M.P. Stewart, R. Langer, K.F. Jensen, Intracellular delivery by membrane disruption: mechanisms strategies, and concepts. Chem. Rev. 118, 7409 (2018)
CAS
Google Scholar
R. Xiong, K. Raemdonck, K. Peynshaert, I. Lentacker, I.D. Cock, J. Demeester, S.C.D. Smedt, A.G. Skirtach, K. Braeckmans, Comparison of gold nanoparticle mediated photoporation: vapor nanobubbles outperform direct heating for delivering macromolecules in live cells. ACS Nano 8, 6288 (2014)
CAS
Google Scholar
L. Raes, S. Stremersch, J.C. Fraire, T. Brans, G. Goetgeluk, S.D. Munter, L.V. Hoecke, R. Verbeke, J.V. Hoeck, R. Xiong, X. Saelens, B. Vandekerckhove, S.D. Smedt, K. Raemdonck, K. Braeckmans, Intracellular delivery of MRNA in adherent and suspension cells by vapor nanobubble photoporation. Nanomicro. Lett. 12, 185 (2020)
CAS
Google Scholar
R. Xiong, C. Drullion, P. Verstraelen, J. Demeester, A.G. Skirtach, C. Abbadie, W.H.D. Vos, S.C.D. Smedt, K. Braeckmans, Fast spatial-selective delivery into live cells. J. Control. Release 266, 198 (2017)
CAS
Google Scholar
A. Harizaj, F.V. Hauwermeiren, S. Stremersch, R.D. Rycke, H.D. Keersmaecker, T. Brans, J.C. Fraire, K. Grauwen, S.C.D. Smedt, I. Lentacker, M. Lamkanfi, K. Braeckmans, Nanoparticle-sensitized photoporation enables inflammasome activation studies in targeted single cells. Nanoscale 13, 6592 (2021)
CAS
Google Scholar
R. Xiong, D. Hua, J.V. Hoeck, D. Berdecka, L. Leger, S.D. Munter, J.C. Fraire, L. Raes, A. Harizaj, F. Sauvage, G. Goetgeluk, M. Pille, J. Aalders, J. Belza, T.V. Acker, E. Bolea-Fernandez, T. Si, F. Vanhaecke, W.H.D. Vos, B. Vandekerckhove, J. van Hengel, K. Raemdonck, C. Huang, S.C.D. Smedt, K. Braeckmans, Photothermal nanofibres enable safe engineering of therapeutic cells. Nat. Nanotechnol. 16, 1281 (2021)
CAS
Google Scholar
M. Zhang, Z. Ma, N. Selliah, G. Weiss, A. Genin, T.H. Finkel, R.Q. Cron, The impact of nucleofection(R) on the activation state of primary human CD4 T cells. J. Immunol. Methods 408, 123 (2014)
CAS
Google Scholar
K. Stadnicka, M. Debowska, J. Debski, A. Bajek, Secreting oviduct epithelial cells of coturnix Coturnix japonica (QOEC) and changes to their proteome after nonviral transfection. J. Cell. Biochem. 120, 12724 (2019)
CAS
Google Scholar
F.C. Los, T.M. Randis, R.V. Aroian, A.J. Ratner, Role of pore-forming toxins in bacterial infectious diseases. Microbiol. Mol. Biol. Rev. 77, 173 (2013)
CAS
Google Scholar
I. Iacovache, M. Bischofberger, F.G. van der Goot, Structure and assembly of pore-forming proteins. Curr. Opin. Struct. Biol. 20, 241 (2010)
CAS
Google Scholar
H. Ostolaza, D. Gonzalez-Bullon, K.B. Uribe, C. Martin, J. Amuategi, X. Fernandez-Martinez, Membrane permeabilization by pore-forming RTX toxins: what kind of lesions do these toxins form? Toxins 11(6), 354 (2019). https://doi.org/10.3390/toxins11060354
Article
CAS
Google Scholar
E.M. Hotze, R.K. Tweten, Membrane assembly of the cholesterol-dependent cytolysin pore complex. Biochim. Biophys. Acta 1818, 1028 (2012)
CAS
Google Scholar
I. Walev, S.C. Bhakdi, F. Hofmann, N. Djonder, A. Valeva, K. Aktories, S. Bhakdi, Delivery of proteins into living cells by reversible membrane permeabilization with streptolysin-O. Proc. Natl. Acad. Sci. USA 98, 3185 (2001)
CAS
Google Scholar
H.E. Rajapakse, N. Gahlaut, S. Mohandessi, D. Yu, J.R. Turner, L.W. Miller, Time-resolved luminescence resonance energy transfer imaging of protein-protein interactions in living cells. Proc. Natl. Acad. Sci. USA 107, 13582 (2010)
CAS
Google Scholar
K.W. Teng, P. Ren, P.R. Selvin, Delivery of fluorescent probes using streptolysin o for fluorescence microscopy of living cells. Curr. Protoc. Protein Sci. 93, e60 (2018)
Google Scholar
Y.T. Chow, S. Chen, R. Wang, C. Liu, C.W. Kong, R.A. Li, S.H. Cheng, D. Sun, Single cell transfection through precise microinjection with quantitatively controlled injection volumes. Sci. Rep. 6, 24127 (2016)
CAS
Google Scholar
T. Hayashi, M. Nakajima, M. Kyakuno, K. Doi, I. Manabe, S. Azuma, T. Takeuchi, Advanced microinjection protocol for gene manipulation using the model newt Pleurodeles waltl. Int. J. Dev. Biol. 63, 281 (2019)
CAS
Google Scholar
M.R. Capecchi, High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22, 479 (1980)
CAS
Google Scholar
I. Obataya, C. Nakamura, S. Han, N. Nakamura, J. Miyake, Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle. Nano Lett. 5, 27 (2005)
CAS
Google Scholar
X. Xie, A.M. Xu, M.R. Angle, N. Tayebi, P. Verma, N.A. Melosh, Mechanical model of vertical nanowire cell penetration. Nano Lett. 13, 6002 (2013)
CAS
Google Scholar
W. Kim, J.K. Ng, M.E. Kunitake, B.R. Conklin, P. Yang, Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 129, 7228 (2007)
CAS
Google Scholar
W. Zhao, L. Hanson, H.Y. Lou, M. Akamatsu, P.D. Chowdary, F. Santoro, J.R. Marks, A. Grassart, D.G. Drubin, Y. Cui, B. Cui, Nanoscale manipulation of membrane curvature for probing endocytosis in live cells. Nat. Nanotechnol. 12, 750 (2017)
CAS
Google Scholar
S. Gopal, C. Chiappini, J. Penders, V. Leonardo, H. Seong, S. Rothery, Y. Korchev, A. Shevchuk, M.M. Stevens, Porous silicon nanoneedles modulate endocytosis to deliver biological payloads. Adv. Mater. 31, e1806788 (2019)
Google Scholar
L. Schmiderer, A. Subramaniam, K. Zemaitis, A. Backstrom, D. Yudovich, S. Soboleva, R. Galeev, C.N. Prinz, J. Larsson, M. Hjort, Efficient and nontoxic biomolecule delivery to primary human hematopoietic stem cells using nanostraws. Proc. Natl. Acad. Sci. USA 117, 21267 (2020)
CAS
Google Scholar
Y. Wang, Y. Yang, L. Yan, S.Y. Kwok, W. Li, Z. Wang, X. Zhu, G. Zhu, W. Zhang, X. Chen, P. Shi, Poking cells for efficient vector-free intracellular delivery. Nat. Commun. 5, 4466 (2014)
