G. de Abajo, Anisotropic metamaterials for full control of acoustic waves. Phys. Rev. Lett. 108, 124301 (2012)
Article
Google Scholar
V.M. Garcia-Chocano, J. Christensen, J. Sanchez-Dehesa, Negative refraction and energy funneling by hyperbolic materials: an experimental demonstration in acoustics. Phys. Rev. Lett. 112, 144301 (2014)
Article
Google Scholar
C. Shen, Y. Xie, N. Sui, W. Wang, S.A. Cummer, Y. Jing, Broadband acoustic hyperbolic metamaterial. Phys. Rev. Lett. 115, 254301 (2015)
Article
Google Scholar
S.A. Cummer, D. Schurig, One path to acoustic cloaking. New J. Phys. 9, 45 (2007)
Article
Google Scholar
D. Torrent, J. Sanchez-Dehesa, Acoustic cloaking in two dimensions: a feasible approach. New J. Phys. 10, 063015 (2008)
Article
Google Scholar
H. Chen, C.T. Chan, Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91, 183518 (2007)
Article
Google Scholar
S. Zhang, C. Xia, N. Fang, Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett. 106, 024301 (2011)
Article
Google Scholar
Z. Liu, X. Zhang, Y. Mao, Y.Y. Zhu, Z. Yang, C.T. Chan, P. Sheng, Locally resonant sonic materials. Science 289, 1734–1736 (2000)
Article
Google Scholar
G.W. Milton, J.R. Willis, On modifications of Newton’s second law and linear continuum elastodynamics. Proc. R. Soc. A 463, 855–880 (2007)
Article
Google Scholar
G Ma, Dissertation, Hong Kong University of Science and Technology, 2012
S. Yao, X. Zhou, G. Hu, Experimental study on negative effective mass in a 1D mass–spring system. New J. Phys. 10, 043020 (2008)
Article
Google Scholar
J. Mei, G. Ma, M. Yang, J. Yang, P. Sheng, in Acoustic Metamaterials and Phononic Crystals, vol. 173, ed. by P.A. Deymier (Springer, Berlin, 2013), pp. 159–199
S.H. Lee, O.B. Wright, Origin of negative density and modulus in acoustic metamaterials. Phys. Rev. B 93, 024302 (2016)
Article
Google Scholar
Z. Yang, J. Mei, M. Yang, N.H. Chan, P. Sheng, Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008)
Article
Google Scholar
S.H. Lee, C.M. Park, Y.M. Seo, Z.G. Wang, C.K. Kim, Acoustic metamaterial with negative density. Phys. Lett. A 373, 4464–4469 (2009)
Article
Google Scholar
C.J. Naify, C.M. Chang, G. McKnight, S. Nutt, Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials. J. Appl. Phys. 108, 114905 (2010)
Article
Google Scholar
C.J. Naify, C.M. Chang, G. McKnight, S. Nutt, Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses. J. Appl. Phys. 110, 124903 (2011)
Article
Google Scholar
C.J. Naify, C.M. Chang, G. McKnight, F. Scheulen, S. Nutt, Membrane-type metamaterials: transmission loss of multi-celled arrays. J. Appl. Phys. 109, 104902 (2011)
Article
Google Scholar
G. Ma, M. Yang, S. Xiao, Z. Yang, P. Sheng, Acoustic metasurface with hybrid resonances. Nat. Mater. 13, 873–878 (2014)
Article
Google Scholar
M. Yang, C. Meng, C. Fu, Y. Li, Z. Yang, P. Sheng, Subwavelength total acoustic absorption with degenerate resonators. Appl. Phys. Lett. 107, 104104 (2015)
Article
Google Scholar
N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, X. Zhang, Ultrasonic metamaterials with negative modulus. Nat. Mater. 5, 452–456 (2006)
Article
Google Scholar
S.H. Lee, C.M. Park, Y.M. Seo, Z.G. Wang, C.K. Kim, Acoustic metamaterial with negative modulus. J. Phys. Condens. Matter 21, 175704 (2009)
Article
Google Scholar
Y. Cheng, J.Y. Xu, X.J. Liu, One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus. Phys. Rev. B 77, 045134 (2008)
Article
Google Scholar
C. Ding, L. Hao, X. Zhao, Two-dimensional acoustic metamaterial with negative modulus. J. Appl. Phys. 108, 074911 (2010)
Article
Google Scholar
N.R. Mahesh, P. Nair, in Experimental and Theoretical Investigation of Acoustic Metamaterial with Negative Bulk-Modulus. Paper presented at the Proceedings of the COMSOL Users Conference, Bangalore, 4–5 November, 2011
