P.S. Sidhu, Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids. Clays Clay Miner. 29(4), 269–276 (1981). https://doi.org/10.1346/CCMN.1981.0290404
Article
CAS
Google Scholar
X.-L. Fang, C. Chen, M.-S. Jin, Q. Kuang, Z.-X. Xie, S.-Y. Xie, R.-B. Huang, L.-S. Zheng, Single-crystal-like hematite colloidal nanocrystal clusters : synthesis and applications in gas sensors, photocatalysis and water treatment †. J. Mater. Chem. 19, 6154–6160 (2009). https://doi.org/10.1039/b905034e
Article
CAS
Google Scholar
S.F. Kurtoğlu, A. Uzun, Red mud as an efficient, stable, and cost-free catalyst for CO x -free hydrogen production from ammonia. Sci. Rep. (2016). https://doi.org/10.1038/srep32279
Article
Google Scholar
B. Jeon, B.A. Dempsey, W.D. Burgos, R.A. Royer, Sorption Kinetics of Fe ( II ), Zn ( II ), Co ( II ), Ni ( II ), Cd ( II ), and Fe ( II )/ Me ( II ) onto Hematite. Water Res. 37, 4135–4142 (2003). https://doi.org/10.1016/S0043-1354(03)00342-7
Article
CAS
Google Scholar
V.A. Grover, J. Hu, K.E. Engates, H.J. Shipley, ADSORPTION AND DESORPTION OF BIVALENT METALS TO HEMATITE NANOPARTICLES. Nanomater. Environ. 31(1), 86–92 (2012). https://doi.org/10.1002/etc.712
Article
CAS
Google Scholar
R.V. Jagadeesh, A.-E. Surkus, H. Junge, M.-M. Pohl, J. Radnik, J. Rabeah, H. Huan, V. Schunemann, A. Bruckner, M. Beller, Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 342, 1583–1587 (2013)
Article
Google Scholar
Y. Piao, J. Kim, H.B.I.N. Na, D. Kim, J.I.S. Baek, M.I.K. Ko, J.H.E.E. Lee, M. Shokouhimehr, T. Hyeon, Wrap – Bake – Peel Process for Nanostructural Transformation from β -FeOOH nanorods to biocompatible iron oxide nanocapsules. Nat. Mater. 7, 242–247 (2008). https://doi.org/10.1038/nmat2118
Article
CAS
Google Scholar
A.E. Deatsch, B.A. Evans, Journal of magnetism and magnetic materials heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater. 354, 163–172 (2014). https://doi.org/10.1016/j.jmmm.2013.11.006
Article
CAS
Google Scholar
T.K. Jain, M.K. Reddy, M.A. Morales, P. Leslie, D.L. Elecky, V. Labhasetwar, Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol. Pharm. 5, 2 (2008)
Article
Google Scholar
Cullity, B. D.; Graham, C. D. Introduction to Magnetic Materials - Cullity; 2009. https://doi.org/https://doi.org/10.1016/S1369-7021(09)70091-4.
F. Bødker, M.F. Hansen, C.B. Koch, K. Lefmann, S. Mørup, Magnetic properties of hematite nanoparticles. Phys. Rev. B 61(10), 6826–6838 (2000). https://doi.org/10.1103/PhysRevB.61.6826
Article
Google Scholar
A.S. Teja, P.Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55(1–2), 22–45 (2009). https://doi.org/10.1016/j.pcrysgrow.2008.08.003
Article
CAS
Google Scholar
Binns, C. Medical Applications of Magnetic Materials. In Nanomagnetism: Fundamentals and Applications; Binns, C., Palmer, R. C., Eds.; Frontiers of Nanoscience, 2014; pp 217–258.
