E Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikroskop. Anat. **9**(1), 413–418 (1873)

Article
Google Scholar

MV Ardenne, *U.K. Patent 511204-A*, 1938

Google Scholar

R Reinhold, *Patent DE 906737*, 1931

Google Scholar

EH Synge, A suggested method for extending the microscopic resolution into the ultramicroscopic region. Phil. Mag **6**, 356–362 (1928)

Article
Google Scholar

EH Synge, An application of piezoelectricity to microscopy. Phil. Mag. **13**, 297–300 (1932)

Article
Google Scholar

U Dürig, DW Pohl, F Rohner, Near‐field optical‐scanning microscopy. J. Appl. Phys. **59**, 3318–3327 (1986)

Article
Google Scholar

Y Oshikane, T Kataoka, M Okuda, S Hara, H Inoue, M Nakano, Observation of nanostructure by scanning near-field optical microscope with small sphere probe. Sci. Technol. Adv. Mater. **8**(3), 181–185 (2007)

Article
Google Scholar

GK Bennig, *US Patent 4724318 A*, 1988

Google Scholar

G Binnig, CF Quate, C Gerber, Atomic Force Microscope. Phys. Rev. Lett. **56**, 930–933 (1986)

Article
Google Scholar

MJ Rust, M Bates, X Zhuang, Sub diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods **3**(20), 793–796 (2006)

Article
Google Scholar

E Betzig, GH Patterson, R Sougrat, OW Lindwasser, S Olenych, JS Bonifacino, MW Davidson, J Lippincott-Schwartz, HF Hess, Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science **313**(5793), 1642–1645 (2006)

Article
Google Scholar

ST Hess, TP Giriajan, MD Mason, Ultra-high resolution imaging by Fluorescence Photoactivation Localization Microscopy. Biophysical Journal **91**(11), 4258–4272 (2006)

Article
Google Scholar

SW Hell, J Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett **19**, 780–782 (1994)

Article
Google Scholar

E Rittweger, KY Han, SE Irvine, C Eggeling, SW Hell, STED microscopy reveals crystal colour centres with nanometric resolution. Nature Photon. **3**, 144–147 (2009)

Article
Google Scholar

MG Gustafsson, Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. **102**(37), 13081–13086 (2005)

Article
Google Scholar

MG Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy **198**, 82–87 (2000)

Article
Google Scholar

B Huang, H Babcock, X Zhuang, Breaking the diffraction barrier: super-resolution imaging of cells. Cell **143**, 1047–1058 (2010)

Article
Google Scholar

BC Tom, AK Katsaggelos, NP Galatsanos, Reconstruction of a high resolution image from registration and restoration of low resolution images. Proceedings of IEEE International Conference on Image Processing **3**, 553–557 (1994)

Article
Google Scholar

VG Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Uspekhi **10**, 509–514 (1968)

Article
Google Scholar

DR Smith, WJ Padilla, DC Vier, SC Nemat-Nasser, S Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. **84**(18), 4184–4187 (2000)

Article
Google Scholar

RA Shelby, DR Smith, S Schultz, Experimental Verification of a Negative Index of Refraction. Science **292**(5514), 77–79 (2001)

Article
Google Scholar

RA Shelby, DR Smith, SC Nemat-Nasser, S Schultz, Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl. Phys. Lett. **78**(4), 489–491 (2001)

Article
Google Scholar

YJ Hsu, YC Huang, JS Lih, JL Chern, Electromagnetic resonance in deformed split ring resonators of left-handed meta-materials. J. Appl. Phys. **96**(4), 1979–1982 (2004)

Article
Google Scholar

AA Houck, JB Brock, IL Chuang, Experimental Observations of a Left-Handed Material That Obeys Snell’s Law. Phys. Rev. Lett **90**, 137401 (2003)

Article
Google Scholar

A Grbic, GV Eleftheriades, Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens. Phys. Rev. Lett **92**(11), 117403 (2004)

Article
Google Scholar

J Valentine, S Zhang, T Zentgraf, E Ulin-Aila, DA Genov, G Bartel, X Zhang, Three-dimensional optical metamaterial with a negative refractive index. Nature **455**, 376–379 (2008)

