M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2010)
Article
Google Scholar
C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Edit. 48(42), 7752–7777 (2009)
Article
Google Scholar
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)
Article
Google Scholar
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)
Article
Google Scholar
S. Vadukumpully, J. Paul, N. Mahanta, S. Valiyaveettil, Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49(1), 198–205 (2011)
Article
Google Scholar
J. Renteria, D. Nika, A. Balandin, Graphene thermal properties: applications in thermal management and energy storage. Appl. Sci. 4(4), 525 (2014)
Article
Google Scholar
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)
Article
Google Scholar
W. Cai, A.L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, R.S. Ruoff, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10(5), 1645–1651 (2010)
Article
Google Scholar
M. Shtein, R. Nadiv, M. Buzaglo, O. Regev, Graphene-based hybrid composites for efficient thermal management of electronic devices. ACS Appl. Mater. Interfaces. 7(42), 23725–23730 (2015)
Article
Google Scholar
G. Xin, H. Sun, T. Hu, H.R. Fard, X. Sun, N. Koratkar, T. Borca-Tasciuc, J. Lian, Large-area freestanding graphene paper for superior thermal management. Adv. Mater. 26(26), 4521–4526 (2014)
Article
Google Scholar
R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008)
Article
Google Scholar
K.F. Mak, L. Ju, F. Wang, T.F. Heinz, Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun. 152(15), 1341–1349 (2012)
Article
Google Scholar
G. Pirruccio, L. Martín Moreno, G. Lozano, J. Gómez Rivas, Coherent and broadband enhanced optical absorption in graphene. ACS Nano 7(6), 4810–4817 (2013)
Article
Google Scholar
Q. Ye, J. Wang, Z. Liu, Z.-C. Deng, X.-T. Kong, F. Xing, X.-D. Chen, W.-Y. Zhou, C.-P. Zhang, J.-G. Tian, Polarization-dependent optical absorption of graphene under total internal reflection. Appl. Phys. Lett. 102(2), 021912 (2013)
Article
Google Scholar
X. Li, W. Chen, S. Zhang, Z. Wu, P. Wang, Z. Xu, H. Chen, W. Yin, H. Zhong, S. Lin, 18.5% efficient graphene/GaAs van der Waals heterostructure solar cell. Nano Energy 16, 310–319 (2015)
Article
Google Scholar
Y. Chen, Y. Long, Y. Liu, L. Shen, Y. Zhang, Q. Deng, Z. Zheng, W. Yu, S. Run, Optimizing the light absorption of graphene-based organic solar cells by tailoring the weak microcavity with dielectric/graphene/dielectric multilayer. Appl. Phys. Lett. 103(6), 063301 (2013)
Article
Google Scholar
S. Yin, Y. Zhang, J. Kong, C. Zou, C.M. Li, X. Lu, J. Ma, F.Y.C. Boey, X. Chen, Assembly of Graphene Sheets into Hierarchical Structures for High-Performance Energy Storage. ACS Nano 5(5), 3831–3838 (2011)
Article
Google Scholar
Y. Meng, K. Wang, Y. Zhang, Z. Wei, Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors. Adv. Mater. 25(48), 6985–6990 (2013)
Article
Google Scholar
H. Wang, Y. Yang, Y. Liang, J.T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11(7), 2644–2647 (2011)
Article
Google Scholar
J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G.L. Graff, W.D. Bennett, Z. Nie, L.V. Saraf, I.A. Aksay, J. Liu, J.-G. Zhang, Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett. 11(11), 5071–5078 (2011)
Article
Google Scholar
Y.S. Yun, D. Kim, Y. Tak, H.-J. Jin, Porous graphene/carbon nanotube composite cathode for proton exchange membrane fuel cell. Synth. Met. 161(21), 2460–2465 (2011)
Article
