E Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikroskop. Anat. 9(1), 413–418 (1873)
Article
Google Scholar
MV Ardenne, U.K. Patent 511204-A, 1938
Google Scholar
R Reinhold, Patent DE 906737, 1931
Google Scholar
EH Synge, A suggested method for extending the microscopic resolution into the ultramicroscopic region. Phil. Mag 6, 356–362 (1928)
Article
Google Scholar
EH Synge, An application of piezoelectricity to microscopy. Phil. Mag. 13, 297–300 (1932)
Article
Google Scholar
U Dürig, DW Pohl, F Rohner, Near‐field optical‐scanning microscopy. J. Appl. Phys. 59, 3318–3327 (1986)
Article
Google Scholar
Y Oshikane, T Kataoka, M Okuda, S Hara, H Inoue, M Nakano, Observation of nanostructure by scanning near-field optical microscope with small sphere probe. Sci. Technol. Adv. Mater. 8(3), 181–185 (2007)
Article
Google Scholar
GK Bennig, US Patent 4724318 A, 1988
Google Scholar
G Binnig, CF Quate, C Gerber, Atomic Force Microscope. Phys. Rev. Lett. 56, 930–933 (1986)
Article
Google Scholar
MJ Rust, M Bates, X Zhuang, Sub diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods 3(20), 793–796 (2006)
Article
Google Scholar
E Betzig, GH Patterson, R Sougrat, OW Lindwasser, S Olenych, JS Bonifacino, MW Davidson, J Lippincott-Schwartz, HF Hess, Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 313(5793), 1642–1645 (2006)
Article
Google Scholar
ST Hess, TP Giriajan, MD Mason, Ultra-high resolution imaging by Fluorescence Photoactivation Localization Microscopy. Biophysical Journal 91(11), 4258–4272 (2006)
Article
Google Scholar
SW Hell, J Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett 19, 780–782 (1994)
Article
Google Scholar
E Rittweger, KY Han, SE Irvine, C Eggeling, SW Hell, STED microscopy reveals crystal colour centres with nanometric resolution. Nature Photon. 3, 144–147 (2009)
Article
Google Scholar
MG Gustafsson, Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. 102(37), 13081–13086 (2005)
Article
Google Scholar
MG Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy 198, 82–87 (2000)
Article
Google Scholar
B Huang, H Babcock, X Zhuang, Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143, 1047–1058 (2010)
Article
Google Scholar
BC Tom, AK Katsaggelos, NP Galatsanos, Reconstruction of a high resolution image from registration and restoration of low resolution images. Proceedings of IEEE International Conference on Image Processing 3, 553–557 (1994)
Article
Google Scholar
VG Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Uspekhi 10, 509–514 (1968)
Article
Google Scholar
DR Smith, WJ Padilla, DC Vier, SC Nemat-Nasser, S Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184–4187 (2000)
Article
Google Scholar
RA Shelby, DR Smith, S Schultz, Experimental Verification of a Negative Index of Refraction. Science 292(5514), 77–79 (2001)
Article
Google Scholar
RA Shelby, DR Smith, SC Nemat-Nasser, S Schultz, Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl. Phys. Lett. 78(4), 489–491 (2001)
Article
Google Scholar
YJ Hsu, YC Huang, JS Lih, JL Chern, Electromagnetic resonance in deformed split ring resonators of left-handed meta-materials. J. Appl. Phys. 96(4), 1979–1982 (2004)
Article
Google Scholar
AA Houck, JB Brock, IL Chuang, Experimental Observations of a Left-Handed Material That Obeys Snell’s Law. Phys. Rev. Lett 90, 137401 (2003)
Article
Google Scholar
A Grbic, GV Eleftheriades, Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens. Phys. Rev. Lett 92(11), 117403 (2004)
