G.A. Posthuma-Trumpie, J. Korf, A. van Amerongen, Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 393(2), 569–582 (2009). https://doi.org/10.1007/s00216-008-2287-2
Article
CAS
Google Scholar
P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, B.H. Weigl, Microfluidic diagnostic technologies for global public health. Nature 442, 412–418 (2006). https://doi.org/10.1038/nature05064
Article
CAS
Google Scholar
S.K. Sia, L.J. Kricka, Microfluidics and point-of-care testing. Lab Chip 8(12), 1982–1983 (2008). https://doi.org/10.1039/B817915H
Article
CAS
Google Scholar
S. Kumar, S. Kumar, M.A. Ali, P. Anand, V.V. Agrawal, R. John, S. Maji, B.D. Malhotra, Microfluidic-integrated biosensors: prospects for point-of-care diagnostics. Biotechnol. J. 8(11), 1267–1279 (2013). https://doi.org/10.1002/biot.201200386
Article
CAS
Google Scholar
J. Zhou, D.A. Khodakov, A.V. Ellis, N.H. Voelcker, Surface modification for PDMS-based microfluidic devices. Electrophoresis 33, 89–104 (2011). https://doi.org/10.1002/elps.201100482
Article
CAS
Google Scholar
K. Scida, B. Li, A.D. Ellington, R.M. Crooks, DNA detection using origami paper analytical devices. Anal. Chem. 85(2), 9713–9720 (2013). https://doi.org/10.1021/ac402118a
Article
CAS
Google Scholar
W. Zhao, A. van den Berg, Lab on paper. Lab Chip 8(12), 1988–1991 (2008). https://doi.org/10.1039/b814043j
Article
CAS
Google Scholar
J.Y. Yoon, Introduction to biosensors: from electric circuits to immunosensors, 2nd edn. (Springer, New York, 2016). https://doi.org/10.1007/978-3-319-27413-3
Book
Google Scholar
D.J. You, T.S. Park, J.Y. Yoon, Cell-phone-based measurement of TSH using Mie scatter optimized lateral flow assays. Biosens. Bioelectron. 40, 180–185 (2013). https://doi.org/10.1016/j.bios.2012.07.014
Article
CAS
Google Scholar
S. Cho, T.S. Park, T.G. Nahapetian, J.Y. Yoon, Smartphone-based, sensitive µPAD detection of urinary tract infection and gonorrhea. Biosens. Bioelectron. 74, 601–611 (2015). https://doi.org/10.1016/j.bios.2015.07.014
Article
CAS
Google Scholar
M.L. Wilson, L. Gaido, Laboratory diagnosis of urinary tract infections in adult patients. Clin. Infect. Dis. 38(8), 1150–1158 (2004). https://doi.org/10.1086/383029
Article
Google Scholar
U. Jodal, U. Lindberg, K. Lincoln, Level diagnosis of symptomatic urinary tract infections in childhood. Acta Paediatr. 64(2), 201–208 (2008). https://doi.org/10.1111/j.1651-2227.1975.tb03822.x
Article
Google Scholar
S.P. Johnston, M.M. Ballard, M.J. Beach, L. Causer, P.P. Wilkins, Evaluation of three commercial assays for detection of Giardia and Cryptosporidium organisms in fecal specimens. J. Clin. Microbiol. 41(2), 623–626 (2003). https://doi.org/10.1128/JCM.41.2.623-626.2003
Article
Google Scholar
A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W.E. Moerner, Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 3(11), 654–657 (2009). https://doi.org/10.1038/nphoton.2009.187
Article
CAS
Google Scholar
H. Jin, D.A. Heller, M. Kalbacova, J.H. Kim, J. Zhang, A.A. Boghossian, N. Maheshri, M.S. Strano, Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 5, 302–309 (2010). https://doi.org/10.1038/nnano.2010.24
Article
CAS
Google Scholar