Google Scholar
Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537–1541 (2011)
Article
Google Scholar
Y. Xu, Z. Lin, X. Zhong, X. Huang, N.O. Weiss, Y. Huang, X. Duan, Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554 (2014)
Google Scholar
F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 6217 (2015)
Article
Google Scholar
H.-J. Choi, S.-M. Jung, J.-M. Seo, D.W. Chang, L. Dai, J.-B. Baek, Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1(4), 534–551 (2012)
Article
Google Scholar
J. Zhu, D. Yang, Z. Yin, Q. Yan, H. Zhang, Graphene and graphene-based materials for energy storage applications. Small 10(17), 3480–3498 (2014)
Article
Google Scholar
Y. Sun, Q. Wu, G. Shi, Graphene based new energy materials. Energy Environ. Sci. 4(4), 1113–1132 (2011)
Article
Google Scholar
G. Kucinskis, G. Bajars, J. Kleperis, Graphene in lithium ion battery cathode materials: a review. J. Power Sources 240, 66–79 (2013)
Article
Google Scholar
D.A.C. Brownson, D.K. Kampouris, C.E. Banks, An overview of graphene in energy production and storage applications. J. Power Sources 196(11), 4873–4885 (2011)
Article
Google Scholar
S. Han, D. Wu, S. Li, F. Zhang, X. Feng, Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv. Mater. 26(6), 849–864 (2014)
Article
Google Scholar
P. Russo, A. Hu, G. Compagnini, Synthesis, properties and potential applications of porous graphene: a review. NanoMicro Lett. 5(4), 260–273 (2013)
Google Scholar
A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009)
Article
Google Scholar
X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009)
Article
Google Scholar
W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958)
Article
Google Scholar
J. Chen, Y. Li, L. Huang, C. Li, G. Shi, High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon 81, 826–834 (2015)
Article
Google Scholar
J. Chen, B. Yao, C. Li, G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013)
Article
Google Scholar
D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3(2), 101–105 (2008)
Article
Google Scholar
Y. Zhang, L. Zhang, C. Zhou, Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46(10), 2329–2339 (2013)
Article
Google Scholar
C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722–726 (2010)
Article
Google Scholar
S.H. Lee, H.W. Kim, J.O. Hwang, W.J. Lee, J. Kwon, C.W. Bielawski, R.S. Ruoff, S.O. Kim, Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films. Angew. Chem. Int. Ed. 49(52), 10084–10088 (2010)
Article
Google Scholar
Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.-M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10(6), 424–428 (2011)
Article
Google Scholar
C. Xu, B. Xu, Y. Gu, Z. Xiong, J. Sun, X.S. Zhao, Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 6(5), 1388–1414 (2013)
Article
Google Scholar
B.G. Choi, M. Yang, W.H. Hong, J.W. Choi, Y.S. Huh, 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6(5), 4020–4028 (2012)
Article
Google Scholar
X. Huang, B. Sun, D. Su, D. Zhao, G. Wang, Soft-template synthesis of 3D porous graphene foams with tunable architectures for lithium-O2 batteries and oil adsorption applications. J. Mater. Chem. A 2(21), 7973–7979 (2014)
Article
Google Scholar
J.-L. Shi, H.-J. Peng, L. Zhu, W. Zhu, Q. Zhang, Template growth of porous graphene microspheres on layered double oxide catalysts and their applications in lithium–sulfur batteries. Carbon 92, 96–105 (2015)
Article
Google Scholar
