V.L. Pecoraro, M.J. Baldwin, A. Gelasco, Interaction of manganese with dioxygen and its reduced derivatives. Chem. Rev. 94, 807–826 (1994)
Article
CAS
Google Scholar
R. Manchanda, G.W. Brudvig, R.H. Crabtreee, High-valentoxomanganese clusters: structural and mechanistic work relevant to the oxygen-evolving center in photosystem II. Coord. Chem. Rev. 144, 1–38 (1995)
Article
CAS
Google Scholar
G.C. Dismukes, Manganese enzymes with binuclear active sites. Chem. Rev. 96, 2909–2926 (1996)
Article
CAS
Google Scholar
C.F. Yocum, V.L. Pecoraro, Recent advances in the understanding of the biological chemistry of manganese. Curr. Opin. Chem. Biol. 3, 182–187 (1999)
Article
CAS
Google Scholar
W. Zhu, N.G.J. Richards, Biological functions controlled by manganese redox changes in mononuclear Mn-dependent enzyme. Essays Biochem. 61, 259–270 (2017)
Article
Google Scholar
D.F. Leto, T.A. Jackson, Peroxomanganese complexes as an aid to understanding redox-active manganese enzymes. J. Biol. Inorg. Chem. 19, 1–15 (2014)
Article
CAS
Google Scholar
V.K. Yachandra, S.K. Klein, Manganese cluster in photosynthesis: where plants oxidize water to dioxygen. Chem. Rev. 96, 2927–2950 (1996)
Article
CAS
Google Scholar
J.P. McEvoy, G.W. Brudvig, Water-splitting chemistry of photosystem II. Chem. Rev. 106, 4455–4483 (2006)
Article
CAS
Google Scholar
N. Cox, J. Messinger, Reflections on substrate water and dioxygen formation. Biochim. Biophys. Acta 1827, 1020–1030 (2013)
Article
CAS
Google Scholar
N. Cox, D.A. Pantazis, F. Neese, W. Lubitz, Biological water oxidation. Acc. Chem. Res. 46, 1588–1596 (2013)
Article
CAS
Google Scholar
J. Yano, V. Yachandra, Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem. Rev. 114, 4175–4205 (2014)
Article
CAS
Google Scholar
J.R. Shen, The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu. Rev. Plant Biol. 66, 23–48 (2015)
Article
CAS
Google Scholar
M. Perez-Navarro, N.F. Lubitz, D.A. Pantazis, N. Cox, Recent developments in biological water oxidation. Curr. Opin. Chem. Biol. 31, 113–119 (2016)
Article
CAS
Google Scholar
D.J. Vinyard, Brudvig progress toward a molecular mechanism of water oxidation in photosystem II. Annu. Rev. Phys. Chem. 68, 101–116 (2017)
Article
CAS
Google Scholar
A. Jordan, P. Reichard, Ribonucleotide reductases. Annu. Rev. Biochem. 67, 71–98 (1998)
Article
CAS
Google Scholar
A. Willing, H. Follmann, G. Auling, Ribonucleotide reductase of brevibacterium-ammoniagenes is a manganese enzyme. Eur. J. Biochem. 170, 603–611 (1996)
Article
Google Scholar
Y. Huque, F. Fieschi, E. Torrents, I. Gibert, R. Eliasson, The active form of the R2F protein of class Ib ribonucleotide reductase from Corynebacterium ammoniagenes is a diferric protein. J. Biol. Chem. 275, 25365–25371 (2000)
Article
CAS
Google Scholar
P. Nordlund, P. Reichard, Ribonucleotide reductases. Annu. Rev. Biochem. 75, 681–706 (2006)
Article
CAS
Google Scholar
W. Jiang, L.M. Hoffart, C. Krebs, J.M. Bollinger, Amanganese(IV)/iron(IV) intermediate in assembly of the manganese(IV)/iron(III) cofactor of Chlamydia trachomatis ribonucleotide reductase. Biochemistry 46, 8709–8716 (2007)
Article
CAS
Google Scholar
W. Jiang, D. Yun, L. Saleh, E.W. Barr, G. Xing, L.M. Hoffart, M.A. Maslak, C. Krebs, J.M. Bollinger, A manganese(IV)/iron(III) cofactor in chlamydia trachomatis ribonucleotide reductase. Science 316, 1188–1191 (2007)
Article
CAS
Google Scholar
W. Jiang, J.M. Bollinger, C. Krebs, The active form of chlamydia trachomatis ribonucleotide reductase R2 protein contains a heterodinuclear Mn(IV)/Fe(III) cluster with S = 1 ground state. J. Am. Chem. Soc. 129, 7504–7505 (2007)
Article
CAS
Google Scholar
N. Voevodskaya, F. Lendzian, A. Ehrenberg, A. Graslund, A High catalytic activity achieved with a mixed manganese-iron site in protein R2 of Chlamydia ribonucleotide reductase. FEBS Lett. 581, 3351–3355 (2007)
Article
CAS
Google Scholar
A.K. Boal, J.A. Cotruvo, J. Stubbe, A.C. Rosenzweig, Structural basis for activation of class Ib ribonucleotide reductase. Science 329, 1526–1530 (2010)
Article
CAS
Google Scholar
J.A. Cotruvo, J. Stubbe, An active dimanganese(III)-tyrosyl radical cofactor in Escherichia coli class Ib ribonucleotide reductase. Biochemistry 49, 1297–1309 (2010)
Article
CAS
Google Scholar
N. Cox, H. Ogata, P. Stolle, E. Reijerse, G. Auling, A tyrosyl dimanganese coupled spin system is the native metalloradical cofactor of the R2F subunit of the ribonucleotide reductase of Corynebacterium ammoniagenes. J. Am. Chem. Soc. 132, 11197–11213 (2010)
Article
CAS
Google Scholar
Y. Zhang, J. Stubbe, Bacillus subtilis class Ib ribonucleotide reductase is a dimanganese(III)-tyrosyl radical enzyme. Biochemistry 50, 5615–5623 (2011)