CAS
Google Scholar
D. Magnin, V. Callegari, S. Matefi-Tempfli, M. Matefi-Tempfli, K. Glinel, A.M. Jonas, S. Demoustier-Champagne, Functionalization of magnetic nanowires by charged biopolymers. Biomacromol 9, 2517 (2008)
CAS
Google Scholar
P. Sharma, H.A. Cho, J.W. Lee, W.S. Ham, B.C. Park, N.H. Cho, Y.K. Kim, Efficient intracellular delivery of biomacromolecules employing clusters of zinc oxide nanowires. Nanoscale 9, 15371 (2017)
CAS
Google Scholar
A.M. Xu, D.S. Wang, P. Shieh, Y. Cao, N.A. Melosh, Direct Intracellular delivery of cell-impermeable probes of protein glycosylation by using nanostraws. ChemBioChem 18, 623 (2017)
CAS
Google Scholar
B. Zhang, Y. Shi, D. Miyamoto, K. Nakazawa, T. Miyake, Nanostraw membrane stamping for direct delivery of molecules into adhesive cells. Sci. Rep. 9, 6806 (2019)
Google Scholar
T.K. Wong, E. Neumann, Electric field mediated gene transfer. Biochem. Biophys. Res. Commun. 107, 584 (1982)
CAS
Google Scholar
A. Paganin-Gioanni, E. Bellard, J.M. Escoffre, M.P. Rols, J. Teissie, M. Golzio, Direct visualization at the single-cell level of SiRNA electrotransfer into cancer cells. Proc. Natl. Acad. Sci. USA 108, 10443 (2011)
CAS
Google Scholar
Q. Hu, R.P. Joshi, Transmembrane voltage analyses in spheroidal cells in response to an intense ultrashort electrical pulse. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 79, 11901 (2009)
CAS
Google Scholar
J. Weiss, J. Garnon, D. Dalili, R.L. Cazzato, G. Koch, P. Auloge, A. Gangi, The feasibility of combined microwave ablation and irreversible electroporation for central liver metastase. Cardiovasc. Intervent. Radiol. 44, 999 (2021)
Google Scholar
P.J. Canatella, J.F. Karr, J.A. Petros, M.R. Prausnitz, Quantitative study of electroporation-mediated molecular uptake and cell viability. Biophys. J. 80, 755 (2001)
CAS
Google Scholar
V.L. Sukhorukov, R. Reuss, D. Zimmermann, C. Held, K.J. Muller, M. Kiesel, P. Gessner, A. Steinbach, W.A. Schenk, E. Bamberg, U. Zimmermann, Surviving high-intensity field pulses: strategies for improving robustness and performance of electrotransfection and electrofusion. J. Membr. Biol. 206, 187 (2005)
CAS
Google Scholar
M.L. Yarmush, A. Golberg, G. Sersa, T. Kotnik, D. Miklavcic, Electroporation-based technologies for medicine: principles applications, and challenges. Annu. Rev. Biomed. Eng. 16, 295 (2014)
CAS
Google Scholar
T. Geng, C. Lu, Microfluidic electroporation for cellular analysis and delivery. Lab Chip 13, 3803 (2013)
CAS
Google Scholar
K. Tachibana, T. Uchida, K. Ogawa, N. Yamashita, K. Tamura, Induction of cell-membrane porosity by ultrasound. Lancet 353, 1409 (1999)
CAS
Google Scholar
A. van Wamel, K. Kooiman, M. Harteveld, M. Emmer, F.J. ten Cate, M. Versluis, N. de Jong, Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J. Control. Release 112, 149 (2006)
Google Scholar
A. Delalande, S. Kotopoulis, M. Postema, P. Midoux, C. Pichon, Sonoporation: mechanistic insights and ongoing challenges for gene transfer. Gene 525, 191 (2013)
CAS
Google Scholar
K. Tachibana, T. Uchida, S. Hisano, E. Morioka, Eliminating adult T-cell leukaemia cells with ultrasound. Lancet 349, 325 (1997)
CAS
Google Scholar
M.M. Forbes, R.L. Steinberg, D.W. O’Brien Jr., Examination of inertial cavitation of optison in producing sonoporation of Chinese hamster ovary cells. Ultrasound Med. Biol. 34, 2009 (2008)
Google Scholar
I. Lentacker, I.D. Cock, R. Deckers, S.C.D. Smedt, C.T. Moonen, Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv. Drug. Deliv. Rev. 72, 49 (2014)
CAS
Google Scholar
Z. Fan, R.E. Kumon, C.X. Deng, Mechanisms of microbubble-facilitated sonoporation for drug and gene delivery. Ther. Deliv. 5, 467 (2014)
CAS
Google Scholar
W.J. Greenleaf, M.E. Bolander, G. Sarkar, M.B. Goldring, J.F. Greenleaf, Artificial cavitation nuclei significantly enhance acoustically induced cell transfection. Ultrasound Med. Biol. 24, 587 (1998)
CAS
Google Scholar
Y. Liu, J. Yan, M.R. Prausnitz, Can ultrasound enable efficient intracellular uptake of molecules? A retrospective literature review and analysis. Ultrasound Med. Biol. 38, 876 (2012)
Google Scholar
M.A. Oberli, C.M. Schoellhammer, R. Langer, D. Blankschtein, Ultrasound-enhanced transdermal delivery: recent advances and future challenges. Ther. Deliv. 5, 843 (2014)
CAS
Google Scholar
A. Sharei, J. Zoldan, A. Adamo, W.Y. Sim, N. Cho, E. Jackson, S. Mao, S. Schneider, M.J. Han, A. Lytton-Jean, P.A. Basto, S. Jhunjhunwala, J. Lee, D.A. Heller, J.W. Kang, G.C. Hartoularos, K.S. Kim, D.G. Anderson, R. Langer, K.F. Jensen, A vector-free microfluidic platform for intracellular delivery. Proc. Natl. Acad. Sci. USA 110, 2082 (2013)
CAS
Google Scholar
J. Lee, A. Sharei, W.Y. Sim, A. Adamo, R. Langer, K.F. Jensen, M.G. Bawendi, Nonendocytic delivery of functional engineered nanoparticles into the cytoplasm of live cells using a novel high-throughput microfluidic device. Nano Lett. 12, 6322 (2012)
CAS
Google Scholar
A. Sharei, R. Trifonova, S. Jhunjhunwala, G.C. Hartoularos, A.T. Eyerman, A. Lytton-Jean, M. Angin, S. Sharma, R. Poceviciute, S. Mao, M. Heimann, S. Liu, T. Talkar, O.F. Khan, M. Addo, U.H. von Andrian, D.G. Anderson, R. Langer, J. Lieberman, K.F. Jensen, Ex vivo cytosolic delivery of functional macromolecules to immune cells. PLoS ONE 10, e0118803 (2015)
Google Scholar
A. Sharei, N. Cho, S. Mao, E. Jackson, R. Poceviciute, A. Adamo, J. Zoldan, R. Langer, K.F. Jensen, Cell squeezing as a robust, microfluidic intracellular delivery platform. J. Vis. Exp. 81, e50980 (2013). https://doi.org/10.3791/50980
Article
CAS