L. Zhang, G. Chen, M.N. Hedhili, H. Zhang, P. Wang, Three-dimensional assemblies of graphene prepared by a novel chemical reduction-induced self-assembly method. Nanoscale 4(22), 7038–7045 (2012)
Article
Google Scholar
W. Chen, L. Yan, In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 3(8), 3132–3137 (2011)
Article
Google Scholar
J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Recommendations for the characterization of porous solids. Pure Appl. Chem. 66(8), 1739–1758 (1994)
Article
Google Scholar
Q. Liu, Z.F. Li, Y.D. Liu, H.Y. Zhang, Y. Ren, C.J. Sun, W.Q. Lu, Y. Zhou, L. Stanciu, E.A. Stach, J. Xie, Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries. Nat. Commun. 6, 6127 (2015)
Article
Google Scholar
Y. Dou, M. Jin, G. Zhou, L. Shui, Breath figure method for construction of honeycomb films. Membranes 5(3), 399 (2015)
Article
Google Scholar
Z. Lei, N. Christov, X.S. Zhao, Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes. Energy Environ. Sci. 4(5), 1866–1873 (2011)
Article
Google Scholar
E.H. Jo, H. Chang, S.K. Kim, J.-H. Choi, S.-R. Park, C.M. Lee, H.D. Jang, One-step synthesis of Pt/graphene composites from pt acid dissolved ethanol via microwave plasma spray pyrolysis. Sci. Rep. 6, 33236 (2016)
Article
Google Scholar
J. Luo, H.D. Jang, J. Huang, Effect of sheet morphology on the scalability of graphene-based ultracapacitors. ACS Nano 7(2), 1464–1471 (2013)
Article
Google Scholar
X. Zhao, C.M. Hayner, M.C. Kung, H.H. Kung, Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano 5(11), 8739–8749 (2011)
Article
Google Scholar
Z. Zuo, T.Y. Kim, I. Kholmanov, H. Li, H. Chou, Y. Li, Ultra-light hierarchical graphene electrode for binder-free supercapacitors and lithium-ion battery anodes. Small 11(37), 4922–4930 (2015)
Article
Google Scholar
Z.-J. Jiang, Z. Jiang, Fabrication of nitrogen-doped holey graphene hollow microspheres and their use as an active electrode material for lithium ion batteries. ACS Appl. Mater. Interfaces. 6(21), 19082–19091 (2014)
Article
Google Scholar
Z. Du, W. Ai, C. Sun, C. Zou, J. Zhao, Y. Chen, X. Dong, J. Liu, G. Sun, T. Yu, W. Huang, Engineering the li storage properties of graphene anodes: defect evolution and pore structure regulation. ACS Appl. Mater. Interfaces. 8(49), 33712–33722 (2016)
Article
Google Scholar
Y. Xu, C.-Y. Chen, Z. Zhao, Z. Lin, C. Lee, X. Xu, C. Wang, Y. Huang, M.I. Shakir, X. Duan, Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors. Nano Lett. 15(7), 4605–4610 (2015)
Article
Google Scholar
J.W. Jeon, R. Sharma, P. Meduri, B.W. Arey, H.T. Schaef, J.L. Lutkenhaus, J.P. Lemmon, P.K. Thallapally, M.I. Nandasiri, B.P. McGrail, S.K. Nune, In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors. ACS Appl. Mater. Interfaces. 6(10), 7214–7222 (2014)
Article
Google Scholar
J. Xu, Y. Lin, J.W. Connell, L. Dai, Nitrogen-doped holey graphene as an anode for lithium-ion batteries with high volumetric energy density and long cycle life. Small 11(46), 6179–6185 (2015)
Article
Google Scholar
Z.Q. Jiang, Z.J. Jiang, X.N. Tian, W.H. Chen, Amine-functionalized holey graphene as a highly active metal-free catalyst for the oxygen reduction reaction. J. Mater. Chem. A 2(2), 441–450 (2014)
Article
Google Scholar
D.S. Yu, L. Wei, W.C. Jiang, H. Wang, B. Sun, Q. Zhang, K.L. Goh, R.M. Si, Y. Chen, Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction. Nanoscale 5(8), 3457–3464 (2013)
Article
Google Scholar