Article
Google Scholar
J Valentine, S Zhang, T Zentgraf, E Ulin-Aila, DA Genov, G Bartel, X Zhang, Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008)
Article
Google Scholar
S Zhang, YS Park, J Li, X Lu, W Zhang, X Zhang, Negative Refractive Index in Chiral Metamaterials. Phys. Rev. Lett. 102, 023901 (2009)
Article
Google Scholar
JB Pendry, A Chiral, Route to Negative Refraction. Science 306(5), 1353–1355 (2004)
Article
Google Scholar
CG Parazzoli, RB Greegor, K Li, BEC Koltenbah, M Tanielian, Experimental verification and simulation of negative index of refraction using Snell’s law. Phys. Rev. Lett 90, 107401 (2003)
Article
Google Scholar
VM Shalaev, W Cai, UK Chettiar, HK Yuan, AK Sarychev, VP Drachev, AV Kildishev, Negative index of refraction in optical metamaterials. Opt. Lett. 30(24), 3356–3358 (2005)
Article
Google Scholar
S Zhang, W Fan, NC Panoiu, KJ Malloy, RM Osgood, SRJ Brueck, Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005)
Article
Google Scholar
G Dolling, C Enkrich, M Wegener, CM Soukoulis, S Linden, Simultaneous negative phase and group velocity of light in a metamaterial. Science 312(5775), 892–894 (2006)
Article
Google Scholar
J Yao, Z Liu, Y Liu, Y Wang, C Sun, G Bartal, AM Stacy, X Zhang, Optical negative refraction in bulk metamaterials of nanowires. Science 321(5891), 930–930 (2008)
Article
Google Scholar
SP Burgos, R de Waele, A Polman, HA Atwater, A single-layer wide-angle negative-index metamaterial at visible frequencies. Nature Mater 9, 407–412 (2010)
Article
Google Scholar
HJ Lezec, JA Dionne, HA Atwater, Negative refraction at visible frequencies. Science 316(5823), 430–432 (2007)
Article
Google Scholar
E Verhagen, R de Waele, L Kuipers, A Polman, Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides. Phys. Rev. Lett. 105(22), 223901 (2010)
Article
Google Scholar
JB Pendry, A Holden, D Robbins, W Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory and Techniques 47(11), 2075–2084 (1999)
Article
Google Scholar
Z Jacob, JY Kim, GV Naik, A Boltasseva, EE Narimanov, VM Shalaev, Engineering photonic density of states using metamaterials. Appl. Phys. B 100(1), 215–218 (2010)
Article
Google Scholar
JB Pendry, D Schurig, DR Smith, Controlling electromagnetic fields. Science 312(5781), 1780–1782 (2006)
Article
Google Scholar
A Greenleaf, Y Kurylev, M Lassas, G Uhlmann, Cloaking devices, electromagnetic wormholes, and transformation optics. SIAM Rev. 51(1), 3–33 (2009)
Article
Google Scholar
JB Pendry, Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000)
Article
Google Scholar
JB Pendry, Negative refraction. Contemporary Physics 45(3), 191–202 (2004)
Article
Google Scholar
N Garcia, M Nieto-Vesperinas, Left-Handed Materials Do Not Make a Perfect Lens. Phys. Rev. Lett 88(20), 207403-1-4 (2002)
Article
Google Scholar
JB Pendry, Comment on “Left-Handed Materials Do Not Make a Perfect Lens”. Phys. Rev. Lett 91(9), 099701 (2003)
Article
Google Scholar
G Gómez-Santos, Universal Features of the Time Evolution of Evanescent Modes in a Left-Handed Perfect Lens. Phys. Rev. Lett 90(7), 077401 (2003)
Article
Google Scholar
DR Smith, D Schurig, M Rosenbluth, S Schultz, Limitations on subdiffraction imaging with a negative refractive index slab. Appl. Phys. Lett. 82(10), 1506–1508 (2003)
Article
Google Scholar