Google Scholar
T. DiTommaso, J.M. Cole, L. Cassereau, J.A. Bugge, J.L.S. Hanson, D.T. Bridgen, B.D. Stokes, S.M. Loughhead, B.A. Beutel, J.B. Gilbert, K. Nussbaum, A. Sorrentino, J. Toggweiler, T. Schmidt, G. Gyuelveszi, H. Bernstein, A. Sharei, Cell engineering with microfluidic squeezing preserves functionality of primary immune cells in vivo. Proc. Natl. Acad. Sci. 115, E10907 (2018)
CAS
Google Scholar
M.T. Saung, A. Sharei, V.A. Adalsteinsson, N. Cho, T. Kamath, C. Ruiz, J. Kirkpatrick, N. Patel, M. Mino-Kenudson, S.P. Thayer, R. Langer, K.F. Jensen, A.S. Liss, J.C. Love, A size-selective intracellular delivery platform. Small 12, 5873 (2016)
CAS
Google Scholar
Y. Deng, M. Kizer, M. Rada, J. Sage, X. Wang, D.J. Cheon, A.J. Chung, Intracellular delivery of nanomaterials via an inertial microfluidic cell hydroporator. Nano Lett. 18, 2705 (2018)
CAS
Google Scholar
D. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C.T. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, K. Dholakia, Femtosecond optical transfection of cells: viability and efficiency. Opt. Express 14, 7125 (2006)
CAS
Google Scholar
J. Baumgart, W. Bintig, A. Ngezahayo, S. Willenbrock, H.M. Escobar, W. Ertmer, H. Lubatschowski, A. Heisterkamp, Quantified femtosecond laser based opto-perforation of living GFSHR-17 and MTH53 a cells. Opt. Express 16, 3021 (2008)
CAS
Google Scholar
A.A. Davis, M.J. Farrar, N. Nishimura, M.M. Jin, C.B. Schaffer, Optoporation and genetic manipulation of cells using femtosecond laser pulses. Biophys. J. 105, 862 (2013)
CAS
Google Scholar
U.K. Tirlapur, K. Konig, Targeted transfection by femtosecond laser. Nature 418, 290 (2002)
CAS
Google Scholar
C.P. Yao, Z.X. Zhang, R. Rahmanzadeh, G. Huettmann, Laser-based gene transfection and gene therapy. IEEE Trans. Nanobiosci. 7, 111 (2008)
CAS
Google Scholar
M. Raab, M. Gentili, H. de Belly, H.R. Thiam, P. Vargas, A.J. Jimenez, F. Lautenschlaeger, R. Voituriez, A.M. Lennon-Dumenil, N. Manel, M. Piel, ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Sci. New York N Y 352, 359 (2016)
CAS
Google Scholar
D. Heinemann, S. Kalies, M. Schomaker, W. Ertmer, H.M. Escobar, H. Meyer, T. Ripken, Delivery of proteins to mammalian cells via gold nanoparticle mediated laser transfection. Nanotechnology 25, 245101 (2014)
CAS
Google Scholar
J. Liu, R. Xiong, T. Brans, S. Lippens, E. Parthoens, F.C. Zanacchi, R. Magrassi, S.K. Singh, S. Kurungot, S. Szunerits, H. Bove, M. Ameloot, J.C. Fraire, E. Teirlinck, S.K. Samal, R. Rycke, G. Houthaeve, S.C.D. Smedt, R. Boukherroub, K. Braeckmans, Repeated photoporation with graphene quantum dots enables homogeneous labeling of live cells with extrinsic markers for fluorescence microscopy. Light Sci. Appl. 7, 47 (2018)
Google Scholar
R. Xiong, S.K. Samal, J. Demeester, A.G. Skirtach, S.C.D. Smedt, K. Braeckmans, Laser-assisted photoporation: fundamentals technological advances and applications. Adv. Phys. X 1, 596 (2016)
CAS
Google Scholar
A.S. Urban, M. Fedoruk, M.R. Horton, J.O. Radler, F.D. Stefani, J. Feldmann, Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles. Nano Lett. 9, 2903 (2009)
CAS
Google Scholar
D. Lapotko, Optical excitation and detection of vapor bubbles around plasmonic nanoparticles. Opt. Express 17, 2538 (2009)
CAS
Google Scholar
R. Xiong, F. Joris, S. Liang, R.D. Rycke, S. Lippens, J. Demeester, A. Skirtach, K. Raemdonck, U. Himmelreich, S.C.D. Smedt, K. Braeckmans, Cytosolic delivery of nanolabels prevents their asymmetric inheritance and enables extended quantitative in vivo cell imaging. Nano Lett. 16, 5975 (2016)
CAS
Google Scholar
L. Wayteck, R. Xiong, K. Braeckmans, S.C.D. Smedt, K. Raemdonck, Comparing photoporation and nucleofection for delivery of small interfering RNA to cytotoxic T cells. J. Control. Release 267, 154 (2017)
CAS
Google Scholar
M. Schomaker, D. Heinemann, S. Kalies, S. Willenbrock, S. Wagner, I. Nolte, T. Ripken, H.M. Escobar, H. Meyer, A. Heisterkamp, Characterization of nanoparticle mediated laser transfection by femtosecond laser pulses for applications in molecular medicine. J. Nanobiotechnol. 13, 10 (2015)
Google Scholar
E.Y. Lukianova-Hleb, D.S. Wagner, M.K. Brenner, D.O. Lapotko, Cell-specific transmembrane injection of molecular cargo with gold nanoparticle-generated transient plasmonic nanobubbles. Biomaterials 33, 5441 (2012)
CAS
Google Scholar
T.S. Santra, S. Kar, T.C. Chen, C.W. Chen, J. Borana, M.C. Lee, F.G. Tseng, Near-infrared nanosecond-pulsed laser-activated highly efficient intracellular delivery mediated by nano-corrugated mushroom-shaped gold-coated polystyrene nanoparticles. Nanoscale 12, 12057 (2020)
CAS
Google Scholar
L.V. Hoecke, L. Raes, S. Stremersch, T. Brans, J.C. Fraire, R. Roelandt, W. Declercq, P. Vandenabeele, K. Raemdonck, K. Braeckmans, X. Saelens, Delivery of mixed-lineage kinase domain-like protein by vapor nanobubble photoporation induces necroptotic-like cell death in tumor cells. Int. J. Mol. Sci. 20(17), 4254 (2019). https://doi.org/10.3390/ijms20174254
Article
CAS
Google Scholar
C. Yao, F. Rudnitzki, Y. He, Z. Zhang, G. Huttmann, R. Rahmanzadeh, Cancer cell-specific protein delivery by optoporation with laser-irradiated gold nanorods. J. Biophotonics 13, e202000017 (2020)
CAS
Google Scholar
M. Schomaker, D. Killian, S. Willenbrock, D. Heinemann, S. Kalies, A. Ngezahayo, I. Nolte, T. Ripken, C. Junghanss, H. Meyer, H.M. Escobar, A. Heisterkamp, Biophysical effects in off-resonant gold nanoparticle mediated (GNOME) laser transfection of cell lines primary- and stem cells using Fs laser pulses. J. Biophotonics 8, 646 (2015)
CAS
Google Scholar