L.P. McGuinness, Y. Yan, A. Stacey, D.A. Simpson, L.T. Hall, D. Maclaurin, S. Prawer, P. Mulvaney, J. Wrachtrup, F. Caruso, R.E. Scholten, L.C.L. Hollenberg, Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotechnol. 6(6), 358–363 (2011). https://doi.org/10.1038/nnano.2011.64
Article
CAS
Google Scholar
S. Tabassum, W.M. Al-Asbahy, M. Afzal, F. Arjmand, R.H. Khan, Interaction and photo-induced cleavage studies of a copper based chemotherapeutic drug with human serum albumin: spectroscopic and molecular docking study. Mol. BioSyst. 8(9), 2424–2433 (2012). https://doi.org/10.1039/C2MB25119A
Article
CAS
Google Scholar
Z. Li, Y. Wang, J. Wang, Z. Tang, J.G. Pounds, Y. Lin, Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal. Chem. 82(16), 7008–7014 (2010). https://doi.org/10.1021/ac101405a
Article
CAS
Google Scholar
J.A. Hansen, J. Wang, A.N. Kawde, Y. Xiang, K.V. Gothelf, G. Collins, Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J. Am. Chem. Soc. 128(7), 2228–2229 (2006). https://doi.org/10.1021/ja060005h
Article
CAS
Google Scholar
A. Zajac, D. Song, W. Qian, T. Zhukov, Protein microarrays and quantum dot probes for early cancer detection. Colloids Surf. B 58(2), 309–314 (2007). https://doi.org/10.1016/j.colsurfb.2007.02.019
Article
CAS
Google Scholar
M. Zhuang, C. Ding, A. Zhu, Y. Tian, Ratiometric fluorescence probe for monitoring hydroxyl radical in live cells based on gold nanoclusters. Anal. Chem. 86(3), 1829–1836 (2014). https://doi.org/10.1021/ac403810g
Article
CAS
Google Scholar
Y. Wang, L. Ge, P. Wang, M. Yan, S. Ge, N. Li, J. Yu, J. Huang, Photoelectrochemical lab-on-paper device equipped with a porous Au-paper electrode and fluidic delay-switch for sensitive detection of DNA hybridization. Lab Chip 13(19), 3945–3955 (2013). https://doi.org/10.1039/C3LC50430A
Article
CAS
Google Scholar
R.R. Anjana, J.S.A. Devi, M. Jayasree, R.S. Aparna, B. Aswathy, G.L. Praveen, G.M. Lekha, G. Sony, S, N-doped carbon dots as a fluorescent probe for bilirubin. Microchim. Acta 185, 11 (2018). https://doi.org/10.1007/s00604-017-2574-8
Article
CAS
Google Scholar
M. Ferrari, Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5(3), 161–171 (2005). https://doi.org/10.1038/nrc1566
Article
CAS
Google Scholar
M. Wu, Q. Lai, Q. Ju, L. Li, H.D. Yu, W. Huang, Paper-based fluorogenic devices for in vitro diagnostics. Biosens. Bioelectron. 102, 256–266 (2018). https://doi.org/10.1016/j.bios.2017.11.006
Article
CAS
Google Scholar
S. Fiorito, A. Serafino, F. Andreola, A. Togna, G. Togna, Toxicity and biocompatibility of carbon nanoparticles. J. Nanosci. Nanotechnol. 6(3), 591–599 (2006). https://doi.org/10.1166/jnn.2006.125
Article
CAS
Google Scholar
S. Murugesan, T.J. Park, H. Yang, S. Mousa, R.J. Linhardt, Blood compatible carbon nanotubes—nano-based neoproteoglycans. Langmuir 22(8), 3461–3463 (2006). https://doi.org/10.1021/la0534468
Article
CAS
Google Scholar
R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R.R. Bhonde, M. Sastry, Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21(3), 10644–10654 (2005). https://doi.org/10.1021/la0513712
Article
CAS
Google Scholar
X. Hu, X. Gao, Multilayer coating of gold nanorods for combined stability and biocompatibility. Phys. Chem. Chem. Phys. 13(21), 10028–10035 (2011). https://doi.org/10.1039/C0CP02434A