Article
CAS
Google Scholar
A.B. Tomter, G. Zoppellaro, C.B. Bell, A.L. Barra, N.H. Andersen, Spectroscopic studies of the iron and manganese reconstituted tyrosyl radical in Bacillus Cereus ribonucleotide reductase R2 protein. PLoS ONE 7, e33436 (2012)
Article
CAS
Google Scholar
O. Makhlynets, A.K. Boal, D.V. Rhodes, T. Kitten, A.C. Rosenzweig, J. Stubbe, Streptococcus sanguinis class Ib ribonucleotide reductase high activity with both iron and manganese cofactors and structural insights. J. Biol. Chem. 289, 6259–6272 (2014)
Article
CAS
Google Scholar
A. Zouni, H.T. Witt, J. Kern, P. Fromme, N. Krauss, W. Saenger, P. Orth, Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409, 739–743 (2001)
Article
CAS
Google Scholar
K.N. Ferreira, T.M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838 (2004)
Article
CAS
Google Scholar
B. Loll, J. Kern, W. Saenger, A. Zouni, J. Biesiadka, Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438, 1040–1044 (2005)
Article
CAS
Google Scholar
A. Guskov, J. Kern, A. Gabdulkhakov, M. Broser, A. Zouni, W. Saenger, Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nat. Struct. Mol. Biol. 16, 334–342 (2009)
Article
CAS
Google Scholar
K. Kawakami, Y. Umena, N. Kamiya, J.R. Shen, Location of chloride and its possible functions in oxygen-evolving photosystem II revealed by X-ray crystallography. Proc. Natl. Acad. Sci. USA 106, 8567–8572 (2009)
Article
Google Scholar
Y. Umena, K. Kawakami, J.R. Shen, N. Kamiya, Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011)
Article
CAS
Google Scholar
N. Cox, M. Retegan, F. Neese, D.A. Pantazis, A. Boussac, W. Lubit, Electronic structure of the oxygen-evolving complex in photosystem II prior to O–O bond formation. Science 345, 804–808 (2004)
Article
CAS
Google Scholar
M. Suga, F. Akita, K. Hirata, G. Ueno, H. Murakami, Y. Nakajima, T. Shimizu, K. Yamashita, M. Yamamoto, H. Ago, J.R. Shen, Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517, 99–103 (2015)
Article
CAS
Google Scholar
B. Kok, B. Forbush, M. McGloin, Cooperation of charges in photosynthetic O2 evolution. I. A linear four step mechanism. Photochem. Photobiol. 11, 457–475 (1970)
Article
CAS
Google Scholar
D.J. Vinyard, G.M. Ananyev, G.C. Dismukes, Photosystem II: the reaction center of oxygenic photosynthesis. Annu. Rev. Biochem. 82, 577–606 (2013)
Article
CAS
Google Scholar
J. Yano, J. Kern, K.D. Irrgang, M.J. Latimer, U. Bergmann, X-ray damage to the Mn4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography. Proc. Natl. Acad. Sci. 102, 12047–12052 (2005)
Article
CAS
Google Scholar
K.A. Åhrling, S. Peterson, S. Styring, An oscillating manganese electron paramagnetic resonance signal from the S0 state of the oxygen evolving complex in photosystem II. Biochemistry 36, 13148–13152 (1997)
Article
Google Scholar
J. Messinge, J.H.A. Nugent, M.C.W. Evans, Detection of an EPR multiline signal for the S0 state in photosystem II. Biochemistry 36, 11055–11060 (1997)
Article
Google Scholar
J. Messinger, J.H. Robblee, W.O. Yu, K. Sauer, V.K. Yachandra, M.P. Klein, The S0 state of the oxygen evolving complex in photosystem II is paramagnetic detection of an EPR multiline signal. J. Am. Chem. Soc. 119, 11349–11350 (1997)
Article
CAS
Google Scholar
D. Koulougliotis, D.J. Hirsh, G.W. Brudvig, The oxygen-evolving center of photosystem II is diamagnetic in the S1 resting state. J. Am. Chem. Soc. 114, 8322–8323 (1992)
Article
CAS
Google Scholar
E. Schlodder, H.T. Witt, Stoichiometry of proton release from the catalytic center in photosynthetic water oxidation: reexamination by a glass electrode study at pH 5.5–7.2. J. Biol. Chem. 274, 30387–30392 (1999)
Article
CAS
Google Scholar
D.A. Pantazis, W. Ames, N. Cox, W. Lubitz, F. Neese, Two interconvertible structures that explain the spectroscopic properties of the oxygen-evolving complex of photosystem II in the S2 state. Angew. Chem. Int. Ed. 51, 9935–9940 (2012)
Article
CAS
Google Scholar
J.L. Zimmermann, A.W. Rutherford, Electron paramagnetic resonance properties of the S2 state of the oxygen-evolving complex of photosystem II. Biochemistry 25, 4609–4615 (1986)
Article
CAS
Google Scholar
A.V. Astashkin, Y. Kodera, A. Kawamori, Pulsed EPR study of manganese g = 4.1 signal in plant photosystem II. J. Magn. Reson. Ser. B 105, 113–119 (1994)
Article
CAS
Google Scholar
A. Haddy, K.V. Lakshmi, G.W. Brudvig, H.A. Frank, Q-band EPR of the S2 state of photosystem II confirms an S = 5/2 origin of the X-band g = 4.1 signal. Biophys. J. 87, 2885–2896 (2004)
Article
CAS
Google Scholar
A. Haddy, EPR spectroscopy of the manganese cluster of photosystem II. Photosynth. Res. 92, 357–368 (2004)
Article
CAS
Google Scholar