G. Houthaeve, R. Xiong, J. Robijns, B. Luyckx, Y. Beulque, T. Brans, C. Campsteijn, S.K. Samal, S. Stremersch, S.C.D. Smedt, K. Braeckmans, W.H.D. Vos, Targeted perturbation of nuclear envelope integrity with vapor nanobubble-mediated photoporation. ACS Nano 12, 7791 (2018)
CAS
Google Scholar
N. Saklayen, M. Huber, M. Madrid, V. Nuzzo, D.I. Vulis, W. Shen, J. Nelson, A.A. McClelland, A. Heisterkamp, E. Mazur, Intracellular delivery using nanosecond-laser excitation of large-area plasmonic substrates. ACS Nano 11, 3671 (2017)
CAS
Google Scholar
Y.C. Wu, T.H. Wu, D.L. Clemens, B.Y. Lee, X. Wen, M.A. Horwitz, M.A. Teitell, P.Y. Chiou, Massively parallel delivery of large cargo into mammalian cells with light pulses. Nat. Methods 12, 439 (2015)
CAS
Google Scholar
R. Xiong, D. Hua, J.V. Hoeck, D. Berdecka, L. Léger, S.D. Munter, J.C. Fraire, L. Raes, A. Harizaj, F. Sauvage, G. Goetgeluk, M. Pille, J. Aalders, J. Belza, T.V. Acker, E. Bolea-Fernandez, T. Si, F. Vanhaecke, W.H.D. Vos, B. Vandekerckhove, J. van Hengel, K. Raemdonck, C. Huang, S.C.D. Smedt, K. Braeckmans, Photothermal nanofibers enable safe engineering of therapeutic cells. Nat. Nanotechnol. 16, 1281 (2021)
CAS
Google Scholar
D.E. Golan, M.R. Alecio, W.R. Veatch, R.R. Rando, Lateral mobility of phospholipid and cholesterol in the human erythrocyte membrane: effects of protein-lipid interactions. Biochemistry 23, 332 (1984)
CAS
Google Scholar
N.L. Thompson, D. Axelrod, Reduced lateral mobility of a fluorescent lipid probe in cholesterol-depleted erythrocyte membrane. Biochim. Biophys. Acta 597, 155 (1980)
CAS
Google Scholar
D.E. Ingber, N. Wang, D. Stamenovic, Tensegrity cellular biophysics, and the mechanics of living systems. Rep. Prog. Phys. 77, 46603 (2014)
Google Scholar
A. Horn, J.K. Jaiswal, Cellular mechanisms and signals that coordinate plasma membrane repair. Cell Mol. Life. Sci. 75, 3751 (2018)
CAS
Google Scholar
S.T. Cooper, P.L. McNeil, Membrane repair: mechanisms and pathophysiology. Physiol. Rev. 95, 1205 (2015)
CAS
Google Scholar
N.W. Andrews, P.E. Almeida, M. Corrotte, Damage control: cellular mechanisms of plasma membrane repair. Trends Cell. Biol. 24, 734 (2014)
CAS
Google Scholar
A. Bouter, C. Gounou, R. Berat, S. Tan, B. Gallois, T. Granier, B.L. d’Estaintot, E. Poschl, B. Brachvogel, A.R. Brisson, Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair. Nat. Commun. 2, 270 (2011)
Google Scholar
C. Cai, H. Masumiya, N. Weisleder, N. Matsuda, M. Nishi, M. Hwang, J.K. Ko, P. Lin, A. Thornton, X. Zhao, Z. Pan, S. Komazaki, M. Brotto, H. Takeshima, J. Ma, MG53 nucleates assembly of cell membrane repair machinery. Nat. Cell Biol. 11, 56 (2009)
CAS
Google Scholar
T.L. Boye, K. Maeda, W. Pezeshkian, S.L. Sonder, S.C. Haeger, V. Gerke, A.C. Simonsen, J. Nylandsted, Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair. Nat. Commun. 8, 1623 (2017)
Google Scholar
T.L. Boye, J.C. Jeppesen, K. Maeda, W. Pezeshkian, V. Solovyeva, J. Nylandsted, A.C. Simonsen, Annexins induce curvature on free-edge membranes displaying distinct morphologies. Sci. Rep. 8, 10309 (2018)
Google Scholar
K. Miyake, P.L. McNeil, Vesicle accumulation and exocytosis at sites of plasma membrane disruption. J. Cell Biol. 131, 1737 (1995)
CAS
Google Scholar
P.L. McNeil, S.S. Vogel, K. Miyake, M. Terasaki, Patching plasma membrane disruptions with cytoplasmic membrane. J. Cell Sci. 113(Pt 11), 1891 (2000)
CAS
Google Scholar
R. Carmeille, F. Bouvet, S. Tan, C. Croissant, C. Gounou, K. Mamchaoui, V. Mouly, A.R. Brisson, A. Bouter, Membrane repair of human skeletal muscle cells requires annexin-A5. Biochim. Biophys. Acta 1863, 2267 (2016)
CAS
Google Scholar
C.A. Mandato, W.M. Bement, Contraction and polymerization cooperate to assemble and close actomyosin rings around xenopus oocyte wounds. J. Cell Biol. 154, 785 (2001)
CAS
Google Scholar
L.M. Godin, J. Vergen, Y.S. Prakash, R.E. Pagano, R.D. Hubmayr, Spatiotemporal dynamics of actin remodeling and endomembrane trafficking in alveolar epithelial type I cell wound healing. Am. J. Physiol. Lung Cell Mol. Physiol. 300, L615 (2011)
CAS
Google Scholar
S.C. Hager, J. Nylandsted, Annexins: players of single cell wound healing and regeneration. Commun. Integr. Biol. 12, 162 (2019)
Google Scholar
A.M. Moe, A.E. Golding, W.M. Bement, Cell healing: calcium, repair and regeneration. Semin. Cell Dev. Biol. 45, 18 (2015)
CAS
Google Scholar
M. Corrotte, M.C. Fernandes, C. Tam, N.W. Andrews, Toxin pores endocytosed during plasma membrane repair traffic into the lumen of MVBs for degradation. Traffic 13, 483 (2012)
CAS
Google Scholar
J. Thiery, D. Keefe, S. Saffarian, D. Martinvalet, M. Walch, E. Boucrot, T. Kirchhausen, J. Lieberman, Perforin activates clathrin- and dynamin-dependent endocytosis, which is required for plasma membrane repair and delivery of granzyme B for granzyme-mediated apoptosis. Blood 115, 1582 (2010)
CAS
Google Scholar
V. Idone, C. Tam, J.W. Goss, D. Toomre, M. Pypaert, N.W. Andrews, Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis. J. Cell Biol. 180, 905 (2008)
CAS
Google Scholar
A.J. Jimenez, P. Maiuri, J. Lafaurie-Janvore, S. Divoux, M. Piel, F. Perez, ESCRT machinery is required for plasma membrane repair. Science 343, 1247136 (2014)
Google Scholar
A.P. Atanassoff, H. Wolfmeier, R. Schoenauer, A. Hostettler, A. Ring, A. Draeger, E.B. Babiychuk, Microvesicle shedding and lysosomal repair fulfill divergent cellular needs during the repair of streptolysin O-induced plasmalemmal damage. PloS ONE 9, e89743 (2014)
Google Scholar
D. Keefe, L. Shi, S. Feske, R. Massol, F. Navarro, T. Kirchhausen, J. Lieberman, Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis. Immunity 23, 249 (2005)
