J. I. Park, “Chapter 3: Nanoparticle Synthesis and Applications Synthesis of Molybdenum Nanoparticles by RF Plasma”, In: Advanced Materials, CNTs, Particles, Films and Composites. (Austin, USA: Nano Science and Technology Institute, 2011), pp 271–273
B. Mohanty, B.D. Morton, A.S. Alagoz, T. Karabacak, M. Zou, Frictional anisotropy of tilted molybdenum nanorods fabricated by glancing angle deposition. Tribol. Int. 80, 216–221 (2014)
Article
Google Scholar
L. Chen, T.M. Lu, G.C. Wang, Biaxially textured Mo films with diverse morphologies by substrate-flipping rotation. Nanotechnology 22, 505701–505707 (2011)
Article
Google Scholar
V.S. Purohit, A.B. Bhise, S. Dey, M.A. More, C.V. Dharmadhikari, D.S. Joag, R. Pasricha, S.V. Bhoraskar, Scanning tunneling microscopic and field emission microscopic studies of nanostructured molybdenum film synthesized by electron cyclotron resonance plasma. Vacuum 83, 435–443 (2009)
Article
Google Scholar
H.H. Nersisyan, J.H. Lee, C.W. Won, The synthesis of nanostructured molybdenum under self-propagating high-temperature synthesis mode. Mater. Chem. Phys. 89, 283–288 (2005)
Article
Google Scholar
A.P. Ilyin, O.B. Nazarenko, G.V. Shuvalov, I.V. Klekovkin, D.V. Tikhonov, L.O. Tolbanova, Production and characterization of molybdenum nanopowders obtained by electrical explosion of wires. Optoele. Adv. Mater. Rapid Commun. 4, 834–837 (2010)
Google Scholar
S. Mandal, S. Lahiri, Synthesis of molybdenum nanoparticle by in situ γ-radiation. Appl. Rad. Isotopes 70, 2340–2343 (2012)
Article
Google Scholar
U. Guler, A. Boltasseva, V.M. Shalaev, Refract. Plasmon. Sci. 344, 263–264 (2014)
Google Scholar
N.M. Qureshi, R.D. Chaudhari, P.C. Mane, M. Shinde, S. Jadakar, S. Rane, B. Kale, A. Bhalerao, D. Amalnerkar, Nano-scale Mo-MoO3 entrapped in engineering thermoplastic: inorganic pathway to bactericidal and fungicidal action. IEEE Trans. Nanobiosci. 15, 258–264 (2016)
Article
Google Scholar
A.P. Semenov, On the possibility of improving antifriction properties of MoS2 coatings by alloying. J. Frict. Wear 33, 160–165 (2012)
Article
Google Scholar
B.I. Kharisov, A review for synthesis of nanoflower. Recent Patents Nanotechnol 2, 190–200 (2008)
Article
Google Scholar
J.V. Lauritsen, J. Kibsgaard, S. Helveg, H. Topsøe, B.S. Clausen, E. Laegsgaard, F. Besenbacher, Size-dependent structure of MoS2 nanocrystals. Nature Nanotech. 2, 53–58 (2007)
Article
Google Scholar
Q. Li, E.C. Walter, W.E. Veer, B.J. Murray, J.T. Newberg, E.W. Bohannan, J.A. Switzer, J.C. Hemminger, R.M. Penner, Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis. J. Phys. Chem. B 109, 3169–3182 (2005)
Article
Google Scholar
X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan, H. Zhang, Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nature Commun. 4, 1–8 (2013)
Google Scholar
L. Xiao-Lin, G. Jian-Ping, L. Ya-Dong, Atmospheric pressure chemical vapor deposition: an alternative route to large-scale MoS2 and WS2 inorganic fullerene-like nanostructures and nanoflowers. Chem. Eur. J. 10, 6163–6171 (2004)
Article
Google Scholar
B.B. Li, S.Z. Qiao, X.R. Zheng, X.J. Yang, Z.D. Cui, S.L. Zhu, Z.Y. Li, Y.Q. Liang, Pd coated MoS2 nanoflowers for highly efficient hydrogen evolution reaction under irradiation. J. Power Source 284, 68–76 (2015)
Article
Google Scholar
F. Xiong, Z. Cai, L. Qu, P. Zhang, Z. Yuan, O. Kwadwo, W. Asare, C. Xu, L.Mai Lin, Three-dimensional crumpled reduced graphene oxide/MoS2 nanoflowers: a stable anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 12625–12630 (2015)
Article
Google Scholar
K.J. Huang, Y.J. Liu, Y.M. Liu, L.L. Wang, Molybdenum disulfide nanoflower-chitosan-Au nanoparticlescomposites based electrochemical sensing platform for bisphenol a determination. J Hazardous Mater 276, 207–215 (2014)
Article
Google Scholar
Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, T.W. Lin, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012)
Article
Google Scholar
K.J. Huang, J.Z. Zhang, G.W. Shi, Y.M. Liu, Hydrothermal synthesis of molybdenum disulfide nanosheets as supercapacitors electrode material. Electrochim. Acta 132, 397–403 (2014)
Article
Google Scholar
R. Wei, X. Ttian, Z. Hu, H. Zhang, T. Qiao, X. He, Q. Chen, Z. Chen, J. Qiu, Vertically standing layered MoS2 nanosheets on TiO2 nanofibers for enhanced nonlinear optical property. Opt. Exp. 24, 25337–25344 (2016)
Article
Google Scholar
Q. Li, J.T. Newberg, J.C. Walter, J.C. Hemminger, R.M. Penner, Polycrystalline molybdenum disulfide (2H-MoS2) nano- and microribbons by electrochemical/chemical synthesis. Nano Lett. 4, 277–281 (2004)
Article
Google Scholar
G. Tang, J. Sun, W. Chen, H. Tang, Y. Wang, C. Li, Surfactant-assisted hydrothermal synthesis and tribological properties of flower-like MoS2 nanostructures. Micro Nano Lett. 8, 164–168 (2013)
Article
Google Scholar
D. Wang, Z. Pan, Z. Wu, Z. Wang, Z. Liu, Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts. J. Power Source 264, 229–234 (2014)
Article
Google Scholar
X. Lu, Y. Lin, H. Dong, W. Dai, X. Chen, X. Qu, X. Zhang, One-step hydrothermal fabrication of three-dimensional MoS2 nanoflower using polypyrrole as template for efficient hydrogen evolution reaction. Sci. Rep. 7, 42309 (2017)
Article
Google Scholar
K. Krishnamoorthy, G. Veerasubramani, S. Radhakrishnan, S.J. Kim, Supercapacitive properties of hydrothermally synthesized sphere like MoS2 nanostructures. Mater. Res. Bull. 50, 499–502 (2014)
Article
Google Scholar
L. Zhang, R. Chen, K.N. Hui, K.S. Hui, H. Lee, Hierarchical ultrathin NiAl layered double hydroxide nanosheet arrays on carbon nanotube paper as advanced hybrid electrode for high performance hybrid capacitors. Chem. Eng. J. 325, 554–563 (2017)
Article
Google Scholar
N. Chaudhari, A. Oh, Y.J. Sa, H. Jin, H. Baik, S.G. Kim, S.J. Lee, S.H. Joo, K. Lee, Morphology controlled synthesis of 2-D Ni–Ni3S2 and Ni3S2 nanostructures on Ni foam towards oxygen evolution reaction. Nano Converg 4, 7 (2017)
Article
Google Scholar