Z.J. Jiang, Z.Q. Jiang, W.H. Chen, The role of holes in improving the performance of nitrogen-doped holey graphene as an active electrode material for supercapacitor and oxygen reduction reaction. J. Power Sources 251, 55–65 (2014)
Article
Google Scholar
J. Luo, X. Zhao, J. Wu, H.D. Jang, H.H. Kung, J. Huang, Crumpled graphene-encapsulated si nanoparticles for lithium ion battery anodes. J. Phys. Chem. Lett. 3(13), 1824–1829 (2012)
Article
Google Scholar
H.D. Jang, S.K. Kim, H. Chang, J.-W. Choi, J. Luo, J. Huang, One-step synthesis of Pt-nanoparticles-laden graphene crumples by aerosol spray pyrolysis and evaluation of their electrocatalytic activity. Aerosol Sci. Technol. 47(1), 93–98 (2013)
Article
Google Scholar
E.H. Jo, H.D. Jang, H. Chang, S.K. Kim, J.-H. Choi, C.M. Lee, 3 D network-structured crumpled graphene/carbon nanotube/polyaniline composites for supercapacitors. Chemsuschem 10(10), 2210–2217 (2017)
Article
Google Scholar
J.-W. Jeon, S.R. Kwon, J.L. Lutkenhaus, Polyaniline nanofiber/electrochemically reduced graphene oxide layer-by-layer electrodes for electrochemical energy storage. J. Mater. Chem. A 3(7), 3757–3767 (2015)
Article
Google Scholar
H.D. Jang, S.K. Kim, H. Chang, J.-H. Choi, B.-G. Cho, E.H. Jo, J.-W. Choi, J. Huang, Three-dimensional crumpled graphene-based platinum–gold alloy nanoparticle composites as superior electrocatalysts for direct methanol fuel cells. Carbon 93, 869–877 (2015)
Article
Google Scholar
S.R. Kwon, M.B. Elinski, J.D. Batteas, J.L. Lutkenhaus, Robust and flexible aramid nanofiber/graphene layer-by-layer electrodes. ACS Appl. Mater. Interfaces. 9(20), 17125–17135 (2017)
Article
Google Scholar
K. Sohn, Y. Joo Na, H. Chang, K.-M. Roh, H. Dong Jang, J. Huang, Oil absorbing graphene capsules by capillary molding. Chem. Commun. 48(48), 5968–5970 (2012)
Article
Google Scholar
X. Huang, K. Qian, J. Yang, J. Zhang, L. Li, C. Yu, D. Zhao, Functional nanoporous graphene foams with controlled pore sizes. Adv. Mater. 24(32), 4419–4423 (2012)
Article
Google Scholar
J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang, L. Jiang, Hierarchically ordered macro—mesoporous TiO2—graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano 5(1), 590–596 (2011)
Article
Google Scholar
X. Wen, D. Zhang, T. Yan, J. Zhang, L. Shi, Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization. J. Mater. Chem. A 1(39), 12334–12344 (2013)
Article
Google Scholar
X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, H. Zhang, Preparation of novel 3D graphene networks for supercapacitor applications. Small 7(22), 3163–3168 (2011)
Article
Google Scholar
G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J.R. McDonough, X. Cui, Y. Cui, Z. Bao, Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett. 11(7), 2905–2911 (2011)
Article
Google Scholar
Z. Ling, G. Wang, Q. Dong, B.Q. Qian, M.D. Zhang, C.P. Li, J.S. Qiu, An ionic liquid template approach to graphene-carbon xerogel composites for supercapacitors with enhanced performance. J. Mater. Chem. A 2(35), 14329–14333 (2014)
Article
Google Scholar
J. Luo, H.D. Jang, T. Sun, L. Xiao, Z. He, A.P. Katsoulidis, M.G. Kanatzidis, J.M. Gibson, J. Huang, Compression and aggregation-resistant particles of crumpled soft sheets. ACS Nano 5(11), 8943–8949 (2011)
Article
Google Scholar
B. Lee, C. Lee, T. Liu, K. Eom, Z. Chen, S. Noda, T.F. Fuller, H.D. Jang, S.W. Lee, Hierarchical networks of redox-active reduced crumpled graphene oxide and functionalized few-walled carbon nanotubes for rapid electrochemical energy storage. Nanoscale 8(24), 12330–12338 (2016)