Article
Google Scholar

S Zhang, YS Park, J Li, X Lu, W Zhang, X Zhang, Negative Refractive Index in Chiral Metamaterials. Phys. Rev. Lett. **102**, 023901 (2009)

Article
Google Scholar

JB Pendry, A Chiral, Route to Negative Refraction. Science **306**(5), 1353–1355 (2004)

Article
Google Scholar

CG Parazzoli, RB Greegor, K Li, BEC Koltenbah, M Tanielian, Experimental verification and simulation of negative index of refraction using Snell’s law. Phys. Rev. Lett **90**, 107401 (2003)

Article
Google Scholar

VM Shalaev, W Cai, UK Chettiar, HK Yuan, AK Sarychev, VP Drachev, AV Kildishev, Negative index of refraction in optical metamaterials. Opt. Lett. **30**(24), 3356–3358 (2005)

Article
Google Scholar

S Zhang, W Fan, NC Panoiu, KJ Malloy, RM Osgood, SRJ Brueck, Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. **95**, 137404 (2005)

Article
Google Scholar

G Dolling, C Enkrich, M Wegener, CM Soukoulis, S Linden, Simultaneous negative phase and group velocity of light in a metamaterial. Science **312**(5775), 892–894 (2006)

Article
Google Scholar

J Yao, Z Liu, Y Liu, Y Wang, C Sun, G Bartal, AM Stacy, X Zhang, Optical negative refraction in bulk metamaterials of nanowires. Science **321**(5891), 930–930 (2008)

Article
Google Scholar

SP Burgos, R de Waele, A Polman, HA Atwater, A single-layer wide-angle negative-index metamaterial at visible frequencies. Nature Mater **9**, 407–412 (2010)

Article
Google Scholar

HJ Lezec, JA Dionne, HA Atwater, Negative refraction at visible frequencies. Science **316**(5823), 430–432 (2007)

Article
Google Scholar

E Verhagen, R de Waele, L Kuipers, A Polman, Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides. Phys. Rev. Lett. **105**(22), 223901 (2010)

Article
Google Scholar

JB Pendry, A Holden, D Robbins, W Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory and Techniques **47**(11), 2075–2084 (1999)

Article
Google Scholar

Z Jacob, JY Kim, GV Naik, A Boltasseva, EE Narimanov, VM Shalaev, Engineering photonic density of states using metamaterials. Appl. Phys. B **100**(1), 215–218 (2010)

Article
Google Scholar

JB Pendry, D Schurig, DR Smith, Controlling electromagnetic fields. Science **312**(5781), 1780–1782 (2006)

Article
Google Scholar

A Greenleaf, Y Kurylev, M Lassas, G Uhlmann, Cloaking devices, electromagnetic wormholes, and transformation optics. SIAM Rev. **51**(1), 3–33 (2009)

Article
Google Scholar

JB Pendry, Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett. **85**(18), 3966–3969 (2000)

Article
Google Scholar

JB Pendry, Negative refraction. Contemporary Physics **45**(3), 191–202 (2004)

Article
Google Scholar

N Garcia, M Nieto-Vesperinas, Left-Handed Materials Do Not Make a Perfect Lens. Phys. Rev. Lett **88**(20), 207403-1-4 (2002)

Article
Google Scholar

JB Pendry, Comment on “Left-Handed Materials Do Not Make a Perfect Lens”. Phys. Rev. Lett **91**(9), 099701 (2003)

Article
Google Scholar

G Gómez-Santos, Universal Features of the Time Evolution of Evanescent Modes in a Left-Handed Perfect Lens. Phys. Rev. Lett **90**(7), 077401 (2003)

Article
Google Scholar

DR Smith, D Schurig, M Rosenbluth, S Schultz, Limitations on subdiffraction imaging with a negative refractive index slab. Appl. Phys. Lett. **82**(10), 1506–1508 (2003)

Article
Google Scholar

SA Ramakrishna, JB Pendry, D Schurig, DR Smith, S Schultz, The asymmetric lossy near-perfect lens. Journal of Modern Optics **49**(10), 1747–1762 (2002)