Article
CAS
Google Scholar
A.W. Martinez, S.T. Phillips, E. Carrilho, S.W. Thomas, H. Sindi, G.M. Whitesides, Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal. Chem. 80(10), 3699–3707 (2008). https://doi.org/10.1021/ac800112r
Article
CAS
Google Scholar
A.K. Yetisen, J.L. Martinez-Hurtado, A. Garcia-Melendrez, F. da Cruz Vasconcellos, C.R. Lowe, A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sens. Actuators B-Chem. 196, 156–160 (2014). https://doi.org/10.1016/j.snb.2014.01.077
Article
CAS
Google Scholar
X. Xu, A. Akay, H. Wei, S. Wang, B. Pingguan-Murphy, B.E. Erlandsson, X. Li, W. Lee, J. Hu, L. Wang, F. Xu, Advances in smartphone-based point-of-care diagnostics. Proc. IEEE 103(2), 236–247 (2015). https://doi.org/10.1109/JPROC.2014.2378776
Article
CAS
Google Scholar
K.E. McCracken, J.Y. Yoon, Recent approaches for optical smartphone sensing in resource-limited settings: a brief review. Anal. Meth. 8(36), 6591–6601 (2016). https://doi.org/10.1039/C6AY01575A
Article
Google Scholar
S.K. Vashist, O. Mudanyali, E.M. Schneider, R. Zengerle, A. Ozcan, Cellphone-based devices for bioanalytical sciences. Anal. Bioanal. Chem. 406(14), 3263–3277 (2014). https://doi.org/10.1007/s00216-013-7473-1
Article
CAS
Google Scholar
D. Paliy, A. Foi, R. Bilcu, V. Katkovnik, Denoising and interpolation of noisy Bayer data with adaptive cross-color filters. Proc. SPIE 6822, 68221K (2008). https://doi.org/10.1117/12.766217
Article
Google Scholar
X. Jin, Z. Liu, J. Chen, CMOS vision sensor with fully digital image process integrated into low power 1/8-inch chip. Chin. Opt. Lett. 8(3), 282–285 (2010). https://doi.org/10.3788/COL20100803.0
Article
CAS
Google Scholar
R. Fontaine, A survey of enabling technologies in successful consumer digital imaging products. In: Proceedings of the international image sensors workshop, Hiroshima, Japan, 30 May—2 June 2017 (2017)
S.J. Qin, B. Yan, The point-of-care colorimetric detection of the biomarker of phenylamine in the human urine based on Tb3+ functionalized metal-organic framework. Anal. Chim. Acta 1012, 82–89 (2018). https://doi.org/10.1016/j.aca.2018.01.041
Article
CAS
Google Scholar
H. Xu, K. Zhang, Q. Liu, Y. Liu, M. Xie, Visual and fluorescent detection of mercury ions by using a dually emissive ratiometric nanohybrid containing carbon dots and CdTe quantum dots. Microchim. Acta 184(4), 1199–1206 (2017). https://doi.org/10.1007/s00604-017-2099-1
Article
CAS
Google Scholar
X. Wang, S. Wang, K. Huang, Z. Liu, Y. Gao, W. Zeng, A ratiometric upconversion nanosensor for visualized point-of-care assay of organophosphonate nerve agent. Sens. Actuators B-Chem. 241, 1188–1193 (2017). https://doi.org/10.1016/j.snb.2016.10.015
Article
CAS
Google Scholar
P. Das, U.J. Krull, Detection of a cancer biomarker protein on modified cellulose paper by fluorescence using aptamer-linked quantum dots. Analyst 142(17), 3132–3135 (2017). https://doi.org/10.1039/c7an00624a
Article
CAS
Google Scholar
X. Weng, S. Neethirajan, Aptamer-based fluorometric determination of norovirus using a paper-based microfluidic device. Microchim. Acta 184(11), 4545–4552 (2017). https://doi.org/10.1007/s00604-017-2467-x
Article
CAS
Google Scholar