Article
Google Scholar
G. Decher, Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330), 1232–1237 (1997)
Article
Google Scholar
Z.Y. Tang, Y. Wang, P. Podsiadlo, N.A. Kotov, Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv. Mater. 18(24), 3203–3224 (2006)
Article
Google Scholar
Y. Wang, A.S. Angelatos, F. Caruso, Template synthesis of nanostructured materials via layer-by-layer assembly. Chem. Mater. 20(3), 848–858 (2008)
Article
Google Scholar
C.Y. Jiang, V.V. Tsukruk, Freestanding nanostructures via layer-by-layer assembly. Adv. Mater. 18(7), 829–840 (2006)
Article
Google Scholar
S.A. Sukhishvili, Responsive polymer films and capsules via layer-by-layer assembly. Curr. Opin. Colloid Interface Sci. 10(1–2), 37–44 (2005)
Article
Google Scholar
C. Cho, K.L. Wallace, D.A. Hagen, B. Stevens, O. Regev, J.C. Grunlan, Nanobrick wall multilayer thin films grown faster and stronger using electrophoretic deposition. Nanotechnology 26(18), 185703 (2015)
Article
Google Scholar
A. Vidyasagar, C. Sung, R. Gamble, J.L. Lutkenhaus, Thermal transitions in dry and hydrated layer-by-layer assemblies exhibiting linear and exponential growth. ACS Nano 6(7), 6174–6184 (2012)
Article
Google Scholar
K. Ariga, J.P. Hill, Q. Ji, Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys. Chem. Chem. Phys. 9(19), 2319–2340 (2007)
Article
Google Scholar
M.N. Hyder, R. Kavian, Z. Sultana, K. Saetia, P.-Y. Chen, S.W. Lee, Y. Shao-Horn, P.T. Hammond, Vacuum-assisted layer-by-layer nanocomposites for self-standing 3D mesoporous electrodes. Chem. Mater. 26(18), 5310–5318 (2014)
Article
Google Scholar
E. Kharlampieva, V. Kozlovskaya, J. Chan, J.F. Ankner, V.V. Tsukruk, Spin-assisted layer-by-layer assembly: variation of stratification as studied with neutron reflectivity. Langmuir 25(24), 14017–14024 (2009)
Article
Google Scholar
K.C. Krogman, J.L. Lowery, N.S. Zacharia, G.C. Rutledge, P.T. Hammond, Spraying asymmetry into functional membranes layer-by-layer. Nat. Mater. 8(6), 512–518 (2009)
Article
Google Scholar
S.W. Lee, N. Yabuuchi, B.M. Gallant, S. Chen, B.-S. Kim, P.T. Hammond, Y. Shao-Horn, High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat. Nano 5(7), 531–537 (2010)
Article
Google Scholar
S.W. Lee, B.-S. Kim, S. Chen, Y. Shao-Horn, P.T. Hammond, Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J. Am. Chem. Soc. 131(2), 671–679 (2009)
Article
Google Scholar
S.W. Lee, J. Kim, S. Chen, P.T. Hammond, Y. Shao-Horn, Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 4(7), 3889–3896 (2010)
Article
Google Scholar
S.W. Lee, B.M. Gallant, H.R. Byon, P.T. Hammond, Y. Shao-Horn, Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors. Energy Environ. Sci. 4(6), 1972–1985 (2011)
Article
Google Scholar
M.N. Hyder, S.W. Lee, F.Ç. Cebeci, D.J. Schmidt, Y. Shao-Horn, P.T. Hammond, Layer-by-layer assembled polyaniline nanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storage applications. ACS Nano 5(11), 8552–8561 (2011)
Article
Google Scholar
H.R. Byon, S.W. Lee, S. Chen, P.T. Hammond, Y. Shao-Horn, Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical micro-capacitors. Carbon 49(2), 457–467 (2011)
Article
Google Scholar
S.R. Kwon, J.-W. Jeon, J.L. Lutkenhaus, Sprayable, paintable layer-by-layer polyaniline nanofiber/graphene electrodes. RSC Adv. 5(20), 14994–15001 (2015)
Article
Google Scholar