Article
Google Scholar

ZW Liu, N Fang, TJ Yen, X Zhang, Rapid growth of evanescent wave by a silver superlens. Appl. Phys. Lett. **83**(25), 5184–5186 (2003)

Article
Google Scholar

N Fang, ZW Liu, TJ Yen, X Zhang, Regenerating evanescent waves from a silver superlens. Opt. Express **11**(7), 682–687 (2003)

Article
Google Scholar

A Giannattasio, IR Hooper, WL Barnes, Transmission of light through thin silver film via surface plasmon-polaritons. Opt. Express **12**(24), 5881–5886 (2004)

Article
Google Scholar

X Zhang, Z Liu, Superlenses to overcome the diffraction limit. Nature Mater. **7**(6), 435–441 (2008)

Article
Google Scholar

N Fang, H Lee, C Sun, X Zhang, Sub-Diffraction-Limited Optical Imaging with a Silver Superlens. Science **308**(5721), 534–537 (2005)

Article
Google Scholar

RJ Blaikie, DOS Melville, Imaging through planar silver lenses in the optical near field. J. Opt. A: Pure Appl. Opt **7**, S176–S183 (2005)

Article
Google Scholar

DOS Melville, RJ Blaikie, Near-field optical lithography using a planar silver lens. J. Vac. Sci. Technol. B **22**(6), 3470–3474 (2004)

Article
Google Scholar

N Fang, X Zhang, Imaging properties of a metamaterial superlens. Appl. Phys. Lett. **82**(2), 161–163 (2003)

Article
Google Scholar

T Taubner, D Korobkin, Y Urzhumov, G Shvets, R Hillenbrand, Near-Field Microscopy Through a SiC Superlens. Science **313**(5793), 1595–1595 (2006)

Article
Google Scholar

M Jablan, H Buljan, M Soljačić, Plasmonics in graphene at infrared frequencies. Phys. Rev. B **80**, 245435 (2009)

Article
Google Scholar

P Tassin, T Koschny, M Kafesaki, CM Soukoulis, A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nature Photon. **6**, 259–264 (2012)

Article
Google Scholar

JB Khurgin, G Sun, In search of the elusive lossless metal. Appl. Phys. Lett **96**(18), 181102 (2010)

Article
Google Scholar

SA Ramakrishna, JB Pendry, Removal of absorption and increase in resolution in a near-field lens via optical gain. Phys. Rev. B **67**, 201101 (2003)

Article
Google Scholar

MG Blaber, MD Arnold, MJ Ford, A review of the optical properties of alloys and intermetallics for plasmonics. J. Phys.: Condens. Matter **22**, 143201 (2010)

Google Scholar

GV Naik, J Kim, A Boltasseva, Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Opt. Mater. Express **1**(6), 1090–1099 (2011)

Article
Google Scholar

AJ Hoffman, LV Alekseyev, SS Howard, KJ Franz, D Wasserman, VA Podolskiy, EE Narimanov, DL Sivco, C Gmachl, Negative refraction in semiconductor metamaterials. Nature Mater **6**, 946–950 (2007)

Article
Google Scholar

GV Naik, A Boltasseva, Semiconductors for plasmonics and metamaterials. Phys. Status Solidi RRL **4**(10), 295–297 (2010)

Article
Google Scholar

CJ Regan, D Dominguez, LG de Peralta, AA Bernussi, Far-field optical superlenses without metal. Appl. Phys. Lett **113**, 183105 (2013)

Google Scholar

H Lee, Y Xiong, N Fang, W Srituravanich, S Durant, M Ambati, C Sun, X Zhang, Realization of optical superlens imaging below the diffraction limit. New J. Phys. **7**, 255 (2005)

Article
Google Scholar

E Shamonina, V Kalinin, K Ringhofer, L Solymar, Imaging, compression and Poynting vector streamlines for negative permittivity mateirals. Electron. Lett. **37**, 1243–1244 (2001)

Article
Google Scholar

SA Ramakrishna, JB Pendry, MCK Wiltshire, WJ Stewart, Imaging the near field. J. Mod. Opt. **50**(9), 1419–1430 (2003)