J. Li, W. Wang, Y. Xie, B.I. Popa, S.A. Cummer, A sound absorbing metasurface with coupled resonators. Appl. Phys. Lett. 109, 091908 (2016)
Article
Google Scholar
S.H. Kim, S.H. Lee, Air transparent soundproof window. AIP Adv. 4, 117123 (2014)
Article
Google Scholar
J. Li, K. Fung, Z. Liu, P. Sheng, C.T. Chan, in Physics of Negative Refraction and Negative Index Materials, vol. 98, eds. by C.M. Krowne, Y. Zhang (Springer, Heidelberg, 2007), pp. 183–215
Z. Liu, C.T. Chan, P. Sheng, Analytic model of phononic crystals with local resonances. Phys. Rev. B 71, 014103 (2005)
Article
Google Scholar
Y. Wu, Y. Lai, Z.Q. Zhang, Effective medium theory for elastic metamaterials in two dimensions. Phys. Rev. B 76, 205313 (2007)
Article
Google Scholar
X. Zhou, G. Hu, Analytic model of elastic metamaterials with local resonances. Phys. Rev. B 79, 195109 (2009)
Article
Google Scholar
S.H. Lee, C.M. Park, Y.M. Seo, Z.G. Wang, C.K. Kim, Composite acoustic medium with simultaneously negative density and modulus. Phys. Rev. Lett. 104, 054301 (2010)
Article
Google Scholar
L. Fok, X. Zhang, Negative acoustic index metamaterial. Phys. Rev. B 83, 214304 (2011)
Article
Google Scholar
Z. Liang, J. Li, Extreme acoustic metamaterial by coiling up space. Phys. Rev. Lett. 108, 114301 (2012)
Article
Google Scholar
Y. Li, B. Liang, X. Tao, X.F. Zhu, X.Y. Zou, J.C. Cheng, Acoustic focusing by coiling up space. Appl. Phys. Lett. 101, 233508 (2012)
Article
Google Scholar
Y. Li, B. Liang, X.Y. Zou, J.C. Cheng, Extraordinary acoustic transmission through ultrathin acoustic metamaterials by coiling up space. Appl. Phys. Lett. 103, 063509 (2013)
Article
Google Scholar
Z. Liang, T. Feng, S. Lok, F. Liu, K.B. Ng, C.H. Chan, J. Wang, S.H. Han, S.Y. Lee, J. Li, Space-coiling metamaterials with double negativity and conical dispersion. Sci. Rep. 3, 1614 (2013)
Google Scholar
Y. Xie, B.I. Popa, L. Zigoneanu, S.A. Cummer, Measurement of a broadband negative index with space-coiling acoustic metamaterials. Phys. Rev. Lett. 110, 175501 (2013)
Article
Google Scholar
S.K. Maurya, A. Pandey, S. Shukla, S. Saxena, Double negativity in 3D space coiling metamaterials. Sci. Rep. 6, 33683 (2016)
Article
Google Scholar
Y. Jing, J. Xu, N. Fang, Numerical study of a near-zero-index acoustic metamaterial. Phys. Lett. A 376, 2834–2837 (2012)
Article
Google Scholar
G. Ma, M. Yang, Z. Yang, P. Sheng, Low-frequency narrow-band acoustic filter with large orifice. Appl. Phys. Lett. 103, 011903 (2013)
Article
Google Scholar
S. Xiao, G. Ma, Y. Li, Z. Yang, P. Sheng, Active control of membrane-type acoustic metamaterial by electric field. Appl. Phys. Lett. 106, 091904 (2015)
Article
Google Scholar
R. Fleury, A. Alu, Extraordinary sound transmission through density-near-zero ultranarrow channels. Phys. Rev. Lett. 111, 055501 (2013)
Article
Google Scholar
Q. Wei, Y. Cheng, X.J. Liu, Acoustic total transmission and total reflection in zero-index metamaterials with defects. Appl. Phys. Lett. 102, 174104 (2013)
Article
Google Scholar
J.J. Park, K.J. Lee, O.B. Wright, M.K. Jung, S.H. Lee, Giant acoustic concentration by extraordinary transmission in zero-mass metamaterials. Phys. Rev. Lett. 110, 244302 (2013)
Article
Google Scholar
J. Mei, G. Ma, M. Yang, Z. Yang, W. Wen, P. Sheng, Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3, 756 (2012)
Article
Google Scholar
A.J. Ward, J.B. Pendry, Refraction and geometry in Maxwell’s equations. J. Mod. Opt. 43, 773–793 (1996)
Article
Google Scholar
U. Leonhardt, Optical conformal mapping. Science 312, 1777–1780 (2006)
Article
Google Scholar