CAS
Google Scholar
J. Hagmann, D. Dagan, M.M. Burger, Release of endosomal content induced by plasma membrane tension: video image intensification time lapse analysis. Exp. Cell Res. 198, 298 (1992)
CAS
Google Scholar
J. Dai, H.P. Ting-Beall, M.P. Sheetz, The secretion-coupled endocytosis correlates with membrane tension changes in RBL 2H3 cells. J. Gen. Physiol 110, 1 (1997)
CAS
Google Scholar
T. Togo, T.B. Krasieva, R.A. Steinhardt, A decrease in membrane tension precedes successful cell-membrane repair. Mol. Biol. Cell 11, 4339 (2000)
CAS
Google Scholar
M. Nakamura, A.N.M. Dominguez, J.R. Decker, A.J. Hull, J.M. Verboon, S.M. Parkhurst, Into the breach: how cells cope with wounds. Open Biol. 8(10), 180135 (2018). https://doi.org/10.1098/rsob.180135
Article
CAS
Google Scholar
A.D. Blazek, B.J. Paleo, N. Weisleder, Plasma membrane repair: a central process for maintaining cellular homeostasis. Physiology 30, 438 (2015)
CAS
Google Scholar
R. Baaske, M. Richter, N. Moller, S. Ziesemer, I. Eiffler, C. Muller, J.P. Hildebrandt, ATP release from human airway epithelial cells exposed to Staphylococcus aureus alpha-toxin. Toxins 8(12), 365 (2016). https://doi.org/10.3390/toxins8120365
Article
CAS
Google Scholar
M.P. Rols, J. Teissie, Electropermeabilization of mammalian cells quantitative analysis of the phenomenon. Biophys. J. 58, 1089 (1990)
CAS
Google Scholar
X. Chen, J.M. Wan, A.C. Yu, Sonoporation as a cellular stress: induction of morphological repression and developmental delays. Ultrasound Med. Biol. 39, 1075 (2013)
Google Scholar
W. Zhong, W.H. Sit, J.M. Wan, A.C. Yu, Sonoporation induces apoptosis and cell cycle arrest in human promyelocytic leukemia cells. Ultrasound Med. Biol. 37, 2149 (2011)
Google Scholar
M.R. Gonzalez, M. Bischofberger, B. Freche, S. Ho, R.G. Parton, F.G. van der Goot, Pore-forming toxins induce multiple cellular responses promoting survival. Cell Microbiol. 13, 1026 (2011)
CAS
Google Scholar
B.R. Anderson, K. Kariko, D. Weissman, Nucleofection induces transient EIF2alpha phosphorylation by GCN2 and PERK. Gene Ther. 20, 136 (2013)
CAS
Google Scholar
P.L. McNeil, R.A. Steinhardt, Plasma membrane disruption: repair prevention, adaptation. Annu. Rev. Cell Dev. Biol. 19, 697 (2003)
CAS
Google Scholar
C.S. Spaeth, E.A. Boydston, L.R. Figard, A. Zuzek, G.D. Bittner, A model for sealing plasmalemmal damage in neurons and other eukaryotic cells. J. Neurosci. 30, 15790 (2010)
CAS
Google Scholar
X. Cheng, X. Zhang, Q. Gao, M.A. Samie, M. Azar, W.L. Tsang, L. Dong, N. Sahoo, X. Li, Y. Zhuo, A.G. Garrity, X. Wang, M. Ferrer, J. Dowling, L. Xu, R. Han, H. Xu, The intracellular Ca(2)(+) channel MCOLN1 is required for sarcolemma repair to prevent muscular dystrophy. Nat. Med. 20, 1187 (2014)
CAS
Google Scholar
X.P. Dong, D. Shen, X. Wang, T. Dawson, X. Li, Q. Zhang, X. Cheng, Y. Zhang, L.S. Weisman, M. Delling, H. Xu, PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome. Nat. Commun. 1, 38 (2010)
Google Scholar
J. Baumgart, W. Bintig, A. Ngezahayo, H. Lubatschowski, A. Heisterkamp, Fs-laser-induced Ca2+ concentration change during membrane perforation for cell transfection. Opt. Express 18, 2219 (2010)
CAS
Google Scholar
Z. Fan, R.E. Kumon, J. Park, C.X. Deng, Intracellular delivery and calcium transients generated in sonoporation facilitated by microbubbles. J. Control. Release 142, 31 (2010)
CAS
Google Scholar
L.J. Juffermans, P.A. Dijkmans, R.J. Musters, C.A. Visser, O. Kamp, Transient permeabilization of cell membranes by ultrasound-exposed microbubbles is related to formation of hydrogen peroxide. Am. J. Physiol. Heart Circ. Physiol. 291, H1595 (2006)
CAS
Google Scholar
S. Johannsmeier, P. Heeger, M. Terakawa, S. Kalies, A. Heisterkamp, T. Ripken, D. Heinemann, Gold nanoparticle-mediated laser stimulation induces a complex stress response in neuronal cells. Sci. Rep. 8, 6533 (2018)
Google Scholar
C.S. Spaeth, J.D. Fan, E.B. Spaeth, T. Robison, R.W. Wilcott, G.D. Bittner, Neurite transection produces cytosolic oxidation, which enhances plasmalemmal repair. J. Neurosci. Res. 90, 945 (2012)
CAS
Google Scholar
A. Horn, J.H.V. der Meulen, A. Defour, M. Hogarth, S.C. Sreetama, A. Reed, L. Scheffer, N.S. Chandel, J.K. Jaiswal, Mitochondrial redox signaling enables repair of injured skeletal muscle cells. Sci. Signal. 10(495), eaaj1978 (2017). https://doi.org/10.1126/scisignal.aaj1978
Article
CAS
Google Scholar
A.C. Howard, A.K. McNeil, P.L. McNeil, Promotion of plasma membrane repair by vitamin E. Nat. Commun. 2, 597 (2011)
Google Scholar
M. Labazi, A.K. McNeil, T. Kurtz, T.C. Lee, R.B. Pegg, J.P.F. Angeli, M. Conrad, P.L. McNeil, The antioxidant requirement for plasma membrane repair in skeletal muscle. Free Radic. Biol. Med. 84, 246 (2015)
CAS
Google Scholar
B. Gabriel, J. Teissie, Generation of reactive-oxygen species induced by electropermeabilization of Chinese hamster ovary cells and their consequence on cell viability. Eur. J. Biochem. 223, 25 (1994)
CAS
Google Scholar
S. Kalies, S. Keil, S. Sender, S.C. Hammer, G.C. Antonopoulos, M. Schomaker, T. Ripken, H.M. Escobar, H. Meyer, D. Heinemann, Characterization of the cellular response triggered by gold nanoparticle-mediated laser manipulation. J. Biomed. Opt. 20, 115005 (2015)
Google Scholar
V. Adler, Z. Yin, K.D. Tew, Z. Ronai, Role of redox potential and reactive oxygen species in stress signaling. Oncogene 18, 6104 (1999)
CAS
Google Scholar
T. Wald, I. Petry-Podgorska, R. Fiser, T. Matousek, J. Dedina, R. Osicka, P. Sebo, J. Masin, Quantification of potassium levels in cells treated with bordetella adenylate cyclase toxin. Anal. Biochem. 450, 57 (2014)