Article
Google Scholar

SC Kehr, YM Liu, LW Martin, P Yu, M Gajek, SY Yang, CH Yang, MT Wenzel, R Jacob, HG von Ribbeck, M Helm, X Zhang, LM Eng, R Ramesh, Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling. Nature Commun. **2**, 249 (2011)

Article
Google Scholar

M Fehrenbacher, S Winnerl, H Schneider, J Doring, SC Kehr, LM Eng, Y Huo, OG Schmidt, K Yao, Y Liu, M Helm, Plasmonic superlensing in doped GaAs. Nano Lett. **15**(2), 1057–1061 (2015)

Article
Google Scholar

P Li, T Wang, H Bockmann, T Taubner, Graphene-Enhanced Infrared Near-Field Microscopy. Nano Lett. **14**(8), 4400–4405 (2014)

Article
Google Scholar

P Li, T Taubner, Multi-wavelength superlensing with layered phonon-resonant dielectrics. Opt. Express **20**(11), 11787–11795 (2012)

Article
Google Scholar

S Durant, Z Liu, N Fang, X Zhang, Theory of optical imaging beyond the diffraction limit with a far-field superlens. Proc. SPIE 6323, Plasmonics: Metallic Nanostructures and their Optical Properties **IV**, 63231H (2006)

Google Scholar

S Durant, Z Liu, JM Steele, X Zhang, Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit. J. Opt. Soc. Am. B **23**(11), 2383–2392 (2006)

Article
Google Scholar

Z Liu, S Durant, H Lee, Y Pikus, N Fang, Y Xiong, C Sun, X Zhang, Far-Field Optical Superlens. Nano Lett. **7**(2), 403–408 (2007)

Article
Google Scholar

Z Liu, S Durant, H Lee, Y Pikus, Y Xiong, C Sun, X Zhang, Experimental studies of far-field superlens for sub-diffractional optical imaging. Opt. Express **15**(11), 6947–6954 (2007)

Article
Google Scholar

Z Liu, S Durant, H Lee, Y Xiong, Y Pikus, C Sun, X Zhang, Near-field Moire effect mediated by surface plasmon polariton excitation. Opt. Lett. **32**(6), 629–631 (2007)

Article
Google Scholar

O Kafri, I Glatt, *The Physics of Moiré Metrology* (Wiley, New York, 1989), p. 4

Google Scholar

V Krishnamurthi, B Bailey, F Lanni, Image processing in 3-D standing-wave fluorescence microscopy. Proc. SPIE Int. Soc. Opt. Eng. **2655**, 18–25 (1996)

Google Scholar

Y Xiong, Z Liu, S Durant, H Lee, C Sun, X Zhang, Tuning the far-field superlens: from UV to visible. Opt. Express **15**(12), 7095–7102 (2007)

Article
Google Scholar

Q Cao, P Lalanne, Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits. Phys. Rev. Lett. **88**, 057403 (2002)

Article
Google Scholar

X Yang, J Yao, J Rho, X Yin, X Zhang, Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nature Photon. **6**, 450–454 (2012)

Article
Google Scholar

D Lu, JJ Kan, EE Fullerton, Z Liu, Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat. Nanotechnol. **9**(1), 48–53 (2014)

Article
Google Scholar

Z Jacob, I Smolyaninov, EE Narimanov, Broadband Purcell effect: Radiative decay engineering with metamaterials. Appl. Phys. Lett. **100**(18), 181105–181114 (2009)

Article
Google Scholar

MA Noginov, H Li, YA Barnakov, D Dryden, G Nataraj, G Zhu, CE Bonner, M Mayy, Z Jacob, EE Narimanov, Controlling spontaneous emission with metamaterials. Opt. Lett. **35**(11), 1863–1865 (2010)

Article
Google Scholar

Z Yu, NP Sergeant, T Skauli, G Zhang, H Wang, S Fan, Enhancing far-field thermal emission with thermal extraction. Nat. Commun. **4**, 1730 (2013)