SA Ramakrishna, JB Pendry, D Schurig, DR Smith, S Schultz, The asymmetric lossy near-perfect lens. Journal of Modern Optics 49(10), 1747–1762 (2002)
Article
Google Scholar
ZW Liu, N Fang, TJ Yen, X Zhang, Rapid growth of evanescent wave by a silver superlens. Appl. Phys. Lett. 83(25), 5184–5186 (2003)
Article
Google Scholar
N Fang, ZW Liu, TJ Yen, X Zhang, Regenerating evanescent waves from a silver superlens. Opt. Express 11(7), 682–687 (2003)
Article
Google Scholar
A Giannattasio, IR Hooper, WL Barnes, Transmission of light through thin silver film via surface plasmon-polaritons. Opt. Express 12(24), 5881–5886 (2004)
Article
Google Scholar
X Zhang, Z Liu, Superlenses to overcome the diffraction limit. Nature Mater. 7(6), 435–441 (2008)
Article
Google Scholar
N Fang, H Lee, C Sun, X Zhang, Sub-Diffraction-Limited Optical Imaging with a Silver Superlens. Science 308(5721), 534–537 (2005)
Article
Google Scholar
RJ Blaikie, DOS Melville, Imaging through planar silver lenses in the optical near field. J. Opt. A: Pure Appl. Opt 7, S176–S183 (2005)
Article
Google Scholar
DOS Melville, RJ Blaikie, Near-field optical lithography using a planar silver lens. J. Vac. Sci. Technol. B 22(6), 3470–3474 (2004)
Article
Google Scholar
N Fang, X Zhang, Imaging properties of a metamaterial superlens. Appl. Phys. Lett. 82(2), 161–163 (2003)
Article
Google Scholar
T Taubner, D Korobkin, Y Urzhumov, G Shvets, R Hillenbrand, Near-Field Microscopy Through a SiC Superlens. Science 313(5793), 1595–1595 (2006)
Article
Google Scholar
M Jablan, H Buljan, M Soljačić, Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009)
Article
Google Scholar
P Tassin, T Koschny, M Kafesaki, CM Soukoulis, A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nature Photon. 6, 259–264 (2012)
Article
Google Scholar
JB Khurgin, G Sun, In search of the elusive lossless metal. Appl. Phys. Lett 96(18), 181102 (2010)
Article
Google Scholar
SA Ramakrishna, JB Pendry, Removal of absorption and increase in resolution in a near-field lens via optical gain. Phys. Rev. B 67, 201101 (2003)
Article
Google Scholar
MG Blaber, MD Arnold, MJ Ford, A review of the optical properties of alloys and intermetallics for plasmonics. J. Phys.: Condens. Matter 22, 143201 (2010)
Google Scholar
GV Naik, J Kim, A Boltasseva, Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Opt. Mater. Express 1(6), 1090–1099 (2011)
Article
Google Scholar
AJ Hoffman, LV Alekseyev, SS Howard, KJ Franz, D Wasserman, VA Podolskiy, EE Narimanov, DL Sivco, C Gmachl, Negative refraction in semiconductor metamaterials. Nature Mater 6, 946–950 (2007)
Article
Google Scholar
GV Naik, A Boltasseva, Semiconductors for plasmonics and metamaterials. Phys. Status Solidi RRL 4(10), 295–297 (2010)
Article
Google Scholar
CJ Regan, D Dominguez, LG de Peralta, AA Bernussi, Far-field optical superlenses without metal. Appl. Phys. Lett 113, 183105 (2013)
Google Scholar
H Lee, Y Xiong, N Fang, W Srituravanich, S Durant, M Ambati, C Sun, X Zhang, Realization of optical superlens imaging below the diffraction limit. New J. Phys. 7, 255 (2005)
Article
Google Scholar
E Shamonina, V Kalinin, K Ringhofer, L Solymar, Imaging, compression and Poynting vector streamlines for negative permittivity mateirals. Electron. Lett. 37, 1243–1244 (2001)
Article
Google Scholar
SA Ramakrishna, JB Pendry, MCK Wiltshire, WJ Stewart, Imaging the near field. J. Mod. Opt. 50(9), 1419–1430 (2003)
Article
Google Scholar