R. Pokhrel, G.W. Brudvig, Oxygen-evolving complex of photosystem II: correlating structure with spectroscopy. Phys. Chem. Chem. Phys. 16, 11812–11821 (2014)
Article
CAS
Google Scholar
D.J. Vinyard, S. Khan, M. Askerka, V.S. Batista, G.W. Brudvig, Energetics of the S2 state spin isomers of the oxygen-evolving complex of photosystem II. J. Phys. Chem. B 121, 1020–1025 (2017)
Article
CAS
Google Scholar
D. Bovi, D. Narzi, L. Guidoni, The S2 state of the oxygen-evolving complex of photosystem II explored by QM/MM dynamics: spin surfaces and metastable states suggest a reaction path towards the S3 state. Angew. Chem. Int. Ed. 52, 11744–11749 (2013)
Article
CAS
Google Scholar
M. Shoji, H. Isobe, K. Yamaguchi, QM/MM study of the S2 to S3 transition reaction in the oxygenevolving complex of photosystem II. Chem. Phys. Lett. 636, 172–179 (2015)
Article
CAS
Google Scholar
M. Pérez Navarro, W.M. Ames, H. Nilsson, T. Lohmiller, D.A. Pantazis, L. Rapatskiy, M. Nowaczyk, F. Neese, A. Boussac, J. Messinger, W. Lubitz, N. Cox, Ammonia binding to the oxygen-evolving complex of photosystem ii identifies the solvent exchangeable oxygen bridge (μ-oxo) of the manganese tetramer. Proc. Natl. Acad. Sci. USA 110, 15561–15566 (2013)
Article
Google Scholar
P.H. Oyala, T.A. Stich, R.J. Debus, R.D. Britt, Ammonia binds to the dangler manganese of the photosystem II oxygen evolving complex. J. Am. Chem. Soc. 137, 8829–8837 (2015)
Article
CAS
Google Scholar
M. Askerka, D.J. Vinyard, G.W. Brudvig, V.S. Batista, NH3 binding to the S2 state of the O2-evolving complex of photosystem II: analogue to H2O binding during the S2 → S3 transition. Biochemistry 54, 5783–5786 (2015)
Article
CAS
Google Scholar
D.J. Vinyard, M. Askerka, R.J. Debus, V.S. Batista, G.W. Brudvig, Ammonia binding in the second coordination sphere of the oxygen-evolving complex of photosystem II. Biochemistry 55, 4432 (2016)
Article
CAS
Google Scholar
M. Askerka, G.W. Brudvig, V.S. Batista, The O2-evolving complex of photosystem II: recent insights from quantum mechanics/molecular mechanics (QM/MM), extended X-ray absorption fine structure (EXAFS), and femtosecond X-ray crystallography data. Acc. Chem. Res. 50, 41–48 (2017)
Article
CAS
Google Scholar
M. Capone, D. Narzi, D. Bovi, L. Guidoni, Mechanism of water delivery to the active site of photosystem II along the S2 to S3 transition. J. Phys. Chem. Lett. 7, 592–596 (2016)
Article
CAS
Google Scholar
P.E.M. Siegbahn, Water oxidation mechanism in photosystem II, including oxidations, proton release pathways, O–O bond formation and O2 release. Biochim. Biophys. Acta 1827, 1003–1019 (2013)
Article
CAS
Google Scholar
P.E.M. Siegbahn, O–O bond formation in the S4 state of the oxygen-evolving complex in photosystem II. Chem. Eur. J. 12, 9217–9227 (2006)
Article
CAS
Google Scholar
P.E.M. Siegbahn, Recent theoretical studies of water oxidation in photosystem II. J. Photochem. Photobiol. B 104, 94–99 (2011)
Article
CAS
Google Scholar
D.C. Ashley, M.-H. Baik, The electronic structure of [Mn(V)=O]: what is the connection between oxyl radical character, physical oxidation state, and reactivity? ACS Catal. 6, 7202–7216 (2016)
Article
CAS
Google Scholar
J. Barber, A mechanism for water splitting and oxygen production in photosynthesis. Nat. Plants 3, 17041 (2017)
Article
CAS
Google Scholar
E.M. Sproviero, J.A. Gascon, J.P. McEvoy, G.W. Brudvig, V.S. Batista, Quantum mechanics/molecular mechanics study of the catalytic cycle of water splitting in photosystem II. J. Am. Chem. Soc. 130, 3428–3442 (2008)
Article
CAS
Google Scholar
Y. Gao, T. Åkermark, J.H. Liu, L.C. Sun, B. Åkermark, Nucleophilic attack of hydroxide on a MnVoxo complex: a model of the O–O bond formation in the oxygen evolving complex of photosystem II. J. Am. Chem. Soc. 131, 8726–8727 (2009)
Article
CAS
Google Scholar
T. Taguchi, Preparation and properties of a monomeric high-spin MnV oxo complex. J. Am. Chem. Soc. 134, 1996–1999 (2012)
Article
CAS
Google Scholar
B.M. Sjöberg, A never-ending story. Science 329, 1475–1476 (2010)
Article
CAS
Google Scholar
V.V. Barynin, M.M. Whittaker, S.V. Antonyuk, V.S. Lamzin, P.M. Harrison, P.J. Artymiuk, J.W. Whittaker, Crystal structure of manganese catalase from Lactobacillus plantarum. Structure 9, 725–738 (2001)
Article
CAS
Google Scholar
A.B. Tomter, G. Zoppellaroa, N.H. Andersena, H.-P. Hersletha, M. Hammerstada, Å.K. Røhr, G.K. Sandvika, K.R. Stranda, G.E. Nilssona, C.B. Bell III, A.-L. Barrac, E. Blasco, L.L. Pape, E.I. Solomon, K.K. Andersson, Ribonucleotide reductase class I with different radical generating clusters. Coord. Chem. Rev. 257, 3–26 (2013)
Article
CAS
Google Scholar