J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312, 1780–1782 (2006)
Article
Google Scholar
D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)
Article
Google Scholar
D. Schurig, J.B. Pendry, D.R. Smith, Calculation of material properties and ray tracing in transformation media. Opt. Express 14, 9794–9804 (2006)
Article
Google Scholar
J.B. Pendry, in Metamaterials and the Control of Electromagnetic Fields. Paper Presented at the 9th Rochester Conference on Coherence and Quantum Optics, Rochester, 10–13 June, 2007
B. Wood, J.B. Pendry, Metamaterials at zero frequency. J. Phys.: Condens. Matter 19, 076208 (2007)
Google Scholar
H. Chen, C.T. Chan, P. Sheng, Transformation optics and metamaterials. Nat. Mater. 9, 387–396 (2010)
Article
Google Scholar
L. Xu, H. Chen, Conformal transformation optics. Nat. Photon. 9, 15–23 (2014)
Article
Google Scholar
M. Kraft, Y. Luo, S.A. Maier, J.B. Pendry, Designing plasmonic gratings with transformation optics. Phys. Rev. X 5, 031029 (2015)
Google Scholar
Y.S. Kim, S.Y. Lee, J.W. Ryu, I.B. Kim, J.H. Han, H.S. Tae, M.H. Choi, B.K. Min, Designing whispering gallery modes via transformation optics. Nat. Photon. 10, 647–652 (2016)
Article
Google Scholar
H. Chen, C.T. Chan, Acoustic cloaking and transformation acoustics. J. Phys. D Appl. Phys. 43, 113001 (2010)
Article
Google Scholar
A.N. Norris, Acoustic cloaking theory. Proc. R. Soc. A 464, 2411–2434 (2008)
Article
Google Scholar
A.N. Norris, Acoustic cloaking. Acoust. Today 11, 38–46 (2015)
Google Scholar
R. Liu, C. Ji, J.J. Mock, J.Y. Chin, T.J. Cui, D.R. Smith, Broadband ground-plane cloak. Science 323, 366–369 (2009)
Article
Google Scholar
J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, An optical cloak made of dielectrics. Nat. Mater. 8, 568–571 (2009)
Article
Google Scholar
G.W. Milton, M. Briane, J.R. Willis, On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006)
Article
Google Scholar
J. Li, J.B. Pendry, Hiding under the carpet: a new strategy for cloaking. Phys. Rev. Lett. 101, 203901 (2008)
Article
Google Scholar
B.I. Popa, L. Zigoneanu, S.A. Cummer, Experimental acoustic ground cloak in air. Phys. Rev. Lett. 106, 253901 (2011)
Article
Google Scholar
L. Zigoneanu, B.I. Popa, S.A. Cummer, Three-dimensional broadband omnidirectional acoustic ground cloak. Nat. Mater. 13, 352–355 (2014)
Article
Google Scholar
M.D. Guild, A. Alu, M.R. Haberman, Cancellation of acoustic scattering from an elastic sphere. J. Acoust. Soc. Am. 129, 1355–1365 (2011)
Article
Google Scholar
V.M. Garcia-Chocano, L. Sanchis, A. Diaz-Rubio, J. Martinez-Pastor, F. Cervera, R. Llopis-Pontiveros, J. Sanchez-Dehesa, Acoustic cloak for airborne sound by inverse design. Appl. Phys. Lett. 99, 074102 (2011)
Article
Google Scholar
W. Kan, B. Liang, X. Zhu, R. Li, X. Zou, H. Wu, J. Yang, J. Cheng, Acoustic illusion near boundaries of arbitrary curved geometry. Sci. Rep. 3, 1427 (2013)
Google Scholar
L. Sanchis, V.M. Garcia-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martinez-Pastor, F. Cervera, J. Sanchez-Dehesa, Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere. Phys. Rev. Lett. 110, 124301 (2013)
Article
Google Scholar
M.D. Guild, A. Alu, M.R. Haberman, Cloaking of an acoustic sensor using scattering cancellation. Appl. Phys. Lett. 105, 023510 (2014)
Article
Google Scholar
W. Kan, V.M. Garcia-Chocano, F. Cervera, B. Liang, X.Y. Zou, L.L. Yin, J. Cheng, J. Sanchez-Dehesa, Broadband acoustic cloaking within an arbitrary hard cavity. Phys. Rev. Appl. 3, 064019 (2015)
Article
Google Scholar
C.A. Rohde, T.P. Martin, M.D. Guild, C.N. Layman, C.J. Naify, M. Nicholas, A.L. Thangawng, D.C. Calvo, G.J. Orris, Experimental demonstration of underwater acoustic scattering cancellation. Sci. Rep. 5, 13175 (2015)