SC Kehr, YM Liu, LW Martin, P Yu, M Gajek, SY Yang, CH Yang, MT Wenzel, R Jacob, HG von Ribbeck, M Helm, X Zhang, LM Eng, R Ramesh, Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling. Nature Commun. 2, 249 (2011)
Article
Google Scholar
M Fehrenbacher, S Winnerl, H Schneider, J Doring, SC Kehr, LM Eng, Y Huo, OG Schmidt, K Yao, Y Liu, M Helm, Plasmonic superlensing in doped GaAs. Nano Lett. 15(2), 1057–1061 (2015)
Article
Google Scholar
P Li, T Wang, H Bockmann, T Taubner, Graphene-Enhanced Infrared Near-Field Microscopy. Nano Lett. 14(8), 4400–4405 (2014)
Article
Google Scholar
P Li, T Taubner, Multi-wavelength superlensing with layered phonon-resonant dielectrics. Opt. Express 20(11), 11787–11795 (2012)
Article
Google Scholar
S Durant, Z Liu, N Fang, X Zhang, Theory of optical imaging beyond the diffraction limit with a far-field superlens. Proc. SPIE 6323, Plasmonics: Metallic Nanostructures and their Optical Properties IV, 63231H (2006)
Google Scholar
S Durant, Z Liu, JM Steele, X Zhang, Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit. J. Opt. Soc. Am. B 23(11), 2383–2392 (2006)
Article
Google Scholar
Z Liu, S Durant, H Lee, Y Pikus, N Fang, Y Xiong, C Sun, X Zhang, Far-Field Optical Superlens. Nano Lett. 7(2), 403–408 (2007)
Article
Google Scholar
Z Liu, S Durant, H Lee, Y Pikus, Y Xiong, C Sun, X Zhang, Experimental studies of far-field superlens for sub-diffractional optical imaging. Opt. Express 15(11), 6947–6954 (2007)
Article
Google Scholar
Z Liu, S Durant, H Lee, Y Xiong, Y Pikus, C Sun, X Zhang, Near-field Moire effect mediated by surface plasmon polariton excitation. Opt. Lett. 32(6), 629–631 (2007)
Article
Google Scholar
O Kafri, I Glatt, The Physics of Moiré Metrology (Wiley, New York, 1989), p. 4
Google Scholar
V Krishnamurthi, B Bailey, F Lanni, Image processing in 3-D standing-wave fluorescence microscopy. Proc. SPIE Int. Soc. Opt. Eng. 2655, 18–25 (1996)
Google Scholar
Y Xiong, Z Liu, S Durant, H Lee, C Sun, X Zhang, Tuning the far-field superlens: from UV to visible. Opt. Express 15(12), 7095–7102 (2007)
Article
Google Scholar
Q Cao, P Lalanne, Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits. Phys. Rev. Lett. 88, 057403 (2002)
Article
Google Scholar
X Yang, J Yao, J Rho, X Yin, X Zhang, Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nature Photon. 6, 450–454 (2012)
Article
Google Scholar
D Lu, JJ Kan, EE Fullerton, Z Liu, Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat. Nanotechnol. 9(1), 48–53 (2014)
Article
Google Scholar
Z Jacob, I Smolyaninov, EE Narimanov, Broadband Purcell effect: Radiative decay engineering with metamaterials. Appl. Phys. Lett. 100(18), 181105–181114 (2009)
Article
Google Scholar
MA Noginov, H Li, YA Barnakov, D Dryden, G Nataraj, G Zhu, CE Bonner, M Mayy, Z Jacob, EE Narimanov, Controlling spontaneous emission with metamaterials. Opt. Lett. 35(11), 1863–1865 (2010)
Article
Google Scholar
Z Yu, NP Sergeant, T Skauli, G Zhang, H Wang, S Fan, Enhancing far-field thermal emission with thermal extraction. Nat. Commun. 4, 1730 (2013)
Article
Google Scholar
Y Guo, CL Cortes, S Molesky, Z Jacob, Broadband super-Planckian thermal emission from hyperbolic metamaterials. Appl. Phys. Lett. 101, 131106 (2012)
Article
Google Scholar
EE Narimanov, II Smolyaninov, Beyond Stefan-Boltzmann Law: Thermal Hyper-Conductivity, in Quantum Electronics and Laser Science Conference, San Jose, 2012
Google Scholar