B. Li, X. Zhou, H. Liu, H. Deng, R. Huang, D. Xing, Simultaneous detection of antibiotic resistance genes on paper-based chip using [Ru(phen)2d ppz]2+ turn-on fluorescence probe. ACS Appl. Mater. Interfaces. 10(5), 4494–4501 (2018). https://doi.org/10.1021/acsami.7b17653
Article
CAS
Google Scholar
Y. Seok, H.A. Joung, J.Y. Byun, H.S. Jeon, S.J. Shin, S. Kim, Y.B. Shin, H.S. Han, M.G. Kim, A paper-based device for performing loop-mediated isothermal amplification with real-time simultaneous detection of multiple DNA targets. Theranostics 7(8), 2220–2230 (2017). https://doi.org/10.7150/thno.18675
Article
Google Scholar
K. Salama, H. Eltoukhy, A. Hassibi, A.E. Gamal, Modeling and simulation of luminescence detection platforms. Biosens. Bioelectron. 19(11), 1377–1386 (2004). https://doi.org/10.1016/j.bios.2003.12.031
Article
CAS
Google Scholar
X.F. Li, Q.H. Wang, D.H. Li, A.H. Wang, Image processing to eliminate crosstalk between neighboring view images in three-dimensional lenticular display. J. Disp. Technol. 7(8), 443–447 (2011). https://doi.org/10.1109/JDT.2011.2142174
Article
Google Scholar
L. Shen, J.A. Hagen, I. Papautsky, Point-of-care colorimetric detection with a smartphone. Lab Chip 12(21), 4240–4243 (2012). https://doi.org/10.1039/C2LC40741H
Article
CAS
Google Scholar
K.E. McCracken, S.V. Angus, K.A. Reynolds, J.Y. Yoon, Multimodal imaging and lighting bias correction for improved μPAD-based water quality monitoring via smartphones. Sci. Rep. 6, 27529 (2016). https://doi.org/10.1038/srep27529
Article
CAS
Google Scholar
R.B. Sekar, A. Periasamy, Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol. 160(5), 629–633 (2003). https://doi.org/10.1083/jcb.200210140
Article
CAS
Google Scholar
B.A. Pollok, R. Heim, Using GFP in FRET-based applications. Trends Cell Biol. 9(2), 57–60 (1999). https://doi.org/10.1016/S0962-8924(98)01434-2
Article
CAS
Google Scholar
E.A. Jares-Erijman, T.M. Jovin, FRET imaging. Nat. Biotechnol. 21(11), 1387–1395 (2003). https://doi.org/10.1038/nbt896
Article
CAS
Google Scholar
M.O. Noor, U.J. Krull, Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors. Anal. Chem. 86(20), 10331–10339 (2014). https://doi.org/10.1021/ac502677n
Article
CAS
Google Scholar
S.A. Díaz, L. Giordano, T.M. Jovin, E.A. Jares-Erijman, Modulation of a photoswitchable dual-color quantum dot containing a photochromic FRET acceptor and an internal standard. Nano Lett. 12(7), 3537–3544 (2012). https://doi.org/10.1021/nl301093s
Article
CAS
Google Scholar
Q.X. Wang, S.F. Xue, Z.H. Chen, S.H. Ma, S. Zhang, G. Shi, M. Zhang, Dual lanthanide-doped complexes: the development of a time-resolved ratiometric fluorescent probe for anthrax biomarker and a paper-based visual sensor. Biosens. Bioelectron. 94, 388–393 (2017). https://doi.org/10.1016/j.bios.2017.03.027
Article
CAS
Google Scholar
C.M. Tyrakowski, P.T. Snee, Ratiometric CdSe/ZnS quantum dot protein sensor. Anal. Chem. 86(5), 2380–2386 (2014). https://doi.org/10.1021/ac4040357
Article
CAS
Google Scholar
K. Wang, J. Qian, D. Jiang, Z. Yang, X. Du, K. Wang, Onsite naked eye determination of cysteine and homocysteine using quencher displacement-induced fluorescence recovery of the dual-emission hybrid probes with desired intensity ratio. Biosens. Bioelectron. 65, 83–90 (2015). https://doi.org/10.1016/j.bios.2014.09.093