Article
Google Scholar

Y Guo, CL Cortes, S Molesky, Z Jacob, Broadband super-Planckian thermal emission from hyperbolic metamaterials. Appl. Phys. Lett. **101**, 131106 (2012)

Article
Google Scholar

EE Narimanov, II Smolyaninov, Beyond Stefan-Boltzmann Law: Thermal Hyper-Conductivity, in *Quantum Electronics and Laser Science Conference, San Jose*, 2012

Google Scholar

Z Jacob, LV Alekseyev, EE Narimanov, Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express **14**(18), 8247–8256 (2006)

Article
Google Scholar

A Salandrino, N Engheta, Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B **74**, 075103 (2006)

Article
Google Scholar

B Wood, JB Pendry, Directed Sub-Wavelength Imaging Using a Layered Metal-Dielectric System. Phys. Rev. B **74**, 115116 (2006)

Article
Google Scholar

Z Liu, H Lee, Y Xiong, C Sun, X Zhang, Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science **315**(5819), 1686–1686 (2007)

Article
Google Scholar

H Lee, Z Liu, Y Xiong, C Sun, X Zhang, Development of optical hyperlens for imaging below the diffraction limit. Opt. Express **15**(24), 15886–15891 (2007)

Article
Google Scholar

J Rho, Z Ye, Y Xiong, X Yin, Z Liu, H Choi, G Bartal, X Zhang, Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nature Commun. **1**, 143 (2010)

Article
Google Scholar

II Smolyaninov, YJ Hung, CC Davis, Magnifying superlens in the visible frequency range. Science **315**(5819), 1699–1701 (2007)

Article
Google Scholar

G Shvets, S Trendafilov, JB Pendry, A Sarychev, Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays. Phys. Rev. Lett. **99**, 053903 (2007)

Article
Google Scholar

A Ono, J Kato, S Kawata, Subwavelength optical imaging through a metallic nanorod array. Phys. Rev. Lett. **95**(26), 267407 (2005)

Article
Google Scholar

P Ikonen, C Simovski, S Tretyakov, P Belov, Y Hao, Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime. Appl. Phys. Lett. **91**, 104102 (2007)

Article
Google Scholar

Y Zhao, G Palikaras, PA Belov, RF Dubrovka, C Simovski, Y Hao, CG Parini, Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator. New J. Phys. **12**, 103045 (2010)

Article
Google Scholar

S Kawata, A Ono, P Verma, Subwavelength colour imaging with a metallic nanolens. Nature Photon. **2**(7), 438–442 (2008)

Article
Google Scholar

AV Kildishev, VM Shalaev, Engineering space for light via transformation optics. Opt. Lett. **33**(1), 43–45 (2008)

Article
Google Scholar

W Wang, H Xing, L Fang, Y Liu, J Ma, L Lin, C Wang, X Luo, Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial. Opt. Express **16**(25), 21142–21148 (2008)

Article
Google Scholar

Y Xiong, Z Liu, C Sun, X Zhang, Two-Dimensional Imaging by Far-Field Superlens at Visible Wavelengths. Nano Letters **7**(11), 3360–3365 (2007)

Article
Google Scholar

S Thongrattanasiri, VA Podolskiy, Hyper-gratings: nanophotonics in planar anisotropic metamaterials. Opt. Lett. **34**(7), 890–892 (2009)

Article
Google Scholar

MA Vincenti, D de Ceglia, V Rondinone, A Ladisa, A D’Orazio, MJ Bloemer, M Scalora, Loss compensation in metal-dielectric structures in negative-refraction and super-resolving regimes. Phys. Rev. A **80**, 053807 (2009)

Article
Google Scholar

X Ni, S Ishii, MD Thoreson, VM Shalaev, S Han, S Lee, AV Kildishev, Loss-compensated and active hyperbolic metamaterials. Opt. Express **19**(25), 25242–25254 (2011)

Article
Google Scholar

GV Naik, J Liu, AV Kildishev, VM Shalaev, A Boltasseva, Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials. Proc. Natl. Acad. Sci. **109**(23), 8834–8838 (2012)