Z Jacob, LV Alekseyev, EE Narimanov, Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14(18), 8247–8256 (2006)
Article
Google Scholar
A Salandrino, N Engheta, Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B 74, 075103 (2006)
Article
Google Scholar
B Wood, JB Pendry, Directed Sub-Wavelength Imaging Using a Layered Metal-Dielectric System. Phys. Rev. B 74, 115116 (2006)
Article
Google Scholar
Z Liu, H Lee, Y Xiong, C Sun, X Zhang, Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315(5819), 1686–1686 (2007)
Article
Google Scholar
H Lee, Z Liu, Y Xiong, C Sun, X Zhang, Development of optical hyperlens for imaging below the diffraction limit. Opt. Express 15(24), 15886–15891 (2007)
Article
Google Scholar
J Rho, Z Ye, Y Xiong, X Yin, Z Liu, H Choi, G Bartal, X Zhang, Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nature Commun. 1, 143 (2010)
Article
Google Scholar
II Smolyaninov, YJ Hung, CC Davis, Magnifying superlens in the visible frequency range. Science 315(5819), 1699–1701 (2007)
Article
Google Scholar
G Shvets, S Trendafilov, JB Pendry, A Sarychev, Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays. Phys. Rev. Lett. 99, 053903 (2007)
Article
Google Scholar
A Ono, J Kato, S Kawata, Subwavelength optical imaging through a metallic nanorod array. Phys. Rev. Lett. 95(26), 267407 (2005)
Article
Google Scholar
P Ikonen, C Simovski, S Tretyakov, P Belov, Y Hao, Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime. Appl. Phys. Lett. 91, 104102 (2007)
Article
Google Scholar
Y Zhao, G Palikaras, PA Belov, RF Dubrovka, C Simovski, Y Hao, CG Parini, Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator. New J. Phys. 12, 103045 (2010)
Article
Google Scholar
S Kawata, A Ono, P Verma, Subwavelength colour imaging with a metallic nanolens. Nature Photon. 2(7), 438–442 (2008)
Article
Google Scholar
AV Kildishev, VM Shalaev, Engineering space for light via transformation optics. Opt. Lett. 33(1), 43–45 (2008)
Article
Google Scholar
W Wang, H Xing, L Fang, Y Liu, J Ma, L Lin, C Wang, X Luo, Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial. Opt. Express 16(25), 21142–21148 (2008)
Article
Google Scholar
Y Xiong, Z Liu, C Sun, X Zhang, Two-Dimensional Imaging by Far-Field Superlens at Visible Wavelengths. Nano Letters 7(11), 3360–3365 (2007)
Article
Google Scholar
S Thongrattanasiri, VA Podolskiy, Hyper-gratings: nanophotonics in planar anisotropic metamaterials. Opt. Lett. 34(7), 890–892 (2009)
Article
Google Scholar
MA Vincenti, D de Ceglia, V Rondinone, A Ladisa, A D’Orazio, MJ Bloemer, M Scalora, Loss compensation in metal-dielectric structures in negative-refraction and super-resolving regimes. Phys. Rev. A 80, 053807 (2009)
Article
Google Scholar
X Ni, S Ishii, MD Thoreson, VM Shalaev, S Han, S Lee, AV Kildishev, Loss-compensated and active hyperbolic metamaterials. Opt. Express 19(25), 25242–25254 (2011)
Article
Google Scholar
GV Naik, J Liu, AV Kildishev, VM Shalaev, A Boltasseva, Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials. Proc. Natl. Acad. Sci. 109(23), 8834–8838 (2012)
Article
Google Scholar
GV Naik, VM Shalaev, A Boltasseva, Alternative Plasmonic Materials: Beyond Gold and Silver. Adv. Mater. 25(24), 3264–3294 (2013)
Article
Google Scholar
PA Belov, Y Hao, Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime. Phys. Rev. B 73, 113110 (2006)
Article
Google Scholar
F Warkusz, Electrical and mechanical properties of thin metal films: Size effects. Prog. Surf. Sci 10(3), 287–382 (1980)