J.M. Younker, C.M. Krest, W. Jiang, C. Krebs, J.M. Bollinger, M.T. Green, Structural analysis of the Mn(IV)/Fe(III) cofactor of chlamydia trachomatis ribonucleotide reductase by extended x-ray absorption fine structure spectroscopy and density functional theory calculation. J. Am. Chem. Soc. 130, 15022–15027 (2008)
Article
CAS
Google Scholar
N. Voevodskaya, F. Lendzian, O. Sanganas, A. Grundmeier, A. Graslund, M. Haumann, Redox intermediates of the Mn-Fe site in Subunit R2 of Chlamydia trachomatis ribonucleotide reductase a X-ray absorption and EPR study. J. Biol. Chem. 284, 4555–4566 (2009)
Article
CAS
Google Scholar
J.A. Cotruvo, J. Stubbe, Class I ribonucleotide reductases: metallocofactor assembly and repair in vitro and in vivo. Annu. Rev. Biochem. 80, 733–767 (2011)
Article
CAS
Google Scholar
C. Roshick, E.R. Iliffe-Lee, G. McClarty, Cloning and characterization of ribonucleotide reductase from Chlamydia trachomatis. J. Biol. Chem. 275, 38111–38119 (2000)
Article
CAS
Google Scholar
A. Graslund, P. Nordlund, The radical site in chlamydial ribonucleotide reductase defines a new R2 subclass. Science 305, 245–248 (2004)
Article
CAS
Google Scholar
W. Jiang, L. Saleh, E.W. Barr, J. Xie, M.M. Gardner, C. Krebs, J.M. Bollinger, Branched activation- and catalysis specific pathways for electron relay to the manganese/iron cofactor in ribonucleotide reductase from Chlamydia trachomatis. Biochemistry 47, 8477–8484 (2008)
Article
CAS
Google Scholar
W. Jiang, J. Xie, H. Nørgaard, J.M. Bollinger, C. Krebs, Rapid and quantitative activation of Chlamydia trachomatis ribonucleotide reductase by hydrogen peroxide. Biochemistry 47, 4477–4483 (2008)
Article
CAS
Google Scholar
J.M. Bollinger, W. Jiang, M.T. Green, C. Krebs, The manganese(IV)/iron(III) cofactor of Chlamydia trachomatis ribonucleotide reductase: structure, assembly, radical initiation, and evolution. Curr. Opin. Struct. Biol. 18, 650–657 (2008)
Article
CAS
Google Scholar
W. Jiang, D. Yun, L. Saleh, J.M. Bollinger, C. Krebs, Formation and function of the manganese(IV)/iron(III) cofactor in Chlamydia trachomatis ribonucleotide reductase. Biochemistry 47, 13736–13744 (2008)
Article
CAS
Google Scholar
C.S. Andersson, M. Öhrström, A. Popovic-Bijelic, A. Gra ́slund, P. Stenmark, M. Högbom, ́The manganese ion of the heterodinuclear Mn/Fe cofactor in Chlamydia trachomatis ribonucleotide reductase R2c is located at metal position. J. Am. Chem. Soc. 134, 123–125 (2012)
Article
CAS
Google Scholar
L.M.K. Dassama, A.K. Boal, C. Krebs, A.C. Rosenzweig, J.M. Bollinger, Evidence that the beta subunit of Chlamydia trachomatis ribonucleotide reductase is active with the manganese ion of its manganese(IV)/iron(III) cofactor in site. J. Am. Chem. Soc. 134, 2520–2523 (2012)
Article
CAS
Google Scholar
L.M.K. Dassama, C. Krebs, J.M. Bollinger, A.C. Rosenzweig, A.K. Boal, Structural basis for assembly of the Mn(IV)/Fe(III) cofactor in the class Ic ribonucleotide reductase from Chlamydia trachomatis. Biochemistry 52, 6424–6436 (2013)
Article
CAS
Google Scholar
Y. Kwak, W. Jiang, L.M.K. Dassama, K. Park, C.B. Bell, L.V. Liu, S.D. Wong, M. Saito, Y. Kobayashi, S. Kitao, M. Seto, Y. Yoda, E. Ercan Alp, J. Zhao, J.M. Bollinger, C. Krebs, E.I. Solomon, Geometric and electronic structure of the Mn(IV)Fe(III) cofactor in class Ic ribonucleotide reductase: correlation to the class ia binuclear non-heme iron enzyme. J. Am. Chem. Soc. 135, 17573–17584 (2013)
Article
CAS
Google Scholar
H.S. Shafaat, J.J. Griese, D.A. Pantazis, K. Roos, C.S. Andersson, A. Povic-Bijelic, A. Graslund, P.E.M. Siegbahn, F. Neese, W. Lubitz, M. Högbom, N. Cox, ́Electronic structural flexibility of heterobimetallic Mn/Fe cofactors: R2lox and R2c proteins. J. Am. Chem. Soc. 136, 13399–13409 (2014)
Article
CAS
Google Scholar
J. Livada, R.J. Martinie, L.M.K. Dassama, C. Krebs, J.M. Bollinger, A. Silakov, Direct measurement of the radical translocation distance in the class I ribonucleotide reductase from Chlamydia trachomatis. J. Phys. Chem. B 119, 13777–13784 (2015)
Article
CAS
Google Scholar
R.J. Martinie, E.J. Blaesi, C. Krebs, J.M. Bollinger, A. Silakov, C.J. Pollock, Evidence for a di-μ-oxo diamond core in the Mn(IV)/Fe(IV) activation intermediate of ribonucleotide reductase from Chlamydia trachomatis. J. Am. Chem. Soc. 139, 1950–1957 (2017)
Article
CAS
Google Scholar
K.R. Rose, M.K. Ghosh, A.O. Maggiolo, C.J. Pollock, E.J. Blaesi, V. Hajj, Y. Wei, L.J. Rajakovich, W. Chang, Y. Han, M. Hajj, C. Krebs, A. Silakov, M.E. Pandelia, J.M. Bollinger, A.K. Boal, Structural basis for superoxide activation of Flavobacterium johnsoniae class I ribonucleotide reductase and for radical initiation by its dimanganese cofactor. Biochemistry. (2018). https://doi.org/10.1021/acs.biochem.8b00247
Article
Google Scholar
