C. Bushdid et al., Humans can discriminate more than 1 trillion olfactory stimuli. Science 343(6177), 1370–1372 (2014)
CAS
Google Scholar
Y. Niimura, Olfactory receptor multigene family in vertebrates: from the viewpoint of evolutionary genomics. Curr. Genomics 13(2), 103–114 (2012)
CAS
Google Scholar
L. Buck, R. Axel, A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65(1), 175–187 (1991)
CAS
Google Scholar
S. Kumar, M. Nehra, S. Khurana, N. Dilbaghi, V. Kumar, A. Kaushik, K.H. Kim, Aspects of point-of-care diagnostics for personalized health wellness. Int. J. Nanomed. 16, 383–402 (2021)
Google Scholar
N. Kim et al., Surface enhanced Raman scattering artificial nose for high dimensionality fingerprinting. Nat. Commun. 11(1), 207 (2020)
CAS
Google Scholar
C.V. Raman, A change of wave-length in light scattering. Nature 121(3051), 619–619 (1928)
CAS
Google Scholar
C.V. Raman, K.S. Krishnan, The negative absorption of radiation. Nature 122(3062), 12–13 (1928)
CAS
Google Scholar
K. Kneipp, H. Kneipp, Single molecule Raman scattering. Appl. Spectrosc. 60(12), 322A-334A (2006)
CAS
Google Scholar
M. Moskovits, B.D. Piorek, A brief history of surface-enhanced Raman spectroscopy and the localized surface plasmon dedicated to the memory of Richard Van Duyne (1945–2019). J. Raman Spectrosc. 52(2), 279–284 (2021)
CAS
Google Scholar
W. Li et al., Plasmonic substrates for surface enhanced Raman scattering. Anal. Chim. Acta 984, 19–41 (2017)
CAS
Google Scholar
M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99(15), 5215–5217 (1977)
CAS
Google Scholar
M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26(2), 163–166 (1974)
CAS
Google Scholar
J. Langer et al., Present and future of surface-enhanced Raman scattering. ACS Nano 14(1), 28–117 (2020)
CAS
Google Scholar
P.A. Mosier-Boss, Review of SERS substrates for chemical sensing. Nanomaterials 7(6), 142 (2017)
Google Scholar
R. Pilot et al., A review on surface-enhanced Raman scattering. Biosensors 9(2), 57 (2019)
CAS
Google Scholar
C.S. Huertas, L.M. Lechuga, Label-free plasmonic biosensors for point-of-care diagnostics: a review AU–Soler, Maria. Expert Rev. Mol. Diagn. 19(1), 71–81 (2019)
Google Scholar
S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)
Google Scholar
W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824 (2003)
CAS
Google Scholar
E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758), 189–193 (2006)
CAS
Google Scholar
A.A. Maradudin, J.R. Sambles, W.L. Barnes, Modern Plasmonics (2014).
E.N. Economou, Surface plasmons in thin films. Phys. Rev. 182(2), 539–554 (1969)
Google Scholar
S.I. Bozhevolnyi, T. Søndergaard, General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. Opt. Express 15(17), 10869–10877 (2007)
CAS
Google Scholar
S.I. Bozhevolnyi, Effective-index modeling of channel plasmon polaritons. Opt. Express 14(20), 9467–9476 (2006)
Google Scholar
Z. Han, S.I. Bozhevolnyi, in Handbook of Surface Science, ed. by N.V. Richardson, S. Holloway. Chapter 5 - Waveguiding with Surface Plasmon Polaritons, Modern Plasmonics (North-Holland, 2014)
Y. Chen et al., Excitation enhancement of CdSe quantum dots by single metal nanoparticles. Appl. Phys. Lett. 93(5), 053106 (2008)
Google Scholar
F. Tam et al., Plasmonic enhancement of molecular fluorescence. Nano Lett. 7(2), 496–501 (2007)
CAS
Google Scholar
K. Munechika et al., Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms. Nano Lett. 10(7), 2598–2603 (2010)