Article
Google Scholar
K Fuchs, The conductivity of thin metallic films according to the electron theory of metals. Math. Proc. Cambridge Philos. Soc 34(10), 100–108 (1938)
Article
Google Scholar
Z Jacob, LV Alekseyev, EE Narimanov, Semiclassical theory of the hyperlens. J. Opt. Soc. Am. A 24(10), A52–A59 (2007)
Article
Google Scholar
AV Kildishev, EE Narimanov, Impedance-matched hyperlens. Opt. Lett. 32(23), 3432–3434 (2007)
Article
Google Scholar
JD Caldwell, AV Kretinin, Y Chen, V Giannini, MM Fogler, Y Francescato, CT Ellis, JG Tischler, CR Woods, AJ Giles, M Hong, K Watanabe, T Taniguchi, SA Maier, KS Novoselov, Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nature Commun 5, 5221 (2014)
Article
Google Scholar
S Dai, Q Ma, T Andersen, AS Mcleod, Z Fei, MK Liu, M Wagner, K Watanabe, T Taniguchi, M Thiemens, F Keilmann, P Jarillo-Herrero, MM Fogler, DN Basov, Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nature Commun. 6, 6963 (2015)
Article
Google Scholar
P Li, M Lewin, AV Kretinin, JD Caldwell, KS Novoselov, T Taniguchi, K Watanabe, F Gaussmann, T Taubner, Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging. arXiv:1502.04093v2
C Ma, R Aguinaldo, Z Liu, Advances in the hyperlens. Chin. Sci. Bull. 55(24), 2618–2624 (2010)
Article
Google Scholar
C Ma, Z Liu, A super resolution metalens with phase compensation mechanism. Appl. Phys. Lett 96(18), 183103 (2010)
Article
Google Scholar
C Ma, Z Liu, Focusing light into deep subwavelength using metamaterial immersion lenses. Opt. Express 18(5), 4838–4844 (2010)
Article
Google Scholar
C Ma, MA Escobar, Z Liu, Extraordinary light focusing and Fourier transform properties of gradient-index metalenses. Phys. Rev. B 84, 195142 (2011)
Article
Google Scholar
D Lu, Z Liu, Hyperlenses and metalenses for far-field super-resolution imaging. Nature Commun. 3, 1205 (2012)
Google Scholar
DA Roberts, N Kundtz, DR Smith, Optical lens compression via transformation optics. Opt. Express 17(19), 16535–16542 (2009)
Article
Google Scholar
N Kundtz, DR Smith, Extreme-angle broadband metamaterial lens. Nature Mater. 9(2), 129–132 (2010)
Article
Google Scholar
L Verslegers, PB Catrysse, Z Yu, S Fan, Deep-Subwavelength Focusing and Steering of Light in an Aperiodic Metallic Waveguide Array. Phys. Rev. Lett. 103, 033902 (2009)
Article
Google Scholar
IE Khodasevych, IV Shadrivov, DA Powell, WST Rowe, A Mitchell, Pneumatically switchable graded index metamaterial lens. Appl. Phys. Lett 102(3), 031904 (2013)
Article
Google Scholar
DH Kwon, DH Werner, Transformation optical designs for wave collimators, flat lenses and right-angle bends. New J. Phys 10, 115023 (2008)
Article
Google Scholar
R Yang, W Tang, Y Hao, A broadband zone plate lens from transformation optics. Opt. Express 19(13), 12348–12355 (2011)
Article
Google Scholar
S Han, Y Xiong, D Genov, Z Liu, G Bartel, X Zhang, Ray optics at a deep-subwavelength scale: a transformation optics approach. Nano Lett. 8(12), 4243–4247 (2008)
Article
Google Scholar
M Tsang, D Psaltis, Magnifying perfect lens and superlens design by coordinate transformation. Phys. Rev. B 77, 035122 (2008)
Article
Google Scholar
ZH Jiang, MD Gregory, DH Werner, Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission. Phys. Rev. B 84, 165111 (2011)
Article
Google Scholar
A Boltasseva, HA Atwater, Low-loss plasmonic metamaterials. Science 331(6015), 290–291 (2011)
