R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics. Cancer J. Clin. 66, 7–30 (2016)
Article
Google Scholar
W. Chen, R. Zheng, P.D. Baade, S. Zhang, H. Zeng, F. Bray, A. Jemal, X.Q. Yu, J. He, Cancer statistics in China, 2015. Cancer J. Clin. 66(2), 115–132 (2016)
Article
Google Scholar
A. Heidenreich, P.J. Bastian, J. Bellmunt, M. Bolla, S. Joniau, T. van der Kwast, M. Mason, V. Matveev, T. Wiegel, F. Zattoni, N. Mottet, EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur. Urol. 65, 467–479 (2014)
Article
CAS
Google Scholar
D.F. Penson, D. McLerran, Z. Feng, L. Li, P.C. Albertsen, F.D. Gilliland, A. Hamilton, R.M. Hoffman, R.A. Stephenson, A.L. Potosky, J.L. Stanford, 5-year urinary and sexual outcomes after radical prostatectomy: results from the prostate cancer outcomes study. J. Urol. 173, 1701–1705 (2005)
Article
Google Scholar
L. Cheng, L.C. Wang, L. Feng, K. Yang, Z. Liu, Functional nanomaterials for phototherapies of cancer. Chem. Rev. 114(21), 10869–10939 (2014)
Article
CAS
Google Scholar
C. Du, J. Zhao, J. Fei, L. Gao, W. Cui, Y. Yang, J. Li, Alginate-based microcapsules with a molecule recognition linker and photosensitizer for the combined cancer treatment. Chem. Asian J. 8(4), 736–742 (2013)
Article
CAS
Google Scholar
D. Li, Q. He, Y. Yang, H. Möhwald, J. Li, Two-stage pH response of poly(4-vinylpyridine) grafted gold nanoparticles. Macromolecules 41(19), 7254–7256 (2008)
Article
CAS
Google Scholar
J. Li, Y. Hu, J. Yang, P. Wei, W. Sun, M. Shen, G. Zhang, X. Shi, Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials 38, 10–21 (2015)
Article
CAS
Google Scholar
K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, Z. Liu, In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv. Mater. 24(41), 5586–5592 (2012)
Article
CAS
Google Scholar
X. Huang, M.A. El-Sayed, Plasmonic photo-thermal therapy (PPTT). Alex. J. Med. 47(1), 1–9 (2011)
Article
CAS
Google Scholar
Q. Chen, L. Xu, C. Liang, C. Wang, R. Peng, Z. Liu, Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 7, 13193 (2016)
Article
CAS
Google Scholar
L. Cheng, K. Yang, Q. Chen, Z. Liu, Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano 6(6), 5605–5613 (2012)
Article
CAS
Google Scholar
K. Yu, K.L. Kelly, N. Sakai, T. Tatsuma, Morphologies and surface plasmon resonance properties of monodisperse bumpy gold nanoparticles. Langmuir 24(11), 5849–5854 (2008)
Article
CAS
Google Scholar
L.A. Lyon, D.J. Peña, M.J. Natan, Surface plasmon resonance of Au colloid-modified Au films: particle size dependence. J. Phys. Chem. B 103(28), 5826–5831 (1999)
Article
CAS
Google Scholar
V. Amendola, R. Pilot, M. Frasconi, O.M. Marago, M.A. Iati, Surface plasmon resonance in gold nanoparticles: a review. J. Phys. Condens. Matter 29(20), 203002 (2017)
Article
Google Scholar
Y. Wang, L. Wang, M. Yan, A. Cai, S. Dong, J. Hao, Plasmonic microgels of Au nanorods: self-assembly and applications in chemophotothermo-synergistic cancer therapy. J. Colloid Interface Sci. 536, 728–736 (2019)
Article
CAS
Google Scholar
J. Chang, A. Zhang, Z. Huang, Y. Chen, Q. Zhang, D. Cui, Monodisperse Au@Ag core-shell nanoprobes with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells. Talanta 198, 45–54 (2019)