Article
Google Scholar
J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)
Article
Google Scholar
S. Zhang, L. Yin, N. Fang, Focusing ultrasound with an acoustic metamaterial network. Phys. Rev. Lett. 102, 194301 (2009)
Article
Google Scholar
G.V. Eleftheriades, A.K. Iyer, P.C. Kremer, Planar negative refractive index media using periodically LC loaded transmission lines. IEEE Trans. Microw. Theory Tech. 50, 2702–2712 (2002)
Article
Google Scholar
A.K. Iyer, P.C. Kremer, G.V. Eleftheriades, Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial. Opt. Express 11, 696–708 (2003)
Article
Google Scholar
A. Grbic, G.V. Eleftheriades, Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett. 92, 117403 (2004)
Article
Google Scholar
Z. Jacob, L.V. Alekseyev, E. Narimanov, Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006)
Article
Google Scholar
A. Salandrino, N. Engheta, Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B 74, 075103 (2006)
Article
Google Scholar
B. Wood, J.B. Pendry, D.P. Tsai, Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B 74, 115116 (2006)
Article
Google Scholar
R.K. Luneburg, M. Herzberger, Mathematical Theory of Optics, 1st edn. (Brown University, Providence, 1944), p. 448
Google Scholar
N. Kundtz, D.R. Smith, Extreme-angle broadband metamaterial lens. Nat. Mater. 9, 129–132 (2010)
Article
Google Scholar
A.D. Falco, S.C. Kehr, U. Leonhardt, Luneburg lens in silicon photonics. Opt. Express 19, 5156–5162 (2011)
Article
Google Scholar
T.M. Chang, G. Dupont, S. Enoch, S. Guenneau, Enhanced control of light and sound trajectories with three-dimensional gradient index lenses. New J. Phys. 14, 035011 (2012)
Article
Google Scholar
J. Hunt, T. Tyler, S. Dhar, Y.J. Tsai, P. Bowen, S. Larouche, N.M. Jokerst, D.R. Smith, Planar, flattened Luneburg lens at infrared wavelengths. Opt. Express 20, 1706–1713 (2012)
Article
Google Scholar
Y.L. Loo, Y. Yang, N. Wang, Y.G. Ma, C.K. Ong, Broadband microwave Luneburg lens made of gradient index metamaterials. J. Opt. Soc. Am. A 29, 426–430 (2012)
Article
Google Scholar
S.H. Kim, in Cylindrical Acoustic Luneburg Lens. Paper presented at the 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Metamaterials), Copenhagen, 25–30 August 2014
A.S. Gutman, Modified Luneburg lens. J. Appl. Phys. 25, 855–859 (1954)
Article
Google Scholar
S.P. Morgan, General solution of the Luneburg lens problem. J. Appl. Phys. 29, 1358–1368 (1958)
Article
Google Scholar
C.A. Boyles, Wave theory of an acoustic Luneburg lens. II. The theory of variable density lenses. Nat. Nanotechnol. 45, 351–364 (1969)
Google Scholar
T. Zentgraf, Y. Liu, M.H. Mikkelsen, J. Valentine, X. Zhang, Plasmonic Luneburg and Eaton lenses. Nat. Nanotechnol. 6, 151–155 (2011)
Article
Google Scholar
A. Climente, D. Torrent, J. Sanchez-Dehesa, Sound focusing by gradient index sonic lenses. Appl. Phys. Lett. 97, 104103 (2010)
Article
Google Scholar
J.T. Welter, S. Sathish, D.E. Christensen, P.G. Brodrick, M.R. Cherry, Focusing of longitudinal ultrasonic waves in air with an aperiodic flat lens. J. Acoust. Soc. Am. 130, 2789–2796 (2011)
Article
Google Scholar
A. Climente, D. Torrent, J. Sanchez-Dehesa, Gradient index lens for flexural waves based on thickness variations. Appl. Phys. Lett. 105, 064101 (2014)
Article
Google Scholar
S.H. Kim, Sound focusing by acoustic luneburg lens (2014). arXiv:1409.5489
Y.Y. Zhao, Y.L. Zhang, M.L. Zheng, X.Z. Dong, X.M. Duan, Z.S. Zhao, Three-dimensional Luneburg lens at optical frequencies. Laser Photon. Rev. 10, 665–672 (2016)
Article
Google Scholar
S.H. Kim, V.S. Pham, M.P. Das, Acoustic eaton lens array and its fluid application (2016). arXiv:1607.02913