CAS
Google Scholar
E.B. Babiychuk, K. Monastyrskaya, S. Potez, A. Draeger, Intracellular Ca(2+) operates a switch between repair and lysis of streptolysin O-perforated cells. Cell Death Differ. 16, 1126 (2009)
CAS
Google Scholar
G.E. Kass, S. Orrenius, Calcium signaling and cytotoxicity. Environ. Health Perspect. 107(Suppl 1), 25 (1999)
CAS
Google Scholar
F.A. Schanne, A.B. Kane, E.E. Young, J.L. Farber, Calcium dependence of toxic cell death: a final common pathway. Science 206, 700 (1979)
CAS
Google Scholar
B. Schwaller, Cytosolic Ca2+ buffers. Cold Spring Harb. Perspect. Biol. 2, a004051 (2010)
CAS
Google Scholar
G. Chandra, S.C. Sreetama, D.A.G. Mazala, K. Charton, J.H. VanderMeulen, I. Richard, J.K. Jaiswal, Endoplasmic reticulum maintains ion homeostasis required for plasma membrane repair. J. Cell Biol. 220(5), e202006035 (2021). https://doi.org/10.1083/jcb.202006035
Article
CAS
Google Scholar
J.O. Primeau, G.P. Armanious, M.E. Fisher, H.S. Young, The sarcoendoplasmic reticulum calcium ATPase. Subcell. Biochem. 87, 229 (2018)
CAS
Google Scholar
N.H. Tang, K.W. Kim, S. Xu, S.M. Blazie, B.A. Yee, G.W. Yeo, Y. Jin, A.D. Chisholm, The MRNA decay factor CAR-1/LSM14 regulates axon regeneration via mitochondrial calcium dynamics. Curr. Biol. 30, 865 (2020)
CAS
Google Scholar
K. Miyake, P.L. McNeil, K. Suzuki, R. Tsunoda, N. Sugai, An actin barrier to resealing. J. Cell Sci. 114, 3487 (2001)
CAS
Google Scholar
P. Wales, C.E. Schuberth, R. Aufschnaiter, J. Fels, I. Garcia-Aguilar, A. Janning, C.P. Dlugos, M. Schafer-Herte, C. Klingner, M. Walte, J. Kuhlmann, E. Menis, L.H. Kang, K.C. Maier, W. Hou, A. Russo, H.N. Higgs, H. Pavenstadt, T. Vogl, J. Roth, B. Qualmann, M.M. Kessels, D.E. Martin, B. Mulder, R. Wedlich-Soldner, Calcium-mediated actin reset (CaAR) mediates acute cell adaptations. Elife 5, e19850 (2016). https://doi.org/10.7554/eLife.19850
Article
Google Scholar
X. Chen, R.S. Leow, Y. Hu, J.M. Wan, A.C. Yu, Single-site sonoporation disrupts actin cytoskeleton organization. J. R. Soc. Interface 11, 20140071 (2014)
Google Scholar
M. Stacey, P. Fox, S. Buescher, J. Kolb, Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival. Bioelectrochemistry 82, 131 (2011)
CAS
Google Scholar
C. Yao, J. Ning, H. Liu, Y. Lv, Y. Zhao, S. Dong, Nanosecond pulses targeting intracellular ablation increase destruction of tumor cells with irregular morphology. Bioelectrochemistry 132, 107432 (2020)
CAS
Google Scholar
C. DeKraker, L. Goldin-Blais, E. Boucher, C.A. Mandato, Dynamics of actin polymerisation during the mammalian single-cell wound healing response. BMC Res. Notes 12, 420 (2019)
Google Scholar
P. Li, A.T. Bademosi, J. Luo, F.A. Meunier, Actin remodeling in regulated exocytosis: toward a mesoscopic view. Trends Cell Biol. 28, 685 (2018)
CAS
Google Scholar
D.T. Tran, A. Masedunskas, R. Weigert, K.G.T. Hagen, Arp2/3-mediated F-actin formation controls regulated exocytosis in vivo. Nat. Commun. 6, 10098 (2015)
Google Scholar
A.R. Demonbreun, M. Quattrocelli, D.Y. Barefield, M.V. Allen, K.E. Swanson, E.M. McNally, An actin-dependent annexin complex mediates plasma membrane repair in muscle. J. Cell Biol. 213, 705 (2016)
CAS
Google Scholar
J.K. Jaiswal, S.P. Lauritzen, L. Scheffer, M. Sakaguchi, J. Bunkenborg, S.M. Simon, T. Kallunki, M. Jaattela, J. Nylandsted, S100A11 is required for efficient plasma membrane repair and survival of invasive cancer cells. Nat. Commun. 5, 3795 (2014)
CAS
Google Scholar
J.R. McDade, A. Archambeau, D.E. Michele, Rapid actin-cytoskeleton-dependent recruitment of plasma membrane-derived dysferlin at wounds is critical for muscle membrane repair. FASEB J. 28, 3660 (2014)
CAS
Google Scholar
S. Kalies, G.C. Antonopoulos, M.S. Rakoski, D. Heinemann, M. Schomaker, T. Ripken, H. Meyer, Investigation of biophysical mechanisms in gold nanoparticle mediated laser manipulation of cells using a multimodal holographic and fluorescence imaging setup. PLoS ONE 10, e0124052 (2015)
Google Scholar
T. Togo, Disruption of the plasma membrane stimulates rearrangement of microtubules and lipid traffic toward the wound site. J. Cell Sci. 119, 2780 (2006)
CAS
Google Scholar
M. Wang, Y. Zhang, C. Cai, J. Tu, X. Guo, D. Zhang, Sonoporation-induced cell membrane permeabilization and cytoskeleton disassembly at varied acoustic and microbubble-cell parameters. Sci. Rep. 8, 3885 (2018)
Google Scholar
G. Houthaeve, G.G.-D. Barriga, S. Stremersch, H.D. Keersmaecker, J. Fraire, J. Vandesompele, P. Mestdagh, S.D. Smedt, K. Braeckmans, W.H.D. Vos, Transient nuclear lamin A/C accretion aids in recovery from vapor nanobubble-induced permeabilization of the plasma membrane. Cell Mol. Life Sci. 79(1), 23 (2022). https://doi.org/10.1007/s00018-021-04099-9
Article
CAS
Google Scholar
X. Duan, J.M.F. Wan, A.F.T. Mak, Oxidative stress alters the morphological responses of myoblasts to single-site membrane photoporation. Cell Mol. Bioeng. 10, 313 (2017)
CAS
Google Scholar
N. Saklayen, S. Kalies, M. Madrid, V. Nuzzo, M. Huber, W. Shen, J. Sinanan-Singh, D. Heinemann, A. Heisterkamp, E. Mazur, Analysis of poration-induced changes in cells from laser-activated plasmonic substrates. Biomed. Opt. Express 8, 4756 (2017)
CAS
Google Scholar
T. Bouzid, E. Kim, B.D. Riehl, A.M. Esfahani, J. Rosenbohm, R. Yang, B. Duan, J.Y. Lim, The LINC complex, mechanotransduction, and mesenchymal stem cell function and fate. J. Biol. Eng. 13, 68 (2019)
Google Scholar
H. Persson, C. Kobler, K. Molhave, L. Samuelson, J.O. Tegenfeldt, S. Oredsson, C.N. Prinz, Fibroblasts cultured on nanowires exhibit low motility impaired cell division, and DNA damage. Small 9, 4006 (2013)