Article
CAS
Google Scholar
P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Au nanoparticles target cancer. Nano Today 2(1), 18–29 (2007)
Article
Google Scholar
C. Ayala-Orozco, C. Urban, M.W. Knight, A.S. Urban, O. Neumann, S.W. Bishnoi, S. Mukherjee, A.M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N.J. Halas, A. Joshi, Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells. ACS Nano 8(6), 6372–6381 (2014)
Article
CAS
Google Scholar
W.C. Song, S.W. Shin, K.S. Park, M.S. Jang, J.-H. Choi, B.-K. Oh, S.H. Um, Self-illuminative cascade-reaction-driven anticancer therapeutic cassettes made of cooperatively interactive nanocomplexes. Colloids Surf. B 126, 580–584 (2015)
Article
CAS
Google Scholar
A.R. Kim, S.W. Shin, S.-W. Cho, J.Y. Lee, D.-I. Kim, S.H. Um, A light-driven anti-cancer dual-therapeutic cassette enhances solid tumour regression. Adv. Healthc. Mater. 2(9), 1252–1258 (2013)
Article
CAS
Google Scholar
H. Norouzi, K. Khoshgard, F. Akbarzadeh, In vitro outlook of gold nanoparticles in photo-thermal therapy: a literature review. Lasers Med. Sci. 33(4), 917–926 (2018)
Article
Google Scholar
A.F. Moreira, C.F. Rodrigues, C.A. Reis, E.C. Costa, I.J. Correia, Gold-core silica shell nanoparticles application in imaging and therapy: a review. Microporous Mesoporous Mater. 270, 168–179 (2018)
Article
CAS
Google Scholar
S.L. Jacques, Optical properties of biological tissues: a review. Phys. Med. Biol. 58(11), R37–R61 (2013)
Article
Google Scholar
L.A. Dykman, N.G. Khlebtsov, Biomedical applications of multifunctional gold-based nanocomposites. Biochemistry 81(13), 1771–1789 (2016)
CAS
Google Scholar
X. Huang, P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23(3), 217 (2007)
Article
Google Scholar
D.P. O’Neal, L.R. Hirsch, N.J. Halas, J.D. Payne, J.L. West, Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209(2), 171–176 (2004)
Article
CAS
Google Scholar
X. Ye, H. Shi, X. He, K. Wang, D. Li, P. Qiu, Gold nanorod-seeded synthesis of Au@Ag/Au nanospheres with broad and intense near-infrared absorption for photothermal cancer therapy. J. Mater. Chem. B 2(23), 3667–3673 (2014)
Article
CAS
Google Scholar
Y. Hao, M. Dong, T. Zhang, J. Peng, Y. Jia, Y. Cao, Z. Qian, Novel approach of using near-infrared responsive pegylated gold nanorod coated poly(l-lactide) microneedles to enhance the antitumor efficiency of docetaxel-loaded MPEG-PDLLA micelles for treating an A431 tumor. ACS Appl. Mater. Interfaces. 9(18), 15317–15327 (2017)
Article
CAS
Google Scholar
S. Shen, S. Wang, R. Zheng, X. Zhu, X. Jiang, D. Fu, W. Yang, Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials 39, 67–74 (2015)
Article
CAS
Google Scholar
J.G. Croissant, D. Zhang, S. Alsaiari, J. Lu, L. Deng, F. Tamanoi, A.M. AlMalik, J.I. Zink, N.M. Khashab, Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in vivo tumor imaging. J. Control. Release 229, 183–191 (2016)
Article
CAS
Google Scholar
T. Zheng, N. Pierre-Pierre, X. Yan, Q. Huo, A.J.O. Almodovar, F. Valerio, I. Rivera-Ramirez, E. Griffith, D.D. Decker, S. Chen, N. Zhu, Gold nanoparticle-enabled blood test for early stage cancer detection and risk assessment. ACS Appl. Mater. Interfaces. 7(12), 6819–6827 (2015)