Article
CAS
Google Scholar
W.R. Algar, M. Massey, U.J. Krull, The application of quantum dots, gold nanoparticles and molecular switches to optical nucleic-acid diagnostics. Trends Anal. Chem. 28(3), 292–306 (2009). https://doi.org/10.1016/j.trac.2008.11.012
Article
CAS
Google Scholar
X. Yu, L. Yang, T. Zhao, R. Zhang, L. Yang, C. Jiang, J. Zhao, B. Liu, Z. Zhang, Multicolorful ratiometric-fluorescent test paper for determination of fluoride ions in environmental water. RSC Adv. 7(84), 53379–53384 (2017). https://doi.org/10.1039/C7RA09972J
Article
CAS
Google Scholar
M. Dou, D.C. Dominguez, X. Li, J. Sanchez, G. Scott, A versatile PDMS/paper hybrid microfluidic platform for sensitive infectious disease diagnosis. Anal. Chem. 86(15), 7978–7986 (2014). https://doi.org/10.1021/ac5021694
Article
CAS
Google Scholar
M.G. Caglayan, S. Sheykhi, L. Mosca, P. Anzenbacher, Fluorescent zinc and copper complexes for detection of adrafinil in paper-based microfluidic devices. Chem. Commun. 52(53), 8279–8282 (2016). https://doi.org/10.1039/C6CC03640F
Article
CAS
Google Scholar
S.J. Yeo, K. Choi, B.T. Cuc, N.N. Hong, D.T. Bao, N.M. Ngoc, M.Q. Le, N.L.K. Hang, N.C. Thach, S.K. Mallik, H.S. Kim, C.K. Chong, H.S. Choi, H.W. Sung, K. Yu, H. Park, Smartphone-based fluorescent diagnostic system for highly pathogenic H5N1 viruses. Theranostics 6(2), 231–242 (2016). https://doi.org/10.7150/thno.14023
Article
CAS
Google Scholar
H.C. Koydemir, Z. Gorocs, D. Tseng, B. Cortazar, S. Feng, R.Y.L. Chan, J. Burbano, E. McLeod, A. Ozcan, Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning. Lab Chip 15(5), 1284–1293 (2015). https://doi.org/10.1039/C4LC01358A
Article
CAS
Google Scholar
A. Hossain, J. Canning, S. Ast, P.J. Rutledge, T.L. Yen, A. Jamalipour, Lab-in-a-phone: smartphone-based portable fluorometer for pH measurements of environmental water. IEEE Sens. J. 15(9), 5095–5102 (2015). https://doi.org/10.1109/JSEN.2014.2361651
Article
CAS
Google Scholar
Y. Koo, J. Sankar, Y. Yun, High performance magnesium anode in paper-based microfluidic battery, powering on-chip fluorescence assay. Biomicrofluidics 8(5), 054104 (2014). https://doi.org/10.1063/1.4894784
Article
CAS
Google Scholar
N.K. Thom, K. Yeung, M.B. Pillion, S.T. Phillips, “Fluidic batteries” as low-cost sources of power in paper-based microfluidic devices. Lab Chip 12(10), 1768–1770 (2012). https://doi.org/10.1039/C2LC40126F
Article
CAS
Google Scholar
N.K. Thom, G.G. Lewis, K. Yeung, S.T. Phillips, Quantitative fluorescence assays using a self-powered paper-based microfluidic device and a camera-equipped cellular phone. RSC Adv. 4(3), 1334–1340 (2014). https://doi.org/10.1039/C3RA44717K
Article
CAS
Google Scholar
K.E. McCracken, T. Tat, V. Paz, J.Y. Yoon, Smartphone-based fluorescence detection of bisphenol A from water samples. RSC Adv. 7(15), 9237–9243 (2017). https://doi.org/10.1039/C6RA27726H
Article
CAS
Google Scholar
K.D. Long, E.V. Woodburn, H.M. Le, U.K. Shah, S.S. Lumetta, B.T. Cunningham, Multimode smartphone biosensing: the transmission, reflection, and intensity spectral (TRI)-analyzer. Lab Chip 17(19), 3246–3257 (2017). https://doi.org/10.1039/c7lc00633k