CAS
Google Scholar
G. Li, C.M. de Sterke, S. Palomba, Figure of merit for Kerr nonlinear plasmonic waveguides. Laser Photonics Rev. 10(4), 639–646 (2016)
Google Scholar
S. Palomba et al., Nonlinear plasmonics at planar metal surfaces. Philos. Trans. R. Soc. A 369, 3497 (2010)
Google Scholar
G. Li, C.M. de Sterke, S. Palomba, Fundamental limitations to the ultimate Kerr nonlinear performance of plasmonic waveguides. ACS Photonics 5(3), 1034–1040 (2018)
CAS
Google Scholar
J.-F. Li et al., Core-shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 117(7), 5002–5069 (2017)
CAS
Google Scholar
D.-K. Lim et al., Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 9, 60 (2009)
Google Scholar
G.-Q. Liu et al., One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering. Nanotechnology 26(18), 185702 (2015)
Google Scholar
T. Siegfried et al., Gap plasmons and near-field enhancement in closely packed sub-10 nm gap resonators. Nano Lett. 13(11), 5449–5453 (2013)
CAS
Google Scholar
K. Kneipp et al., Single-Molecule SERS Spectroscopy, in Surface-Enhanced Raman Scattering. (Springer, Berlin, 2006), pp. 261–277
Google Scholar
Q.-L. Li, B.-W. Li, Y.-Q. Wang, Surface-enhanced Raman scattering microfluidic sensor. RSC Adv. 3(32), 13015–13026 (2013)
CAS
Google Scholar
S.R. Emory, S. Nie, Near-field surface-enhanced Raman spectroscopy on single silver nanoparticles. Anal. Chem. 69(14), 2631–2635 (1997)
CAS
Google Scholar
D.L. Jeanmaire, R.P. Van Duyne, Surface raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84(1), 1–20 (1977)
CAS
Google Scholar
K. Kneipp et al., Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78(9), 1667–1670 (1997)
CAS
Google Scholar
K. Kneipp et al., Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). Phys. Rev. E 57(6), R6281–R6284 (1998)
CAS
Google Scholar
M. Kerker, D.S. Wang, H. Chew, Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles. Appl. Opt. 19(19), 3373–3388 (1980)
CAS
Google Scholar
R. Fojas, F. Claro, Theory of surface enhanced Raman scattering in colloids. J. Chem. Phys. 98(2), 998–1006 (1993)
Google Scholar
D.A. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (2002).
L. Novotny, N. van Hulst, Antennas for light. Nat. Photonics 5, 83 (2011)
CAS
Google Scholar
S.-Y. Ding et al., Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 16021 (2016)
CAS
Google Scholar
E.C. Le Ru, P.G. Etchegoin, Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy. Chem. Phys. Lett. 423(1), 63–66 (2006)
CAS
Google Scholar
K.-I. Yoshida et al., Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures. Phys. Rev. B 81(11), 115406 (2010)
Google Scholar
K. Kneipp, Y. Ozaki, Z.-Q. Tian, Recent Developments in Plasmon-Supported Raman Spectroscopy (World Scientific).
K. Kneipp, High-sensitive surface-enhanced Raman scattering of colloidal silver particles in aqueous solution. Exp. Tech. Phys. 36(2), 161–166 (1988)
CAS
Google Scholar
X. Fan, I.M. White, Optofluidic microsystems for chemical and biological analysis. Nat. Photonics 5, 591 (2011)
CAS
Google Scholar
H. Zhao et al., Stimulated Raman spectroscopy of analytes evanescently probed by a silicon nitride photonic integrated waveguide. Opt. Lett. 43(6), 1403–1406 (2018)
CAS
Google Scholar
A. Raza, et al. in Conference on Lasers and Electro-Optics. E-beam-Lithography Free Plasmonic Slot Waveguides for on-Chip Raman Spectroscopy (Optical Society of America, San Jose, 2018).