H. Chen, M.B. Müller, K.J. Gilmore, G.G. Wallace, D. Li, Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 20(18), 3557–3561 (2008)
Article
Google Scholar
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008)
Article
Google Scholar
P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11(1), 19–29 (2012)
Article
Google Scholar
L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009)
Article
Google Scholar
X.-L. Wu, A.-W. Xu, Carbonaceous hydrogels and aerogels for supercapacitors. J. Mater. Chem. A 2(14), 4852–4864 (2014)
Article
Google Scholar
G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012)
Article
Google Scholar
E. Frackowiak, Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9(15), 1774–1785 (2007)
Article
Google Scholar
L.L. Zhang, R. Zhou, X.S. Zhao, Graphene-based materials as supercapacitor electrodes. J. Mater. Chem. 20(29), 5983–5992 (2010)
Article
Google Scholar
Y. Xu, K. Sheng, C. Li, G. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7), 4324–4330 (2010)
Article
Google Scholar
M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008)
Article
Google Scholar
Y.J. Oh, J.J. Yoo, Y.I. Kim, J.K. Yoon, H.N. Yoon, J.-H. Kim, S.B. Park, Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochim. Acta 116, 118–128 (2014)
Article
Google Scholar
P. Suktha, P. Chiochan, P. Iamprasertkun, J. Wutthiprom, N. Phattharasupakun, M. Suksomboon, T. Kaewsongpol, P. Sirisinudomkit, T. Pettong, M. Sawangphruk, High-performance supercapacitor of functionalized carbon fiber paper with high surface ionic and bulk electronic conductivity: effect of organic functional groups. Electrochim. Acta 176, 504–513 (2015)
Article
Google Scholar
J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001)
Article
Google Scholar
A. Manthiram, Materials challenges and opportunities of lithium ion batteries. J. Phys. Chem. Lett. 2(3), 176–184 (2011)
Article
Google Scholar
Z. Ma, G. Shao, Y. Fan, G. Wang, J. Song, T. Liu, Tunable morphology synthesis of LiFePO4 nanoparticles as cathode materials for lithium ion batteries. ACS Appl. Mater. Interfaces. 6(12), 9236–9244 (2014)
Article
Google Scholar
J. Marzec, K. Świerczek, J. Przewoźnik, J. Molenda, D.R. Simon, E.M. Kelder, J. Schoonman, Conduction mechanism in operating a LiMn2O4 cathode. Solid State Ionics 146(3), 225–237 (2002)
Article
Google Scholar
P.P. Prosini, M. Lisi, D. Zane, M. Pasquali, Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics 148(1), 45–51 (2002)
Article
Google Scholar
D. Zhao, M. Cao, Constructing highly graphitized carbon-wrapped Li3VO4 nanoparticles with hierarchically porous structure as a long life and high capacity anode for lithium-ion batteries. ACS Appl. Mater. Interfaces. 7(45), 25084–25093 (2015)
Article
Google Scholar
E. Iwama, N. Kawabata, N. Nishio, K. Kisu, J. Miyamoto, W. Naoi, P. Rozier, P. Simon, K. Naoi, enhanced electrochemical performance of ultracentrifugation-derived nc-Li3VO4/MWCNT composites for hybrid supercapacitors. ACS Nano 10(5), 5398–5404 (2016)
Article
Google Scholar
G. Shao, L. Gan, Y. Ma, H. Li, T. Zhai, Enhancing the performance of Li3VO4 by combining nanotechnology and surface carbon coating for lithium ion batteries. J. Mater. Chem. A 3(21), 11253–11260 (2015)
Article
Google Scholar
J. Liu, P.-J. Lu, S. Liang, J. Liu, W. Wang, M. Lei, S. Tang, Q. Yang, Ultrathin Li3VO4 nanoribbon/graphene sandwich-like nanostructures with ultrahigh lithium ion storage properties. Nano Energy 12, 709–724 (2015)