Article
Google Scholar
CM Soukoulis, M Wegener, Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photon 5, 523–530 (2011)
Google Scholar
N Meinzer, WL Barnes, IR Hooper, Plasmonic meta-atoms and metasurfaces. Nature Photon. 8(12), 889–898 (2014)
Article
Google Scholar
N Yu, F Capasso, Flat optics with designer metasurfaces. Nature Mater. 13(2), 139–150 (2014)
Article
Google Scholar
DM Pozar, SD Targonski, HD Syrigos, Design of millimeter wave microstrip reflectarrays. IEEE Trans. Antennas Propag. 45(2), 287–296 (1997)
Article
Google Scholar
JA Encinar, Design of two-layer printed reflectarrays using patches of variable size. IEEE Trans. Antennas Propag. 49(10), 1403–1410 (2001)
Article
Google Scholar
DT McGrath, Planar three-dimensional constrained lenses. IEEE Trans. Antennas Propag. 34(1), 46–50 (1986)
Article
Google Scholar
DM Pozar, Flat lens antenna concept using aperture coupled microstrip patches. Electron. Lett. 32, 2109–2111 (1996)
Article
Google Scholar
P Padilla, A Muñoz-Acevedo, M Sierra-Castañer, M Sierra-Pérez, Electronically reconfigurable transmitarray at Ku band for microwave applications. IEEE Trans. Antennas Propag. 58(8), 2571–2579 (2010)
Article
Google Scholar
L Verslegers, PB Catrysse, Z Yu, JS White, ES Barnard, ML Brongersma, S Fan, Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film. Nano Lett. 9(1), 235–238 (2009)
Article
Google Scholar
FM Huang, TS Kao, VA Fedotoc, Y Chen, N Zheludev, Nanohole array as a lens. Nano Lett. 8(8), 2469–2472 (2008)
Article
Google Scholar
FM Huang, N Zheludev, Super-Resolution without Evanescent Waves. Nano Lett. 9(3), 1249–1254 (2009)
Article
Google Scholar
ETF Rogers, J Lindberg, T Roy, S Savo, JE Chad, MR Dennis, NI Zheludev, A super-oscillatory lens optical microscope for subwavelength imaging. Nature Mater 11, 432–435 (2012)
Article
Google Scholar
N Yu, P Genevet, MA Kats, F Aieta, JP Tetienne, F Capasso, Z Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054), 333–337 (2011)
Article
Google Scholar
F Aieta, P Genevet, MA Kats, N Yu, R Blanchard, Z Gaburro, F Capasso, Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12(9), 4932–4936 (2012)
Article
Google Scholar
P Genevet, N Yu, F Aieta, J Lin, MA Kats, R Blanchard, MO Scully, Z Gaburro, F Capasso, Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl. Phys. Lett. 100, 013101 (2012)
Article
Google Scholar
L Huang, X Chen, H Mühlenbernd, H Zhang, S Chen, B Bai, Q Tan, G Jin, KW Cheah, CW Qiu, J Li, T Zentgraf, S Zhang, Three-dimensional optical holography using a plasmonic metasurface. Nature Commun. 4, 28 (2013). Semiconductors for plasmonics and metamaterials 08
Google Scholar
F Aieta, P Genevet, N Yu, MA Kats, Z Gaburro, F Capasso, Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. Nano Lett. 12(3), 1702–1706 (2012)
Article
Google Scholar
R Blanchard, G Aoust, P Genevet, N Yu, MA Kats, Z Gaburro, F Capasso, Modeling nanoscale V-shaped antennas for the design of optical phased arrays. Phys. Rev. B 85, 155457 (2012)
Article
Google Scholar
S Larouche, DR Smith, Reconciliation of generalized refraction with diffraction theory. Opt. Lett. 37(12), 2391–2393 (2012)
Article
Google Scholar
E Hasman, V Kleiner, G Biener, A Niv, Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics. Appl. Phys. Lett. 82(3), 328–330 (2003)
Article
Google Scholar