H.M.K. Wong et al., Nanoscale plasmonic slot waveguides for enhanced Raman spectroscopy. Phys. Rev. B 98(8), 085124 (2018)
CAS
Google Scholar
A. Dhakal et al., Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides. Opt. Express 23(21), 27391–27404 (2015)
CAS
Google Scholar
A. Bozzola, S. Perotto, F. De Angelis, Hybrid plasmonic-photonic whispering gallery mode resonators for sensing: a critical review. Analyst 142(6), 883–898 (2017)
CAS
Google Scholar
M. KamandarDezfouli, S. Hughes, Quantum optics model of surface-enhanced Raman spectroscopy for arbitrarily shaped plasmonic resonators. ACS Photonics 4(5), 1245–1256 (2017)
CAS
Google Scholar
V.S.C. Manga Rao, S. Hughes, Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide. Phys. Rev. B 75(20), 205437 (2007)
Google Scholar
S.Y. Li et al., Hybrid plasmonic grating slot waveguide with high field enhancement for an on-chip surface-enhanced Raman scattering sensor. Appl. Opt. 59(3), 748–755 (2020)
CAS
Google Scholar
P.C. Wuytens, A.G. Skirtach, R. Baets, On-chip surface-enhanced Raman spectroscopy using nanosphere-lithography patterned antennas on silicon nitride waveguides. Opt. Express 25(11), 12926–12934 (2017)
CAS
Google Scholar
F. Peyskens et al., Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform. ACS Photonics 3(1), 102–108 (2016)
CAS
Google Scholar
A. Dhakal et al., Single mode waveguide platform for spontaneous and surface-enhanced on-chip Raman spectroscopy. Interface Focus 6(4), 20160015 (2016)
Google Scholar
N. Turk et al., Comparison of free-space and waveguide-based SERS platforms. Nanomaterials 9(10), 1401 (2019)
CAS
Google Scholar
P.C. Wuytens et al., Gold nanodome SERS platform for label-free detection of protease activity. Faraday Discuss. 205, 345–361 (2017)
CAS
Google Scholar
A. Raza et al., ALD assisted nanoplasmonic slot waveguide for on-chip enhanced Raman spectroscopy. APL Photonics 3(11), 116105 (2018)
Google Scholar
Y. Li et al., Surface-enhanced Raman spectroscopy based on plasmonic slot waveguides with free-space oblique illumination. IEEE J. Quantum Electron. 56(1), 1–8 (2019)
Google Scholar
K.H. Hopmann et al., Determining the absolute configuration of two marine compounds using vibrational chiroptical spectroscopy. J. Org. Chem. 77(2), 858–869 (2012)
CAS
Google Scholar
J. Haesler et al., Absolute configuration of chirally deuterated neopentane. Nature 446(7135), 526–529 (2007)
CAS
Google Scholar
S. Efrima, The effect of large electric field gradients on the Raman optical activity of molecules adsorbed on metal surfaces. Chem. Phys. Lett. 102(1), 79–82 (1983)
CAS
Google Scholar
S. Efrima, Raman optical activity of molecules adsorbed on metal surfaces: theory. J. Chem. Phys. 83(3), 1356–1362 (1985)
CAS
Google Scholar
S. Abdali, Observation of SERS effect in Raman optical activity, a new tool for chiral vibrational spectroscopy. J. Raman Spectrosc. 37(12), 1341–1345 (2006)
CAS
Google Scholar
B.G. Janesko, G.E. Scuseria, Surface enhanced Raman optical activity of molecules on orientationally averaged substrates: theory of electromagnetic effects. J. Chem. Phys. 125(12), 124704 (2006)
Google Scholar
M. Schaferling et al., Helical plasmonic nanostructures as prototypical chiral near-field sources (vol 1, pg 530, 2014). ACS Photonics 3(10), 2000–2002 (2016)
CAS
Google Scholar
M. Sun et al., Remotely excited Raman optical activity using chiral plasmon propagation in Ag nanowires. Light Sci. Appl. 2(11), e112 (2013)
CAS
Google Scholar
M. Schaferling, X.H. Yin, H. Giessen, Formation of chiral fields in a symmetric environment. Opt. Express 20(24), 26326–26336 (2012)
Google Scholar
X.R. Tian, Y.R. Fang, M.T. Sun, Formation of enhanced uniform chiral fields in symmetric dimer nanostructures. Sci. Rep. 5, 1–12 (2015)
CAS
Google Scholar
X.-S. Zheng et al., Label-free SERS in biological and biomedical applications: recent progress, current challenges and opportunities. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 197, 56–77 (2018)
CAS
Google Scholar
F. De Angelis et al., Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat. Photonics 5(11), 682–687 (2011)
Google Scholar
J.-A. Huang et al., SERS discrimination of single DNA bases in single oligonucleotides by electro-plasmonic trapping. Nat. Commun. 10(1), 5321 (2019)
Google Scholar
S. Perotto et al., Toward all on chip optical detection in the few molecule regime. Biosens. Bioelectron. 169, 112600 (2020)
CAS
Google Scholar