Article
CAS
Google Scholar
E. Petryayeva, W.R. Algar, A job for quantum dots: use of a smartphone and 3D-printed accessory for all-in-one excitation and imaging of photoluminescence. Anal. Bioanal. Chem. 408(11), 2913–2925 (2016). https://doi.org/10.1007/s00216-015-9300-3
Article
CAS
Google Scholar
M.A. Hossain, J. Canning, S. Ast, K. Cook, P.J. Rutledge, A. Jamalipour, Combined “dual” absorption and fluorescence smartphone spectrometers. Opt. Lett. 40(8), 1737–1740 (2015). https://doi.org/10.1364/OL.40.001737
Article
CAS
Google Scholar
J. Canning, A. Lau, M. Naqshbandi, I. Petermann, M.J. Crossley, Measurement of fluorescence in a rhodamine-123 doped self-assembled “giant” mesostructured silica sphere using a smartphone as optical hardware. Sensors 11(7), 7055–7062 (2011). https://doi.org/10.3390/s110707055
Article
CAS
Google Scholar
Y. Dattner, O. Yadid-Pecht, Low light CMOS contact imager with an integrated poly-acrylic emission filter for fluorescence detection. Sensors 10(5), 5014–5027 (2010). https://doi.org/10.3390/s100505014
Article
CAS
Google Scholar
C. Richard, A. Renaudin, V. Aimez, P.G. Charette, An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices. Lab Chip 9(10), 1371–1376 (2009). https://doi.org/10.1039/B819080A
Article
CAS
Google Scholar
M.L. Adams, M. Enzelberger, S. Quake, A. Scherer, Microfluidic integration on detector arrays for absorption and fluorescence micro-spectrometers. Sens. Actuators A-Phys. 104, 25–31 (2003). https://doi.org/10.1016/S0924-4247(02)00477-6
Article
CAS
Google Scholar
O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D.D.C. Bradley, A.J. de Mello, J.C. de Mello, Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection. Lab Chip 6(8), 981–987 (2006). https://doi.org/10.1039/B603678C
Article
CAS
Google Scholar
M. Beiderman, T. Tam, A. Fish, G.A. Jullien, O. Yadid-Pecht, A low-light CMOS contact imager with an emission filter for biosensing applications. IEEE Trans. Biomed. Circuits Syst. 2(3), 193–203 (2008). https://doi.org/10.1109/TBCAS.2008.2001866
Article
CAS
Google Scholar
S. Pang, C. Han, L.M. Lee, C. Yang, Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope. Lab Chip 11(21), 3698–3702 (2011). https://doi.org/10.1039/C1LC20654K
Article
CAS
Google Scholar
S.A. Lee, X. Ou, J.E. Lee, C. Yang, Chip-scale fluorescence microscope based on a silo-filter complementary metal-oxide semiconductor image sensor. Opt. Lett. 38(11), 1817–1819 (2013). https://doi.org/10.1364/OL.38.001817
Article
CAS
Google Scholar
Y.J. Hung II, C.C.Davis Smolyaninov, H.C. Wu, Fluorescence enhancement by surface gratings. Opt. Express 14(22), 10825–10830 (2006). https://doi.org/10.1364/OE.14.010825
Article
CAS
Google Scholar
D. Gallegos, K.D. Long, H. Yu, P.P. Clark, Y. Lin, S. George, P. Nath, B.T. Cunningham, Label-free biodetection using a smartphone. Lab Chip 13(11), 2124–2132 (2013). https://doi.org/10.1039/C3LC40991K
Article
CAS
Google Scholar
S. Ricciardi, F. Frascella, A. Angelini, A. Lamberti, P. Munzert, L. Boarino, R. Rizzo, A. Tommasi, E. Descrovi, Optofluidic chip for surface wave-based fluorescence sensing. Sens. Actuators B Chem. 215, 225–230 (2015). https://doi.org/10.1016/j.snb.2015.03.063