M.M. Najafpour, T. Ehrenberg, M. Wiechen, P. Kurz, Calcium manganese(III) oxides (CaMn2O4·xH2O) as biomimetic oxygen-evolving catalysts. Angew. Chem. Int. Ed. 49, 2233–2237 (2010)
Article
CAS
Google Scholar
Y. Gorlin, T.F. Jaramillo, A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 132, 13612–13614 (2010)
Article
CAS
Google Scholar
Y. Gorlin, B.L. Kaiser, J.D. Benck, S. Gul, S.M. Webb, V.K. Yachandra, J. Yano, T.F. Jaramillo, In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. J. Am. Chem. Soc. 135, 8525–8534 (2013)
Article
CAS
Google Scholar
Y. Gorlin, C.J. Chung, J.D. Benck, D. Nordlund, L. Seitz, T.C. Weng, D. Sokaras, B.M. Clemens, T.F. Jaramillo, Understanding interactions between manganese oxide and gold that lead to enhanced activity for electrocatalytic water oxidation. J. Am. Chem. Soc. 136, 4920–4926 (2014)
Article
CAS
Google Scholar
C.H. Kuo, W. Li, L. Pahalagedara, A.M.E. Sawy, D. Kriz, N. Genz, C. Guild, T. Ressler, S.L. Suib, J. He, Understanding the role of gold nanoparticles in enhancing the catalytic activity of manganese oxides in water oxidation reactions. Angew. Chem. Int. Ed. 54, 2345–2350 (2015)
Article
CAS
Google Scholar
I. Zaharieva, P. Chernev, M. Risch, K. Klingan, M. Kohlhoff, A. Fischer, H. Dau, Electrosynthesis functional, and structural characterization of a water-oxidizing manganese oxide. Energy Environ. Sci. 5, 7081–7089 (2012)
Article
CAS
Google Scholar
N. Birkner, S. Nayeri, B. Pashaei, M.M. Najafpour, W.H. Casey, A. Navrotsky, Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation. Proc. Natl. Acad. Sci. USA. 110, 8801–8806 (2013)
Article
Google Scholar
M. Huynh, C. Shi, S.J. Billinge, D.G. Nocera, Nature of activated manganese oxide for oxygen evolution. J. Am. Chem. Soc. 137, 14887–14904 (2015)
Article
CAS
Google Scholar
A. Indra, P.W. Menezes, I. Zaharieva, E. Baktash, J.P. Frommer, M. Schwarze, H. Dau, M. Driess, Active mixed-valent MnOx water oxidation catalysts through partial oxidation (corrosion) of nanostructured MnO particles. Angew. Chem. Int. Ed. 52, 13206–13210 (2013)
Article
CAS
Google Scholar
P.W. Menezes, A. Indra, P. Littlewood, M. Schwarze, C. Göbel, R. Schomäcker, M. Driess, Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry. Chem. Sus. Chem. 7, 2202–2211 (2014)
Article
CAS
Google Scholar
C. Walter, P.W. Menezes, S. Orthmann, J. Schuch, P. Connor, B. Kaiser, M. Lerch, M. Driess, A molecular approach to manganese nitride acting as a high performance electrocatalyst in the oxygen evolution reaction. Angew. Chem. Int. Ed. 57, 698–702 (2018)
Article
CAS
Google Scholar
Y. Kim, J.H. Lee, H. Ha, S.W. Im, K.T. Nam, Material science lesson from the biological photosystem. Nano Convergence 3, 19 (2016)
Article
CAS
Google Scholar
J. Park, H. Kim, K. Jin, B.J. Lee, Y.S. Park, H. Kim, I. Park, K.D. Yang, H.Y. Jeong, J. Kim, K.T. Hong, H.W. Jang, K. Kang, K.T. Nam, A New water oxidation catalyst: lithium manganese pyrophosphate with tunable Mn valency. J. Am. Chem. Soc. 136, 4201–4211 (2014)
Article
CAS
Google Scholar
K. Jin, J. Park, J. Lee, K.D. Yang, G.K. Pradhan, U. Sim, D. Jeong, H. Jang, S. Park, D. Kim, N. Sung, S.H. Kim, S. Han, K.T. Nam, Hydrated manganese (II) phosphate (Mn3(PO4)2·3H2O) as a water oxidation catalyst. J. Am. Chem. Soc. 136, 7435–7443 (2014)
Article
CAS
Google Scholar
K. Jin, A. Chu, J. Park, D. Jeong, S.E. Jerng, U. Sim, H.-Y. Jeong, C.W. Lee, Y.-S. Park, K.D. Yang, G.K. Pradhan, D. Kim, N. Sung, S.H. Kim, K.T. Nam, Partially oxidized sub-10 nm MnO nanocrystals with high activity for water oxidation catalysis. Sci. Rep. 5, 10279 (2015)
Article
Google Scholar
D. Jeong, K. Jin, S.E. Jerng, H. Seo, D. Kim, S.H. Nahm, S.H. Kim, K.T. Nam, Mn5O8 nanoparticles as efficient water oxidation catalysts at neutral pH. ACS Catal. 5, 4624–4628 (2015)
Article
CAS
Google Scholar
K. Jin, H. Seo, H. Ha, Y. Kim, K.H. Cho, J.S. Hong, K.T. Nam, Recent advances in heterogeneous Mn-based electrocatalysts toward biological photosynthetic Mn4Ca cluster. Catal. Today (2016). https://doi.org/10.1016/j.cattod.2016.12.041
Article
Google Scholar
K. Jin, H. Seo, T. Hayashi, M. Balamurugan, D. Jeong, Y.K. Go, J.S. Hong, K.H. Cho, H. Kakizaki, N. Bonnet-Mercier, M.G. Kim, S.H. Kim, R. Nakamura, K.T. Nam, Mechanistic investigation of water oxidation catalyzed by uniform, assembled MnO nanoparticles. J. Am. Chem. Soc. 139, 2277–2285 (2016)
Article
CAS
Google Scholar
H. Seo, S. Park, J.S. Hong, K.H. Cho, H. Ha, K. Jin, K.T. Nam, Water oxidation mechanism for 3d transition metal oxide catalysts under neutral condition. J. Korean Ceram. Soc. 54, 1–8 (2017)
Article
CAS
Google Scholar
J.T. Groves, M.K. Stern, Synthesis, characterization, and reactivity of oxomanganese(IV) porphyrin complexes. J. Am. Chem. Soc. 110, 8628–8638 (1988)