R. Das, J. Alonso, Z.N. Porshokouh, V. Kalappattil, D. Torres, M. Phan, E. Garaio, A. Jose, J. Luis, S. Llamazares et al., Tunable high aspect ratio iron oxide nanorods for enhanced hyperthermia. J. Phys. Chem. C (2016). https://doi.org/10.1021/acs.jpcc.6b02006
Article
Google Scholar
N. Singh, G.J.S. Jenkins, R. Asadi, S.H. Doak, Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 1, 5358 (2010). https://doi.org/10.3402/nano.v1i0.5358
Article
CAS
Google Scholar
R. Hergt, R. Hiergeist, I. Hilger, W.A. Kaiser, Y. Lapatnikov, Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J. Magn. Magn. Mater. 270, 345–357 (2004). https://doi.org/10.1016/j.jmmm.2003.09.001
Article
CAS
Google Scholar
B. Tang, G. Wang, L. Zhuo, J. Ge, L. Cui, Facile Route to α-FeOOH and α-Fe 2 O 3 Nanorods and Magnetic Property of α-Fe 2 O 3 Nanorods. Inorg. Chem. 45(13), 5196–5200 (2006). https://doi.org/10.1021/ic060097b
Article
CAS
Google Scholar
N.K. Chaudhari, H. Chan-Kim, D. Son, J.-S. Yu, Easy synthesis and characterization of single-crystalline hexagonal prism-shaped hematite α-Fe2O3 in aqueous media. Cryst. Eng. Comm. 11(11), 2264 (2009). https://doi.org/10.1039/b910569g
Article
CAS
Google Scholar
J. Lian, X. Duan, J. Ma, P. Peng, T. Kim, W. Zheng, Hematite ( a-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties. ACS Nano 3(11), 3749–3761 (2009)
Article
CAS
Google Scholar
H. Itoh, T. Sugimoto, Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J. Colloid Interface Sci. 265(2), 283–295 (2003). https://doi.org/10.1016/S0021-9797(03)00511-3
Article
CAS
Google Scholar
T.P. Raming, A.J.A. Winnubst, C.M. van Kats, A.P. Philipse, The Synthesis and Magnetic Properties of Nanosized Hematite (α-Fe2O3) Particles. J. Colloid Interface Sci. 249(2), 346–350 (2002). https://doi.org/10.1006/jcis.2001.8194
Article
CAS
Google Scholar
S. Mitra, K. Mandal, P. Anil Kumar, Temperature dependence of magnetic properties of NiFe2O4 nanoparticles embeded in SiO2 Matrix. J. Magn. Magn. Mater. 306(2), 254–259 (2006). https://doi.org/10.1016/j.jmmm.2006.03.024
Article
CAS
Google Scholar
A.W. Lounsbury, R. Wang, D.L. Plata, N. Billmyer, C. Muhich, K. Kanie, T. Sugimoto, D. Peak, J.B. Zimmerman, Journal of colloid and interface science nano-hematite facets. J. Colloid Interface Sci. 537, 465–474 (2019). https://doi.org/10.1016/j.jcis.2018.11.018
Article
CAS
Google Scholar
Z.S. Fishman, Y. He, K.R. Yang, A.W. Lounsbury, J. Zhu, T.M. Tran, J.B. Zimmerman, V.S. Batista, L.D. Pfefferle, Hard templating ultrathin polycrystalline hematite nanosheets: effect of nano-dimension on CO2 to CO Conversion: via the reverse water-gas shift reaction. Nanoscale 9(35), 12984–12995 (2017). https://doi.org/10.1039/c7nr03522e
Article
CAS
Google Scholar
S. Tong, C.A. Quinto, L. Zhang, P. Mohindra, G. Bao, Size-dependent heating of magnetic iron oxide nanoparticles. ACS Nano 11(7), 6808–6816 (2017). https://doi.org/10.1021/acsnano.7b01762
Article
CAS
Google Scholar
G.J. Muench, S. Arajs, E. Matijević, Magnetic properties of monodispersed submicromic Α-Fe2O3 particles. J. Appl. Phys. 52(3), 2493–2495 (1981). https://doi.org/10.1063/1.328978
Article
CAS
Google Scholar
C.P. Bean, J.D. Livingston, Superparamagnetism. J. Appl. Phys. 30(4), S120–S129 (1959). https://doi.org/10.1063/1.2185850
Article
Google Scholar
R.N. Bhowmik, A. Saravanan, Surface magnetism, morin transition, and magnetic dynamics in antiferromagnetic α-Fe2O3(Hematite) nanograins. J. Appl. Phys. 107, 5 (2010). https://doi.org/10.1063/1.3327433
Article
CAS
Google Scholar
R. Prozorov, Y. Yeshurun, T. Prozorov, A. Gedanken, Magnetic irreversibility and relaxation in assembly of ferromagnetic nanoparticles. Phys. Rev. B. Condens. Matter Mater. Phys. 59(10), 6956–6965 (1999). https://doi.org/10.1103/PhysRevB.59.6956
Article
CAS
Google Scholar
R.A. Borzi, S.J. Stewart, G. Punte, R.C. Mercader, M. Vasquez-Mansilla, R.D. Zysler, E.D. Cabanillas, Magnetic interactions in hematite small particles obtained by ball milling. J. Magn. Magn. Mater. 205(2), 234–240 (1999). https://doi.org/10.1016/S0304-8853(99)00495-3