Article
CAS
Google Scholar
B.R. Schudel, C.J. Choi, B.T. Cunningham, P.J.A. Kenis, Microfluidic chip for combinatorial mixing and screening of assays. Lab Chip 9(12), 1676–1680 (2009). https://doi.org/10.1039/B901999E
Article
CAS
Google Scholar
T.L. Danielson, G.D. Rayson, D.M. Anderson, R. Estell, E.L. Fredrickson, B.S. Green, Impact of filter paper on fluorescence measurements of buffered saline filtrates. Talanta 59(3), 601–604 (2003). https://doi.org/10.1016/S0039-9140(02)00575-1
Article
CAS
Google Scholar
N. Guo, K.W. Cheung, H.T. Wong, D. Ho, CMOS time-resolved, contact, and multispectral fluorescence imaging for DNA molecular diagnostics. Sensors 14(11), 20602–20619 (2014). https://doi.org/10.3390/s141120602
Article
CAS
Google Scholar
S. Bouccara, A. Fragola, E. Giovanelli, G. Sitbon, N. Lequeux, T. Pons, V. Loriette, Time-gated cell imaging using long lifetime near-infrared-emitting quantum dots for autofluorescence rejection. J. Biomed. Opt. 19(5), 051208 (2014). https://doi.org/10.1117/1.JBO.19.5.051208
Article
CAS
Google Scholar
Q. Ju, Y. Liu, D. Tu, H. Zhu, R. Li, X. Chen, Lanthanide-doped multicolor GdF3 nanocrystals for time-resolved photoluminescent biodetection. Chem. Eur. J. 17(31), 8549–8554 (2011). https://doi.org/10.1002/chem.201101170
Article
CAS
Google Scholar
H. Kim, E. Petryayeva, W.R. Algar, Enhancement of quantum dot Forster resonance energy transfer within paper matrices and application to proteolytic assays. IEEE J. Sel. Top. Quantum Electron. 20(3), 141–151 (2014). https://doi.org/10.1109/JSTQE.2013.2280498
Article
CAS
Google Scholar
A.S. Paterson, B. Raja, V. Mandadi, B. Townsend, M. Lee, A. Buell, B. Vu, J. Brgoch, R.C. Willson, A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors. Lab Chip 17(6), 1051–1059 (2017). https://doi.org/10.1039/c6lc01167e
Article
CAS
Google Scholar
K.G. Shah, P. Yager, Wavelengths and lifetimes of paper autofluorescence: a simple substrate screening process to enhance the sensitivity of fluorescence-based assays in paper. Anal. Chem. 89(22), 12023–12029 (2017). https://doi.org/10.1021/acs.analchem.7b02424
Article
CAS
Google Scholar
F. Zhou, M.O. Noor, U.J. Krull, Luminescence resonance energy transfer-based nucleic acid hybridization assay on cellulose paper with upconverting phosphor as donors. Anal. Chem. 86(5), 2719–2726 (2014). https://doi.org/10.1021/ac404129t
Article
CAS
Google Scholar
C.R. Ispas, G. Crivat, S. Andreescu, Review: recent developments in enzyme-based biosensors for biomedical analysis. Anal. Lett. 45(2), 168–186 (2012). https://doi.org/10.1080/00032719.2011.633188
Article
CAS
Google Scholar
M. He, Z. Liu, Paper-based microfluidic device with upconversion fluorescence assay. Anal. Chem. 85(24), 11691–11694 (2013). https://doi.org/10.1021/ac403693g
Article
CAS
Google Scholar
L. Wang, R. Yan, Z. Huo, L. Wang, J. Zeng, J. Bao, X. Wang, Q. Peng, Y. Li, Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed. 44(37), 6054–6057 (2005). https://doi.org/10.1002/anie.200501907
Article
CAS
Google Scholar
W.W. Yu, I.M. White, Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 138(4), 1020–1025 (2013). https://doi.org/10.1039/C2AN36116G
Article
CAS
Google Scholar