CAS
Google Scholar
W.S. Meaking, J. Edgerton, C.W. Wharton, R.A. Meldrum, Electroporation-induced damage in mammalian cell DNA. Biochim. Biophys. Acta 1264, 357 (1995)
Google Scholar
W. Zhong, X. Chen, P. Jiang, J.M. Wan, P. Qin, A.C. Yu, Induction of endoplasmic reticulum stress by sonoporation: linkage to mitochondria-mediated apoptosis initiation. Ultrasound Med. Biol. 39, 2382 (2013)
Google Scholar
X. Duan, Q. Zhou, J.M.F. Wan, A.C.H. Yu, Sonoporation generates downstream cellular impact after membrane resealing. Sci. Rep. 11, 5161 (2021)
CAS
Google Scholar
A. SanMartin, F. Johansson, L. Samuelson, C.N. Prinz, Microarray analysis reveals moderate gene expression changes in cortical neural stem cells cultured on nanowire arrays. J. Nanosci. Nanotechnol. 14, 4880 (2014)
CAS
Google Scholar
L.J. Bischof, C.Y. Kao, F.C. Los, M.R. Gonzalez, Z. Shen, S.P. Briggs, F.G. van der Goot, R.V. Aroian, Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo. PLoS Pathog. 4, e1000176 (2008)
Google Scholar
D. Ron, P. Walter, Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519 (2007)
CAS
Google Scholar
J.D. Beane, G. Lee, Z. Zheng, M. Mendel, D. Abate-Daga, M. Bharathan, M. Black, N. Gandhi, Z. Yu, S. Chandran, M. Giedlin, D. Ando, J. Miller, D. Paschon, D. Guschin, E.J. Rebar, A. Reik, M.C. Holmes, P.D. Gregory, N.P. Restifo, S.A. Rosenberg, R.A. Morgan, S.A. Feldman, Clinical scale zinc finger nuclease-mediated gene editing of PD-1 in tumor infiltrating lymphocytes for the treatment of metastatic melanoma. Mol. Ther. 23, 1380 (2015)
CAS
Google Scholar
H.X. Chao, C.E. Poovey, A.A. Privette, G.D. Grant, H.Y. Chao, J.G. Cook, J.E. Purvis, Orchestration of DNA damage checkpoint dynamics across the human cell cycle. Cell Syst. 5, 445 (2017)
CAS
Google Scholar
S. Feske, J. Giltnane, R. Dolmetsch, L.M. Staudt, A. Rao, Gene regulation mediated by calcium signals in T lymphocytes. Nat. Immunol. 2, 316 (2001)
CAS
Google Scholar
M. Dewenter, A. von der Lieth, H.A. Katus, J. Backs, Calcium signaling and transcriptional regulation in cardiomyocytes. Circ. Res. 121, 1000 (2017)
CAS
Google Scholar
M.J. Berridge, M.D. Bootman, H.L. Roderick, Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517 (2003)
CAS
Google Scholar
F. Lang, E. Shumilina, M. Ritter, E. Gulbins, A. Vereninov, S.M. Huber, Ion channels and cell volume in regulation of cell proliferation and apoptotic cell death. Contrib. Nephrol. 152, 142 (2006)
CAS
Google Scholar
E.K. Hoffmann, I.H. Lambert, S.F. Pedersen, Physiology of cell volume regulation in vertebrates. Physiol. Rev. 89, 193 (2009)
CAS
Google Scholar
S. Elmore, Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495 (2007)
CAS
Google Scholar
A. Saraste, K. Pulkki, Morphologic and biochemical hallmarks of apoptosis. Cardiovasc. Res. 45, 528 (2000)
CAS
Google Scholar
C.D. Bortner, J.A. Cidlowski, Uncoupling cell shrinkage from apoptosis reveals that Na+ influx is required for volume loss during programmed cell death. J. Biol. Chem. 278, 39176 (2003)
CAS
Google Scholar
X. Duan, K.T. Chan, K.K. Lee, A.F. Mak, Oxidative stress and plasma membrane repair in single myoblasts after femtosecond laser photoporation. Ann. Biomed. Eng. 43, 2735 (2015)
Google Scholar
M.F.A. Cutiongco, B.S. Jensen, P.M. Reynolds, N. Gadegaard, Predicting gene expression using morphological cell responses to nanotopography. Nat. Commun. 11, 1384 (2020)
CAS
Google Scholar
S.M. Schreiner, P.K. Koo, Y. Zhao, S.G. Mochrie, M.C. King, The Tethering of chromatin to the nuclear envelope supports nuclear mechanics. Nat. Commun. 6, 7159 (2015)
Google Scholar
B. van Steensel, A.S. Belmont, Lamina-associated domains: links with chromosome architecture heterochromatin, and gene repression. Cell 169, 780 (2017)
Google Scholar
H. Muyderman, W.P. Yew, B. Homkajorn, N.R. Sims, Astrocytic responses to dna delivery using nucleofection. Neurochem. Res. 35, 1771 (2010)
CAS
Google Scholar
H. Peng, S. Carbonetto, Astrocyte polarization and wound healing in culture: studying cell adhesion molecules. Methods Mol. Biol. 814, 177 (2012)
CAS
Google Scholar
D. Mo, B.A. Potter, C.A. Bertrand, J.D. Hildebrand, J.R. Bruns, O.A. Weisz, Nucleofection disrupts tight junction fence function to alter membrane polarity of renal epithelial cells. Am. J. Physiol. Renal. Physiol. 299, F1178 (2010)
CAS
Google Scholar
T. Togo, J.M. Alderton, R.A. Steinhardt, Long-term potentiation of exocytosis and cell membrane repair in fibroblasts. Mol. Biol. Cell 14, 93 (2003)
CAS
Google Scholar
T. Togo, J.M. Alderton, G.Q. Bi, R.A. Steinhardt, The mechanism of facilitated cell membrane resealing. J. Cell Sci. 112(Pt 5), 719 (1999)
CAS
Google Scholar
S.S. Shen, R.A. Steinhardt, The mechanisms of cell membrane resealing in rabbit corneal epithelial cells. Curr. Eye Res. 30, 543 (2005)
CAS
Google Scholar
T. Togo, Long-term potentiation of wound-induced exocytosis and plasma membrane repair is dependent on CAMP-response element-mediated transcription via a protein kinase C- and P38 MAPK-dependent pathway. J. Biol. Chem. 279, 44996 (2004)
CAS
Google Scholar
P. Sassone-Corsi, J. Visvader, L. Ferland, P.L. Mellon, I.M. Verma, Induction of proto-oncogene fos transcription through the adenylate cyclase pathway: characterization of a CAMP-responsive element. Genes Dev. 2, 1529 (1988)
CAS
Google Scholar
K.P. Grembowicz, D. Sprague, P.L. McNeil, Temporary disruption of the plasma membrane is required for C-Fos expression in response to mechanical stress. Mol. Biol. Cell 10, 1247 (1999)
CAS
Google Scholar