Article
CAS
Google Scholar
M. Tadić, N. Čitaković, M. Panjan, Z. Stojanović, D. Marković, V. Spasojević, Synthesis. . Alloys Compd. 509(28), 7639–7644 (2011). https://doi.org/10.1016/j.jallcom.2011.04.117
Article
CAS
Google Scholar
Z. Hiroi, H. Yoshida, Y. Okamoto, M. Takigawa, Spin-1/2 Kagome Compounds: Volborthite vs Herbertsmithite. J. Phys. Conf. Ser. (2009). https://doi.org/10.1088/1742-6596/145/1/012002
Article
Google Scholar
B. Issa, I.M. Obaidat, B.A. Albiss, Y. Haik, Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 14(11), 21266–21305 (2013). https://doi.org/10.3390/ijms141121266
Article
CAS
Google Scholar
F. Bodker, S. Morup, Size dependence of the properties of hematite nanoparticles. Europhys. Lett. 52(3), 217–223 (2000)
Article
CAS
Google Scholar
K. Supattarasakda, K. Petcharoen, T. Permpool, A. Sirivat, W. Lerdwijitjarud, Control of hematite nanoparticle size and shape by the chemical precipitation method. Powder Technol. 2013(249), 353–359 (2013). https://doi.org/10.1016/j.powtec.2013.08.042
Article
CAS
Google Scholar
J. Lian, X. Duan, J. Ma, P. Peng, T. Kim, W. Zheng, Hematite (Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties. ACS Nano 3(11), 3749–3761 (2009). https://doi.org/10.1021/nn900941e
Article
CAS
Google Scholar
Y. Xu, G. Zhang, G. Du, Y. Sun, D. Gao, α-Fe2O3 nanostructures with different morphologies: additive-free synthesis, magnetic properties, and visible light photocatalytic properties. Mater. Lett. 92, 321–324 (2013). https://doi.org/10.1016/j.matlet.2012.10.101
Article
CAS
Google Scholar
S. Oyarzún, A. Tamion, F. Tournus, V. Dupuis, M. Hillenkamp, Size effects in the magnetic anisotropy of embedded cobalt nanoparticles: from shape to surface. Sci. Rep. 5(March), 16–21 (2015). https://doi.org/10.1038/srep14749
Article
CAS
Google Scholar
X. Batlle, A. Labarta, Finite-size effects in fine particles: magnetic and transport properties. J. Phys. D. Appl. Phys. 35, 6 (2002). https://doi.org/10.1088/0022-3727/35/6/201
Article
Google Scholar
B. Pacakova, S. Kubickova, G. Salas, A.R. Mantlikova, M. Marciello, M.P. Morales, D. Niznansky, J. Vejpravova, The internal structure of magnetic nanoparticles determines the magnetic response. Nanoscale 9(16), 5129–5140 (2017). https://doi.org/10.1039/C6NR07262C
Article
CAS
Google Scholar
A.E. Deatsch, B.A. Evans, Heating Effi Ciency in Magnetic Nanoparticle Hyperthermia. J. Magn. Magn. Mater. 354, 163–172 (2014). https://doi.org/10.1016/j.jmmm.2013.11.006
Article
CAS
Google Scholar
R.R. Shah, T.P. Davis, A.L. Glover, D.E. Nikles, C.S. Brazel, Journal of magnetism and magnetic materials impact of magnetic fi eld parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. J. Magn. Magn. Mater. 387, 96–106 (2015). https://doi.org/10.1016/j.jmmm.2015.03.085
Article
CAS
Google Scholar
M.A. Gonzalez-fernandez, T.E. Torres, M. Andr, M.P. Morales, C. Marquina, M.R. Ibarra, G.F. Goya, Journal of solid state chemistry magnetic nanoparticles for power absorption: optimizing size, shape and magnetic properties s-Verg E. J. Solid State Chem. 182, 2779–2784 (2009). https://doi.org/10.1016/j.jssc.2009.07.047
Article
CAS
Google Scholar
C.L. Dennis, R. Ivkov, Physics of heat generation using magnetic nanoparticles for hyperthermia. Int. J. Hypthermia 29(8), 715–729 (2013). https://doi.org/10.3109/02656736.2013.836758
Article
Google Scholar
J. Carrey, B. Mehdaoui, M. Respaud, Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J. Appl. Phys. 109, 083921 (2011). https://doi.org/10.1063/1.3551582
Article
CAS
Google Scholar
F. Arteaga-Cardona, K. Rojas-Rojas, R. Costo, M.A. Mendez-Rojas, A. Hernando, P. de la Presa, Improving the magnetic heating by disaggregating nanoparticles. J. Alloys Compd. 663, 636–644 (2016). https://doi.org/10.1016/j.jallcom.2015.10.285
Article
CAS
Google Scholar