Article
Google Scholar
X. Zhao, C.M. Hayner, H.H. Kung, Self-assembled lithium manganese oxide nanoparticles on carbon nanotube or graphene as high-performance cathode material for lithium-ion batteries. J. Mater. Chem. 21(43), 17297–17303 (2011)
Article
Google Scholar
K.V. Sreelakshmi, S. Sasi, A. Balakrishnan, N. Sivakumar, A.S. Nair, S.V. Nair, K.R.V. Subramanian, Hybrid composites of LiMn2O4—graphene as rechargeable electrodes in energy storage devices. Energy Technol. 2(3), 257–262 (2014)
Article
Google Scholar
F. Fathollahi, M. Javanbakht, H. Omidvar, M. Ghaemi, Improved electrochemical properties of LiFePO4/graphene cathode nanocomposite prepared by one-step hydrothermal method. J. Alloy. Compd. 627, 146–152 (2015)
Article
Google Scholar
X. Guo, Q. Fan, L. Yu, J. Liang, W. Ji, L. Peng, X. Guo, W. Ding, Y. Chen, Sandwich-like LiFePO4/graphene hybrid nanosheets: in situ catalytic graphitization and their high-rate performance for lithium ion batteries. J. Mater. Chem. A 1(38), 11534–11538 (2013)
Article
Google Scholar
Z. Fan, J. Yan, G. Ning, T. Wei, L. Zhi, F. Wei, Porous graphene networks as high performance anode materials for lithium ion batteries. Carbon 60, 558–561 (2013)
Article
Google Scholar
X. Ma, G. Ning, C. Qi, C. Xu, J. Gao, Phosphorus and nitrogen dual-doped few-layered porous graphene: a high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 6(16), 14415–14422 (2014)
Article
Google Scholar
N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18(5), 252–264 (2015)
Article
Google Scholar
B. Campbell, R. Ionescu, M. Tolchin, K. Ahmed, Z. Favors, K.N. Bozhilov, C.S. Ozkan, M. Ozkan, Carbon-coated, diatomite-derived nanosilicon as a high rate capable Li-ion battery anode. Sci. Rep. 6, 33050 (2016)
Article
Google Scholar
G. Wang, X. Shen, J. Yao, J. Park, Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47(8), 2049–2053 (2009)
Article
Google Scholar
J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue, Mechanisms for lithium insertion in carbonaceous materials. Science 270(5236), 590–593 (1995)
Article
Google Scholar
X. Liu, Y. Wu, Z. Yang, F. Pan, X. Zhong, J. Wang, L. Gu, Y. Yu, Nitrogen-doped 3D macroporous graphene frameworks as anode for high performance lithium-ion batteries. J. Power Sources 293, 799–805 (2015)
Article
Google Scholar
D.-K. Kim, H.-M. Park, S.-J. Jung, Y.U. Jeong, J.-H. Lee, J.-J. Kim, Effect of synthesis conditions on the properties of LiFePO4 for secondary lithium batteries. J. Power Sources 159(1), 237–240 (2006)
Article
Google Scholar
J. Molenda, W. Ojczyk, M. Marzec, J. Marzec, J. Przewoźnik, R. Dziembaj, M. Molenda, Electrochemical and chemical deintercalation of LiMn2O4. Solid State Ionics 157(1), 73–79 (2003)
Article
Google Scholar
M. Park, X. Zhang, M. Chung, G.B. Less, A.M. Sastry, A review of conduction phenomena in Li-ion batteries. J. Power Sources 195(24), 7904–7929 (2010)
Article
Google Scholar
S. Levasseur, M. Ménétrier, C. Delmas, On the dual effect of Mg doping in LiCoO2 and Li1+ δCoO2: structural, electronic properties, and 7Li MAS NMR studies. Chem. Mater. 14(8), 3584–3590 (2002)
Article
Google Scholar
X. Zhou, F. Wang, Y. Zhu, Z. Liu, Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J. Mater. Chem. 21(10), 3353–3358 (2011)
Article
Google Scholar
J. Ha, S.-K. Park, S.-H. Yu, A. Jin, B. Jang, S. Bong, I. Kim, Y.-E. Sung, Y. Piao, A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries. Nanoscale 5(18), 8647–8655 (2013)