J. Qiang, U. Uvaraj, K. Ulrich, Paper-based DNA detection using lanthanide-doped LiYF4 upconversion nanocrystals as bioprobe. Small 10(19), 3912–3917 (2014). https://doi.org/10.1002/smll.201400683
Article
CAS
Google Scholar
S. Doughan, U. Uddayasankar, U.J. Krull, A paper-based resonance energy transfer nucleic acid hybridization assay using upconversion nanoparticles as donors and quantum dots as acceptors. Anal. Chim. Acta 878, 1–8 (2015). https://doi.org/10.1016/j.aca.2015.04.036
Article
CAS
Google Scholar
J.P. Golden, F.S. Ligler, A comparison of imaging methods for use in an array biosensor. Biosens. Bioelectron. 17(9), 719–725 (2002). https://doi.org/10.1016/S0956-5663(02)00060-X
Article
CAS
Google Scholar
B. Jang, P. Cao, A. Chevalier, A. Ellington, A. Hassibi, A CMOS fluorescent-based biosensor microarray. in 2009 IEEE international solid-state circuits conference (2009), pp. 436–437. https://doi.org/10.1109/isscc.2009.4977495
G. Giraud, H. Schulze, D.U. Li, T.T. Bachmann, J. Crain, D. Tyndall, J. Richardson, R. Walker, D. Stoppa, E. Charbon, R. Henderson, J. Arlt, Fluorescence lifetime biosensing with DNA microarrays and a CMOS-SPAD imager. Biomed. Opt. Express 1(5), 1302–1308 (2010). https://doi.org/10.1364/BOE.1.001302
Article
CAS
Google Scholar
A.E. Cetin, A.F. Coskun, B.C. Galarreta, M. Huang, D. Herman, A. Ozcan, H. Altug, Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light Sci. Appl. 3, e122 (2014). https://doi.org/10.1038/lsa.2014.3
Article
CAS
Google Scholar
M.W. Seo, K. Kagawa, K. Yasutomi, Y. Kawata, N. Teranishi, Z. Li, I.A. Halin, S. Kawahito, A 10 ps time-resolution CMOS image sensor with two-tap true-CDS lock-in pixels for fluorescence lifetime imaging. IEEE J. Solid-State Circuits 51, 141–154 (2016). https://doi.org/10.1109/JSSC.2015.2496788
Article
Google Scholar
H. Takehara, O. Kazutaka, M. Haruta, T. Noda, K. Sasagawa, T. Tokuda, J. Ohta, On-chip cell analysis platform: implementation of contact fluorescence microscopy in microfluidic chips. AIP Adv. 7(9), 095213 (2017). https://doi.org/10.1063/1.4986872
Article
CAS
Google Scholar
W. Li, T. Knoll, A. Sossalla, H. Bueth, H. Thielecke, On-chip integrated lensless fluorescence microscopy/spectroscopy module for cell-based sensors. Proc. SPIE 7894, 78940Q (2011). https://doi.org/10.1117/12.875417
Article
CAS
Google Scholar
S.V. Kesavan, C.P. Allier, F. Navarro, F. Mittler, B. Chalmond, J.M. Dinten, Lensless imaging system to quantify cell proliferation. Proc. SPIE 8587, 858708 (2013). https://doi.org/10.1117/12.2001826
Article
Google Scholar
G. Zheng, S.A. Lee, Y. Antebi, M.B. Elowitz, C. Yang, The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM). Proc. Natl. Acad. Sci. USA 108(41), 16889–16894 (2011). https://doi.org/10.1073/pnas.1110681108
Article
CAS
Google Scholar
A. Jain, O. Taghavian, D. Vallejo, E. Dotsey, D. Schwartz, F.G. Bell, C. Greef, D.H. Davies, J. Grudzien, A.P. Lee, P. Felgner, L. Liang, Evaluation of quantum dot immunofluorescence and a digital CMOS imaging system as an alternative to conventional organic fluorescence dyes and laser scanning for quantifying protein microarrays. J. Proteom. 16(8), 1271–1279 (2016). https://doi.org/10.1002/pmic.201500375
Article
CAS
Google Scholar