Article
CAS
Google Scholar
R.S. Czernuszewicz, Y.O. Su, M.K. Stern, K.A. Macor, D. Kim, J.T. Groves, T.G. Spiro, Oxomanganese(IV) porphyrins identified by resonance Raman and infrared spectroscopy. Weak bonds and the stability of the half-filled t2g subshell. J. Am. Chem. Soc. 110, 4158–4165 (1988)
Article
CAS
Google Scholar
R.D. Arasasingham, G.X. He, T.C. Bruice, Mechanism of manganese porphyrin-catalyzed oxidation of alkenes. Role of manganese(IV)-oxo species. J. Am. Chem. Soc. 115, 7985–7991 (1993)
Article
CAS
Google Scholar
K.P. Bryliakov, D.E. Babushkin, E.P. Talsi, 1H NMR and EPR spectroscopic monitoring of the reactive intermediates of (Salen)MnIII catalyzed olefin epoxidation. J. Mol. Cat. A Chem. 158, 19–35 (2000)
Article
CAS
Google Scholar
K.P. Bryliakov, O.A. Kholdeeva, M.P. Vanina, E.P. Talsi, Role of MnIV species in Mn(salen) catalyzed enantioselective aerobic epoxidations of alkenes: an EPR study. J. Mol. Cat A Chem. 178, 47–53 (2002)
Article
CAS
Google Scholar
G. Yin, M. Buchalova, A.M. Danby, C.M. Perkins, D. Kitko, J.D. Carter, W.M. Scheper, D.H. Busch, Olefin oxygenation by the hydroperoxide adduct of a nonheme manganese(IV) complex: epoxidations by a metallo–peracid produces gentle selective oxidations. J. Am. Chem. Soc. 127, 17170–17171 (2005)
Article
CAS
Google Scholar
G. Yin, A.M. Danby, D. Kitko, J.D. Carter, W.M. Scheper, D.H. Busch, Olefin epoxidation by alkyl hydroperoxide with a novel cross-bridged cyclam manganese complex: demonstration of oxygenation by two distinct reactive intermediates. Inorg. Chem. 46, 2173–2180 (2007)
Article
CAS
Google Scholar
G. Yin, A.M. Danby, D. Kitko, J.D. Carter, W.M. Scheper, D.H. Busch, Understanding the selectivity of a moderate oxidation catalyst: hydrogen abstraction by a fully characterized, activated catalyst, the robust dihydroxo manganese(IV) complex of a bridged cyclam. J. Am. Chem. Soc. 129, 1512–1513 (2007)
Article
CAS
Google Scholar
G. Yin, A.M. Danby, D. Kitko, J.D. Carter, W.M. Scheper, D.H. Busch, Oxidative reactivity difference among the metal oxo and metal hydroxo moieties: pH dependent hydrogen abstraction by a manganese(IV) complex having two hydroxide ligands. J. Am. Chem. Soc. 130, 16245–16253 (2008)
Article
CAS
Google Scholar
S.H. Kim, H. Park, M.S. Seo, M. Kubo, T. Ogura, J. Klajn, D.T. Gryko, J.S. Valentine, W. Nam, Reversible O–O bond cleavage and formation between Mn(IV)-peroxo and Mn(V)-oxo corroles. J. Am. Chem. Soc. 132, 14030–14032 (2010)
Article
CAS
Google Scholar
S.C. Sawant, X. Wu, J. Cho, K.-B. Cho, S.H. Kim, M.S. Seo, Y.-M. Lee, M. Kubo, T. Ogura, S. Shaik, W. Nam, Water as an oxygen source: synthesis, characterization, and reactivity studies of a mononuclear nonheme manganese(IV) oxo complex. Angew. Chem. Int. Ed. 49, 8190–8194 (2010)
Article
CAS
Google Scholar
I. Garcia-Bosch, A. Company, C.W. Cady, S. Styring, W.R. Browne, X. Ribas, M. Costas, Evidence for a precursor complex in C–H hydrogen atom transfer reactions mediated by a manganese(IV) oxo complex. Angew. Chem. Int. Ed. 50, 5648–5653 (2011)
Article
CAS
Google Scholar
I. Garcia-Bosch, A. Company, X. Fontrodona, X. Ribas, M. Costas, Efficient and selective peracetic acid epoxidation catalyzed by a robust manganese catalyst. Org. Lett. 10, 2095–2098 (2008)
Article
CAS
Google Scholar
X. Wu, M.S. Seo, K.M. Davis, Y.-M. Lee, J. Chen, K.-B. Cho, Y.N. Pushkar, W. Nam, A highly reactive mononuclear non-heme manganese(IV)–Oxo complex that can activate the strong C–H bonds of alkanes. J. Am. Chem. Soc. 133, 20088–20091 (2011)
Article
CAS
Google Scholar
S. Kim, K.-B. Cho, Y.-M. Lee, J. Chen, S. Fukuzumi, W. Nam, Factors controlling the chemoselectivity in the oxidation of olefins by nonheme manganese(IV)-oxo complexes. J. Am. Chem. Soc. 138, 10654–10663 (2016)
Article
CAS
Google Scholar
N. Sharma, J. Jung, Y.-M. Lee, M.S. Seo, W. Nam, S. Fukuzumi, Multi-electron oxidation of anthracene derivatives by nonheme manganese(IV)-oxo complexes. Chem. Eur. J. 23, 7125–7131 (2017)
Article
CAS
Google Scholar
H. Yoon, Y. Morimoto, Y.-M. Lee, W. Nam, S. Fukuzumi, Electron-transfer properties of a nonheme manganese(iv)–oxo complex acting as a stronger one-electron oxidant than the iron(iv)–oxo analogue. Chem. Commun. 48, 11187 (2012)
Article
CAS
Google Scholar
J. Chen, Y.-M. Lee, K.M. Davis, X. Wu, M.S. Seo, K.-B. Cho, H. Yoon, Y.J. Park, S. Fukuzumi, Y.N. Pushkar, W. Nam, A mononuclear non-heme manganese(IV)-oxo complex binding redox-inactive metal ions. J. Am. Chem. Soc. 135, 6388–6391 (2013)
Article
CAS
Google Scholar