Article
Google Scholar
D. Dutta, A.L. Santhosha, A.K. Sood, A.J. Bhattacharyya, Reducing Li-diffusion pathways via “adherence” of ultra-small nanocrystals of LiFePO4 on few-layer nanoporous holey-graphene sheets for achieving high rate capability. RSC Adv. 6(92), 89328–89337 (2016)
Article
Google Scholar
T. Liu, K.C. Kim, R. Kavian, S.S. Jang, S.W. Lee, High-density lithium-ion energy storage utilizing the surface redox reactions in folded graphene films. Chem. Mater. 27(9), 3291–3298 (2015)
Article
Google Scholar
S.H. Ha, Y.S. Jeong, Y.J. Lee, Free standing reduced graphene oxide film cathodes for lithium ion batteries. ACS Appl. Mater. Interfaces. 5(23), 12295–12303 (2013)
Article
Google Scholar
T. Liu, R. Kavian, I. Kim, S.W. Lee, Self-assembled, redox-active graphene electrodes for high-performance energy storage devices. J. Phys. Chem. Lett. 5(24), 4324–4330 (2014)
Article
Google Scholar
G. Xu, B. Ding, J. Pan, P. Nie, L. Shen, X. Zhang, High performance lithium-sulfur batteries: advances and challenges. J. Mater. Chem. A 2(32), 12662–12676 (2014)
Article
Google Scholar
A. Manthiram, Y. Fu, Y.-S. Su, Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 46(5), 1125–1134 (2013)
Article
Google Scholar
X. Ji, L.F. Nazar, Advances in Li-S batteries. J. Mater. Chem. 20(44), 9821–9826 (2010)
Article
Google Scholar
H. Wu, Y. Huang, M. Zong, H. Fu, X. Sun, Self-assembled graphene/sulfur composite as high current discharge cathode for lithium-sulfur batteries. Electrochim. Acta 163, 24–31 (2015)
Article
Google Scholar
G. Zhou, L.-C. Yin, D.-W. Wang, L. Li, S. Pei, I.R. Gentle, F. Li, H.-M. Cheng, Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. ACS Nano 7(6), 5367–5375 (2013)
Article
Google Scholar
H.J. Peng, J.Q. Huang, M.Q. Zhao, Q. Zhang, X.B. Cheng, X.Y. Liu, W.Z. Qian, F. Wei, Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries. Adv. Funct. Mater. 24(19), 2772–2781 (2014)
Article
Google Scholar
J. Song, Z. Yu, M.L. Gordin, D. Wang, Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries. Nano Lett. 16(2), 864–870 (2016)
Article
Google Scholar
G. Girishkumar, B. McCloskey, A.C. Luntz, S. Swanson, W. Wilcke, Lithium—air battery: promise and challenges. J. Phys. Chem. Lett. 1(14), 2193–2203 (2010)
Article
Google Scholar
Z. Ma, X. Yuan, L. Li, Z.-F. Ma, D.P. Wilkinson, L. Zhang, J. Zhang, A review of cathode materials and structures for rechargeable lithium-air batteries. Energy Environ. Sci. 8(8), 2144–2198 (2015)
Article
Google Scholar
D. Aurbach, B.D. McCloskey, L.F. Nazar, P.G. Bruce, Advances in understanding mechanisms underpinning lithium–air batteries. Nat. Energy 1, 16128 (2016)
Article
Google Scholar
B. Sun, X. Huang, S. Chen, P. Munroe, G. Wang, Porous graphene nanoarchitectures: an efficient catalyst for low charge-overpotential, long life, and high capacity lithium-oxygen batteries. Nano Lett. 14(6), 3145–3152 (2014)
Article
Google Scholar
C. Sun, F. Li, C. Ma, Y. Wang, Y. Ren, W. Yang, Z. Ma, J. Li, Y. Chen, Y. Kim, L. Chen, Graphene-Co3O4 nanocomposite as an efficient bifunctional catalyst for lithium-air batteries. J. Mater. Chem. A 2(20), 7188–7196 (2014)
Article
Google Scholar
W.-B. Luo, S.-L. Chou, J.-Z. Wang, Y.-C. Zhai, H.-K. Liu, A metal-free, free-standing, macroporous graphene@g-C3N4 composite air electrode for high-energy lithium oxygen batteries. Small 11(23), 2817–2824 (2015)
Article
Google Scholar