K. Yu, D.P. Sellman, A. Bahraini, M.L. Hagan, A. Elsherbini, K.T. Vanpelt, P.L. Marshall, M.W. Hamrick, A. McNeil, P.L. McNeil, M.E. McGee-Lawrence, Mechanical loading disrupts osteocyte plasma membranes which initiates mechanosensation events in bone. J. Orthop. Res. 36, 653 (2018)
CAS
Google Scholar
J.M. Barnes, J.T. Nauseef, M.D. Henry, Resistance to fluid shear stress is a conserved biophysical property of malignant cells. PLoS ONE 7, e50973 (2012)
Google Scholar
M.J. Mitchell, C. Denais, M.F. Chan, Z. Wang, J. Lammerding, M.R. King, Lamin A/C deficiency reduces circulating tumor cell resistance to fluid shear stress. Am. J. Physiol. Cell Physiol. 309, C736 (2015)
CAS
Google Scholar
U.L. Triantafillu, S. Park, N.L. Klaassen, A.D. Raddatz, Y. Kim, Fluid shear stress induces cancer stem cell-like phenotype in MCF7 breast cancer cell line without inducing epithelial to mesenchymal transition. Int. J. Oncol. 50, 993 (2017)
CAS
Google Scholar
D.L. Moose, B.L. Krog, T.H. Kim, L. Zhao, S. Williams-Perez, G. Burke, L. Rhodes, M. Vanneste, P. Breheny, M. Milhem, C.S. Stipp, A.C. Rowat, M.D. Henry, Cancer cells resist mechanical destruction in circulation via RhoA/actomyosin-dependent mechano-adaptation. Cell Rep. 30, 3864 (2020)
CAS
Google Scholar
K. Gao, C.R. Wang, F. Jiang, A.Y. Wong, N. Su, J.H. Jiang, R.C. Chai, G. Vatcher, J. Teng, J. Chen, Y.W. Jiang, A.C. Yu, Traumatic scratch injury in astrocytes triggers calcium influx to activate the JNK/c-Jun/AP-1 pathway and switch on GFAP expression. Glia 61, 2063 (2013)
Google Scholar
C. Narciso, Q. Wu, P. Brodskiy, G. Garston, R. Baker, A. Fletcher, J. Zartman, Patterning of wound-induced intercellular Ca(2+) flashes in a developing epithelium. Phys. Biol. 12, 56005 (2015)
Google Scholar
S. Shabir, J. Southgate, Calcium signalling in wound-responsive normal human urothelial cell monolayers. Cell Calcium 44, 453 (2008)
CAS
Google Scholar
B. Huo, X.L. Lu, K.D. Costa, Q. Xu, X.E. Guo, An ATP-dependent mechanism mediates intercellular calcium signaling in bone cell network under single cell nanoindentation. Cell Calcium 47, 234 (2010)
CAS
Google Scholar
Y.J. Sung, Z. Sung, C.L. Ho, M.T. Lin, J.S. Wang, S.C. Yang, Y.J. Chen, C.H. Lin, Intercellular calcium waves mediate preferential cell growth toward the wound edge in polarized hepatic cells. Exp. Cell. Res. 287, 209 (2003)
CAS
Google Scholar
W. Razzell, I.R. Evans, P. Martin, W. Wood, Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release. Curr. Biol. 23, 424 (2013)
CAS
Google Scholar
R.E. Kumon, M. Aehle, D. Sabens, P. Parikh, D. Kourennyi, C.X. Deng, Ultrasound-induced calcium oscillations and waves in chinese hamster ovary cells in the presence of microbubbles. Biophys. J. 93, L29 (2007)
CAS
Google Scholar
S. Roovers, T. Segers, G. Lajoinie, J. Deprez, M. Versluis, S.C.D. Smedt, I. Lentacker, The role of ultrasound-driven microbubble dynamics in drug delivery: from microbubble fundamentals to clinical translation. Langmuir 35, 10173 (2019)
CAS
Google Scholar
T. Togo, Short-term potentiation of membrane resealing in neighboring cells is mediated by purinergic signaling. Purinergic Signal. 10, 283 (2014)
CAS
Google Scholar
T. Togo, Cell membrane disruption stimulates CAMP and Ca(2+) signaling to potentiate cell membrane resealing in neighboring cells. Biol. Open 6, 1814 (2017)
CAS
Google Scholar
T. Togo, Cell membrane disruption stimulates NO/PKG signaling and potentiates cell membrane repair in neighboring cells. Plos ONE 7, e42885 (2012)
CAS
Google Scholar
A. Sharei, R. Poceviciute, E.L. Jackson, N. Cho, S. Mao, G.C. Hartoularos, D.Y. Jang, S. Jhunjhunwala, A. Eyerman, T. Schoettle, R. Langer, K.F. Jensen, Plasma membrane recovery kinetics of a microfluidic intracellular delivery platform. Integr. Biol. 6, 470 (2014)
CAS
Google Scholar
S. Kouhzaei, I. Rad, K. Khodayari, H. Mobasheri, The neuroprotective ability of polyethylene glycol is affected by temperature in ex vivo spinal cord injury model. J. Membr. Biol. 246, 613 (2013)
CAS
Google Scholar
R.C. Lee, L.P. River, F.S. Pan, L. Ji, R.L. Wollmann, Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo. Proc. Natl. Acad. Sci. USA 89, 4524 (1992)
CAS
Google Scholar
J.M. Collins, F. Despa, R.C. Lee, Structural and functional recovery of electropermeabilized skeletal muscle in-vivo after treatment with surfactant poloxamer 188. Biochim. Biophys. Acta 1768, 1238 (2007)
CAS
Google Scholar
T.A. Kwiatkowski, A.L. Rose, R. Jung, A. Capati, D. Hallak, R. Yan, N. Weisleder, Multiple poloxamers increase plasma membrane repair capacity in muscle and nonmuscle cells. Am. J. Physiol. Cell Physiol. 318, C253 (2020)
CAS
Google Scholar
A.R. Demonbreun, K.S. Fallon, C.C. Oosterbaan, E. Bogdanovic, J.L. Warner, J.J. Sell, P.G. Page, M. Quattrocelli, D.Y. Barefield, E.M. McNally, Recombinant annexin A6 promotes membrane repair and protects against muscle injury. J. Clin. Invest. 129, 4657 (2019)
CAS
Google Scholar
M.H. Kafshgari, L. Agiotis, I. Largilliere, S. Patskovsky, M. Meunier, Antibody-functionalized gold nanostar-mediated on-resonance picosecond laser optoporation for targeted delivery of RNA therapeutics. Small 17, e2007577 (2021)
Google Scholar
M.J. van den Hoff, A.F. Moorman, W.H. Lamers, Electroporation in “intracellular” buffer increases cell survival. Nucleic Acids Res. 20, 2902 (1992)
Google Scholar
F.V. Bockstaele, V. Pede, E. Naessens, S.V. Coppernolle, V.V. Tendeloo, B. Verhasselt, J. Philippe, Efficient gene transfer in CLL by MRNA electroporation. Leukemia 22, 323 (2008)
Google Scholar
S. Baron, J. Poast, D. Rizzo, E. McFarland, E. Kieff, Electroporation of antibodies, DNA, and other macromolecules into cells: a highly efficient method. J. Immunol. Methods 242, 115 (2000)
CAS
Google Scholar