H. Yoon, Y.-M. Lee, X. Wu, K.-B. Cho, R. Sarangi, W. Nam, S. Fukuzumi, Enhanced electron-transfer reactivity of nonheme manganese(IV)-oxo complexes by binding scandium ions. J. Am. Chem. Soc. 135, 9186–9194 (2013)
Article
CAS
Google Scholar
R.V. Ottenbacher, K.P. Bryliakov, E.P. Talsi, Nonheme manganese-catalyzed asymmetric oxidation. A Lewis acid activation versus oxygen rebound mechanism: evidence for the “Third Oxidant”. Inorg. Chem. 49, 8620–8628 (2010)
Article
CAS
Google Scholar
J.W. de Boer, W.R. Browne, J. Brinksma, P.L. Alsters, R. Hage, B.L. Feringa, Mechanism of Cis-dihydroxylation and epoxidation of alkenes by highly H2O2 efficient dinuclear manganese catalysts. Inorg. Chem. 46, 6353–6372 (2007)
Article
CAS
Google Scholar
J.W. de Boer, W.R. Browne, S.R. Harutyunyan, L. Bini, T.D. Tiemersma-Wegman, P.L. Alsters, R. Hage, B.L. Feringa, Manganese catalysed asymmetric cis-dihydroxylation with H2O2. Chem. Commun. 32, 3747–3749 (2008)
Article
CAS
Google Scholar
Z. Lv, C. Choe, Y. Wu, H. Wang, Z. Chen, G. Li, G. Yin, Non-redox metal ions accelerated oxygen atom transfer by Mn-Me3tacn complex with H2O2 as oxygen resource. Mol. Catal. 448, 46–52 (2018)
Article
CAS
Google Scholar
S.H. Lee, L. Xu, B.K. Park, Y.V. Mironov, S.H. Kim, Y.J. Song, C. Kim, Y. Kim, S.-J. Kim, Efficient olefin epoxidation by robust Re 4 cluster-supported MnIII complexes with per acids: evidence of simultaneous operation of multiple active oxidant species, MnV=O, MnIV=O, and MnIII-OOC(O)R. Chem. Eur. J. 16, 4678–4685 (2010)
Article
CAS
Google Scholar
C. Choe, L. Yang, Z. Lv, W. Mo, Z. Chen, G. Li, G. Yin, Redox-inactive metal ions promoted the catalytic reactivity of non-heme manganese complexes towards oxygen atom transfer. Dalton Trans. 44, 9182–9192 (2015)
Article
CAS
Google Scholar
K.W. Kwong, T.-H. Chen, W. Luo, H. Jeddi, R. Zhang, A biomimetic oxidation catalyzed by manganese(III) porphyrins and iodobenzene diacetate: synthetic and mechanistic investigations. Inorg. Chim. Acta 430, 176–183 (2015)
Article
CAS
Google Scholar
W. Dai, S. Shang, Y. Lv, G. Li, C. Li, S. Gao, Highly chemoselective and enantioselective catalytic oxidation of heteroaromatic sulfides via high-valent manganese(IV)-oxo cation radical oxidizing intermediates. ACS Catal. 7, 4890–4895 (2017)
Article
CAS
Google Scholar
G.B. Shul’pin, D.S. Nesterov, L.S. Shul’pina, A.J.L. Pombeiro, A hydroperoxo-rebound mechanism of alkane oxidation with hydrogen peroxide catalyzed by binuclear manganese(IV) complex in the presence of an acid with involvement of atmospheric dioxygen. Inorg. Chim. Acta. 455, 666–676 (2017)
Article
CAS
Google Scholar
D. Mondal, M.C. Majee, Synthesis and structural characterization of a new high-valentbis(oxo)-bridged manganese(IV) complex and its catechol oxidase activity. Inorg. Chim. Acta 465, 70–77 (2017)
Article
CAS
Google Scholar
K. Srinivasan, P. Michaud, J.K. Kochi, Epoxidation of olefins with cationic (salen)manganese(III) complexes. The modulation of catalytic activity by substituents. J. Am. Chem. Soc. 108, 2309–2320 (1986)
Article
CAS
Google Scholar
T.J. Collins, S.W. Gordon-Wylie, A manganese(V)-oxo complex. J. Am. Chem. Soc. 111, 4511–4513 (1989)
Article
CAS
Google Scholar
T.J. Collins, R.D. Powell, C. Slebodnick, E.S. Uffelman, A water-stable manganese(V)-oxo complex: definitive assignment of a nu.Mnv.tplbond.O infrared vibration. J. Am. Chem. Soc. 112, 899–901 (1990)
Article
CAS
Google Scholar
W. Zhang, J.L. Loebach, S.R. Wilson, E.N. Jacobsen, Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes. J. Am. Chem. Soc. 112, 2801–2803 (1990)
Article
CAS
Google Scholar
J.M. Workman, R.D. Powell, A.D. Procyk, T.J. Collins, D.F. Bocian, Vibrational and electrochemical properties of a series of stable manganese(V)-oxo complexes. Inorg. Chem. 31, 1548–1550 (1992)
Article
CAS
Google Scholar
F.M. MacDonnell, N.L.P. Fackler, C. Stern, T.V. O'Halloran, Air oxidation of a five-coordinate Mn(III) dimer to a high-valent oxomanganese(V) complex. J. Am. Chem. Soc. 116, 7431–7432 (1994)
Article
CAS
Google Scholar
J.T. Groves, J. Lee, S.S. Marla, Detection and characterization of an oxomanganese(V) porphyrin complex by rapid-mixing stopped-flow spectrophotometry. J. Am. Chem. Soc. 119, 6269–6273 (1997)
Article
CAS
Google Scholar
D. Feichtinger, D.A. Plattner, Direct proof for O=MnV(salen) complexes. Angew. Chem. Int. Ed. 36, 1718–1719 (1997)
Article
CAS
Google Scholar
C.G. Miller, S.W. Gordon-Wylie, C.P. Horwitz, S.A. Strazisar, D.K. Peraino, G.R. Clark, S.T. Weintraub, T.J. Collins, A method for driving O-atom transfer: secondary ion binding to a tetraamide macrocyclic ligand. J. Am. Chem. Soc. 120, 11540–11541 (1998)
Article
CAS
Google Scholar
N. Jin, J.T. Groves, Unusual kinetic stability of a ground-state singlet oxomanganese(V) porphyrin. Evidence for a spin state crossing effect. J. Am. Chem. Soc. 121, 2923–2924 (1999)