Article
CAS
Google Scholar
A.W. Cook, T.W. Hayton, Case studies in nanocluster synthesis and characterization: challenges and opportunities. Acc. Chem. Res. 51(10), 2456–2464 (2018)
Article
CAS
Google Scholar
J. Nam, N. Won, H. Jin, H. Chung, S. Kim, pH-induced aggregation of gold nanoparticles for photothermal cancer therapy. J. Am. Chem. Soc. 131(38), 13639–13645 (2009)
Article
CAS
Google Scholar
H.H. Richardson, M.T. Carlson, P.J. Tandler, P. Hernandez, A.O. Govorov, Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett. 9(3), 1139–1146 (2009)
Article
CAS
Google Scholar
M. Sun, F. Liu, Y. Zhu, W. Wang, J. Hu, J. Liu, Z. Dai, K. Wang, Y. Wei, J. Bai, W. Gao, Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Nanoscale 8(8), 4452–4457 (2016)
Article
CAS
Google Scholar
K. Hayashi, M. Nakamura, K. Ishimura, Near-infrared fluorescent silica-coated gold nanoparticle clusters for X-ray computed tomography/optical dual modal imaging of the lymphatic system. Adv. Healthc. Mater. 2(5), 756–763 (2013)
Article
CAS
Google Scholar
A. Sánchez-Iglesias, M. Grzelczak, T. Altantzis, B. Goris, J. Pérez-Juste, S. Bals, G. Van Tendeloo, S.H. Donaldson, B.F. Chmelka, J.N. Israelachvili, L.M. Liz-Marzán, Hydrophobic interactions modulate self-assembly of nanoparticles. ACS Nano 6(12), 11059–11065 (2012)
Article
CAS
Google Scholar
M.H. Oh, J.H. Yu, I. Kim, Y.S. Nam, Genetically programmed clusters of gold nanoparticles for cancer cell-targeted photothermal therapy. ACS Appl. Mater. Interfaces. 7(40), 22578–22586 (2015)
Article
CAS
Google Scholar
L. Amornkitbamrung, J. Kim, Y. Roh, S.H. Chun, J.S. Yuk, S.W. Shin, B.-W. Kim, B.-K. Oh, S.H. Um, Cationic surfactant-induced formation of uniform gold nanoparticle clusters with high efficiency of photothermal conversion under near-infrared irradiation. Langmuir 34(8), 2774–2783 (2018)
Article
CAS
Google Scholar
S.H. Liu, M.Y. Han, Synthesis, functionalization, and bioconjugation of monodisperse, silica-coated gold nanoparticles: robust bioprobes. Adv. Funct. Mater. 15(6), 961–967 (2005)
Article
CAS
Google Scholar
O. Chen, L. Riedemann, F. Etoc, H. Herrmann, M. Coppey, M. Barch, C.T. Farrar, J. Zhao, O.T. Bruns, H. Wei, P. Guo, J. Cui, R. Jensen, Y. Chen, D.K. Harris, J.M. Cordero, Z. Wang, A. Jasanoff, D. Fukumura, R. Reimer, M. Dahan, R.K. Jain, M.G. Bawendi, Magneto-fluorescent core-shell supernanoparticles. Nat. Commun. 5, 5093 (2014)
Article
CAS
Google Scholar
Y. Fujita, K. Kojima, N. Hamada, R. Ohhashi, Y. Akao, Y. Nozawa, T. Deguchi, M. Ito, Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC-3 cells. Biochem. Biophys. Res. Commun. 377(1), 114–119 (2008)
Article
CAS
Google Scholar
C.M. Hessel, V.P. Pattani, M. Rasch, M.G. Panthani, B. Koo, J.W. Tunnell, B.A. Korgel, Copper selenide nanocrystals for photothermal therapy. Nano Lett. 11, 2560–2566 (2011)
Article
CAS
Google Scholar
Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, J. Hu, Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 5(12), 9761–9771 (2011)
Article
CAS
Google Scholar
ISO 10993–5:2009(E). Biological Evaluation of Medical Devices-Part 5: Tests for in Vitro Cytotoxicity. (International Organization for Standardization, 2009)