L Liu, Z Zhang, M Kenney, X Su, N Xu, C Ouyang, Y Shi, J Han, W Zhang, S Zhang, Broadband metasurfaces with simultaneous control of phase and amplitude. Adv. Mater. 26(29), 5031–5036 (2014)
Article
Google Scholar
MA Kats, P Genevet, G Aoust, NF Yu, R Blanchard, F Aieta, Z Gaburro, F Capasso, Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy. Proc. Natl. Acad. Sci. 109, 12364–12368 (2012)
Article
Google Scholar
D Hu, X Wang, S Feng, J Ye, W Sun, Q Kan, PJ Klar, Y Zhang, Ultrathin terahertz planar lenses. Adv. Opt. Mater. 1(2), 186–191 (2013)
Article
Google Scholar
X Ni, S Ishii, AV Kildishev, VM Shalaev, Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light: Science & Applications 2(4), e72 (2013)
Article
Google Scholar
F Aieta, MA Kats, P Genevet, F Cappaso, Multiwavelength Achromatic Metasurfaces by Dispersive Phase Compensation. Science 347(6228), 1342–1345 (2015)
Article
Google Scholar
X Chen, L Huang, H Muhlenbernd, G Li, B Bai, Q Tan, G Jin, CW Qiu, S Zhang, T Zentgraf, Dual-polarity plasmonic metalens for visible light. Nature Commun. 3, 1198 (2012)
Article
Google Scholar
X Chen, L Huang, H Muhlenbernd, G Li, B Bai, Q Tan, G Jin, CW Qiu, T Zentgraf, S Zhang, Reversible Three Dimensional Focusing of Visible Light with Ultrathin Plasmonic Flat Lens. Adv. Opt. Mater. 1(7), 517–521 (2013)
Article
Google Scholar
F Cervera, L Sanchis, JV Sánchez-Pérez, R Martínez-Sala, C Rubio, F Meseguer, C López, D Caballero, J Sánchez-Dehesa, Refractive acoustic devices for airborne sound. Phys. Rev. Lett. 88, 023902 (2001)
Article
Google Scholar
M Ke, Z Liu, Z Cheng, J Li, P Peng, J Shi, Flat superlens by using negative refraction in two-dimensional phononic crystals. Solid State Commun. 142(3), 177–180 (2007)
Article
Google Scholar
J Liu, CT Chan, Double-negative acoustic metamaterial. Phys. Rev. E 70, 055602(R) (2004)
Article
Google Scholar
N Fang, D Xi, J Xu, M Ambati, W Srituravanich, C Sun, X Zhang, Ultrasonic metamaterials with negative modulus. Nature Mater. 5, 452–456 (2006)
Article
Google Scholar
S Zhang, L Yin, N Fang, Focusing ultrasound with an acoustic metamaterial network. Phys. Rev. Lett. 102, 194301 (2009)
Article
Google Scholar
S Guenneau, A Movchan, G Pétursson SA, Ramakrishna. Acoustic metamaterials for sound focusing and confinement. New J. Phys 9, 399 (2007)
Article
Google Scholar
X Ao, CT Chan, Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials. Phys. Rev. E 77, 025601(R) (2008)
Article
Google Scholar
J Li, L Fok, X Yin, G Bartal, X Zhang, Experimental demonstration of an acoustic magnifying hyperlens. Nature Mater 8, 931–934 (2009)
Article
Google Scholar
MJ Freire, R Marqués, L Jelinek, Experimental demonstration of a μ = −1 metamaterial lens for magnetic resonance imaging. Appl. Phys. Lett 93, 231108 (2008)
Article
Google Scholar
G Lipworth, J Ensworth, K Seetharam, D Huang, JS Lee, P Schmalenberg, T Nomura, MS Reynolds, DR Smith, Y Urzhumov, Magnetic Metamaterial Superlens for Increased Range Wireless Power Transfer. Sci. Rep. 4, 3642 (2014)
Article
Google Scholar
L Cui, Y Huang, J Wang, KY Zhu, Ultrafast modulation of near-field heat transfer with tunable metamaterials. Appl. Phys. Lett. 102(5), 053106 (2013)
Article
Google Scholar
S Narayana, Y Sato, Heat Flux Manipulation with Engineered Thermal Materials. Phys. Rev. Lett. 108, 214303 (2012)
Article
Google Scholar
AV Kildishev, A Boltasseva, VM Shalaev, Planar Photonics with Metasurfaces. Science 339(6125), 1232009 (2013)
Article
Google Scholar