Article
CAS
Google Scholar
N. Jin, J.L. Bourassa, S.C. Tizio, J.T. Groves, Reversible oxygen atom transfer between an oxomanganese(v) porphyrin and bromide: a haloperoxidase mimic with enzymatic rates. Angew. Chem. Int. Ed. 39, 3849–3851 (2000)
Article
CAS
Google Scholar
W. Nam, I. Kim, M.H. Lim, H.J. Choi, J.S. Lee, H.G. Jang, Isolation of an oxomanganese(V) porphyrin intermediate in the reaction of a manganese(III) porphyrin complex and H2O2 in aqueous solution. Chem. Eur. J. 8, 2067–2071 (2002)
Article
CAS
Google Scholar
B.C. Gilbert, J.R.L. Smith, A.M.I. Payeras, J. Oakes, Formation and reaction of O=MnV species in the oxidation of phenolic substrates with H2O2 catalysed by the dinuclearmanganese(IV) 1,4,7-trimethyl-1,4,7-triazacyclononane complex [\({\text{Mn}}_{2}^{\text{IV}}\)(μ-O)3(TMTACN)2](PF6)2. Org. Biomol. Chem. 2, 1176–1180 (2004)
Article
CAS
Google Scholar
J.P. Collman, L. Zeng, J.I. Brauman, Donor ligand effect on the nature of the oxygenating species in MnIII (salen)-catalyzed epoxidation of olefins: experimental evidence for multiple active oxidants. Inorg. Chem. 43, 2672–2679 (2004)
Article
CAS
Google Scholar
S.H. Wang, B.S. Mandimutsira, R. Todd, B. Ramdhanie, J.P. Fox, D.P. Goldberg, Catalytic sulfoxidation and epoxidation with a Mn(III) triazacorrole: evidence for a “Third Oxidant” in high-valent porphyrinoid oxidations. J. Am. Chem. Soc. 126, 18–19 (2004)
Article
CAS
Google Scholar
W.J. Song, M.S. Seo, S. DeBeer George, T. Ohta, R. Song, M.-J. Kang, T. Tosha, T. Kitagawa, E.I. Solomon, W. Nam, Synthesis, characterization, and reactivities of manganese(V)-oxo porphyrin complexes. J. Am. Chem. Soc. 129, 1268–1277 (2007)
Article
CAS
Google Scholar
C. Arunkumar, Y.-M. Lee, J.Y. Lee, S. Fukuzumi, W. Nam, Hydrogen-atom abstraction reactions by manganese(V)- and manganese(IV)-oxo porphyrin complexes in aqueous solution. Chem. Eur. J. 15, 11482–11489 (2009)
Article
CAS
Google Scholar
H.-Y. Liu, F. Yam, Y.-T. Xie, X.-Y. Li, C.K. Chang, A bulky bis-pocket manganese(V)-oxo corrole complex: observation of oxygen atom transfer between triply bonded MnV≡O and alkene. J. Am. Chem. Soc. 131, 12890–12891 (2009)
Article
CAS
Google Scholar
J.Y. Lee, Y.-M. Lee, H. Kotani, W. Nam, S. Fukuzumi, High-valent manganese(V)-oxo porphyrin complexes in hydride transfer reactions. Chem. Commun. 6, 704–706 (2009)
Article
Google Scholar
P. Leeladee, D.P. Goldberg, Epoxidations catalyzed by manganese(V) oxo and imido complexes: role of the oxidant-Mn-oxo(imido) intermediate. Inorg. Chem. 49, 3083–3085 (2010)
Article
CAS
Google Scholar
S. Fukuzumi, T. Mizuno, T. Ojiri, Catalytic electron-transfer oxygenation of substrates with water as an oxygen source using manganese porphyrins. Chem. Eur. J. 18, 15794–15804 (2012)
Article
CAS
Google Scholar
M. Guo, H. Dong, J. Li, B. Cheng, Y. Huang, Y. Feng, A. Lei, Spectroscopic observation of iodosylarenemetalloporphyrin adducts and manganese(V)-oxo porphyrin species in a cytochrome P450 analogue. Nat. Commun. (2012). https://doi.org/10.1038/ncomms2196
Article
Google Scholar
R.A. Baglia, M. Dürr, I. Ivanović-Burmazović, D.P. Goldberg, Activation of a high-valent manganese-oxo complex by a nonmetallic Lewis acid. Inorg. Chem. 53, 5893–5895 (2014)
Article
CAS
Google Scholar
H.M. Neu, T. Yang, R.A. Baglia, T.H. Yosca, M.T. Green, M.G. Quesne, S.P. de Visser, D.P. Goldberg, Oxygen-atom transfer reactivity of axially ligated Mn(V)-oxo complexes: evidence for enhanced electrophilic and nucleophilic pathways. J. Am. Chem. Soc. 136, 13845–13852 (2014)
Article
CAS
Google Scholar
R.E. Schreiber, H. Cohen, G. Leitus, S.G. Wolf, A. Zhou, L. Que, R. Neumann, Reactivity and O2 formation by Mn(IV)- and Mn(V)-hydroxo species stabilized within a polyfluoroxometalate framework. J. Am. Chem. Soc. 137, 8738–8748 (2015)
Article
CAS
Google Scholar
S. Hong, Y.-M. Lee, M. Sankaralingam, A.K. Vardhaman, Y.J. Park, K.-B. Cho, T. Ogura, R. Sarangi, S. Fukuzumi, W. Nam, A manganese(V)-oxo complex: synthesis by dioxygen activation and enhancement of its oxidizing power by binding scandium ion. J. Am. Chem. Soc. 138, 8523–8532 (2016)
Article
CAS
Google Scholar
K. Oohora, H. Meichin, Y. Kihira, H. Sugimoto, Y. Shiro, T. Hayashi, Manganese(V) porphycene complex responsible for inert C–H bond hydroxylation in a myoglobin matrix. J. Am. Chem. Soc. 139, 18460–18463 (2017)
Article
CAS
Google Scholar
J.P.T. Zaragoza, M.A. Siegler, D.P. Goldberg, A reactive manganese(IV)-hydroxide complex: a missing intermediate in hydrogen atom transfer by high-valent metal-oxo porphyrinoid compounds. J. Am. Chem. Soc. 140, 4380–4390 (2018)
Article
CAS
Google Scholar