Article
Google Scholar

GV Naik, VM Shalaev, A Boltasseva, Alternative Plasmonic Materials: Beyond Gold and Silver. Adv. Mater. **25**(24), 3264–3294 (2013)

Article
Google Scholar

PA Belov, Y Hao, Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime. Phys. Rev. B **73**, 113110 (2006)

Article
Google Scholar

F Warkusz, Electrical and mechanical properties of thin metal films: Size effects. Prog. Surf. Sci **10**(3), 287–382 (1980)

Article
Google Scholar

K Fuchs, The conductivity of thin metallic films according to the electron theory of metals. Math. Proc. Cambridge Philos. Soc **34**(10), 100–108 (1938)

Article
Google Scholar

Z Jacob, LV Alekseyev, EE Narimanov, Semiclassical theory of the hyperlens. J. Opt. Soc. Am. A **24**(10), A52–A59 (2007)

Article
Google Scholar

AV Kildishev, EE Narimanov, Impedance-matched hyperlens. Opt. Lett. **32**(23), 3432–3434 (2007)

Article
Google Scholar

JD Caldwell, AV Kretinin, Y Chen, V Giannini, MM Fogler, Y Francescato, CT Ellis, JG Tischler, CR Woods, AJ Giles, M Hong, K Watanabe, T Taniguchi, SA Maier, KS Novoselov, Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nature Commun **5**, 5221 (2014)

Article
Google Scholar

S Dai, Q Ma, T Andersen, AS Mcleod, Z Fei, MK Liu, M Wagner, K Watanabe, T Taniguchi, M Thiemens, F Keilmann, P Jarillo-Herrero, MM Fogler, DN Basov, Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nature Commun. **6**, 6963 (2015)

Article
Google Scholar

P Li, M Lewin, AV Kretinin, JD Caldwell, KS Novoselov, T Taniguchi, K Watanabe, F Gaussmann, T Taubner, Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging. arXiv:1502.04093v2

C Ma, R Aguinaldo, Z Liu, Advances in the hyperlens. Chin. Sci. Bull. **55**(24), 2618–2624 (2010)

Article
Google Scholar

C Ma, Z Liu, A super resolution metalens with phase compensation mechanism. Appl. Phys. Lett **96**(18), 183103 (2010)

Article
Google Scholar

C Ma, Z Liu, Focusing light into deep subwavelength using metamaterial immersion lenses. Opt. Express **18**(5), 4838–4844 (2010)

Article
Google Scholar

C Ma, MA Escobar, Z Liu, Extraordinary light focusing and Fourier transform properties of gradient-index metalenses. Phys. Rev. B **84**, 195142 (2011)

Article
Google Scholar

D Lu, Z Liu, Hyperlenses and metalenses for far-field super-resolution imaging. Nature Commun. **3**, 1205 (2012)

Google Scholar

DA Roberts, N Kundtz, DR Smith, Optical lens compression via transformation optics. Opt. Express **17**(19), 16535–16542 (2009)

Article
Google Scholar

N Kundtz, DR Smith, Extreme-angle broadband metamaterial lens. Nature Mater. **9**(2), 129–132 (2010)

Article
Google Scholar

L Verslegers, PB Catrysse, Z Yu, S Fan, Deep-Subwavelength Focusing and Steering of Light in an Aperiodic Metallic Waveguide Array. Phys. Rev. Lett. **103**, 033902 (2009)

Article
Google Scholar

IE Khodasevych, IV Shadrivov, DA Powell, WST Rowe, A Mitchell, Pneumatically switchable graded index metamaterial lens. Appl. Phys. Lett **102**(3), 031904 (2013)

Article
Google Scholar

DH Kwon, DH Werner, Transformation optical designs for wave collimators, flat lenses and right-angle bends. New J. Phys **10**, 115023 (2008)

Article
Google Scholar

R Yang, W Tang, Y Hao, A broadband zone plate lens from transformation optics. Opt. Express **19**(13), 12348–12355 (2011)

Article
Google Scholar

S Han, Y Xiong, D Genov, Z Liu, G Bartel, X Zhang, Ray optics at a deep-subwavelength scale: a transformation optics approach. Nano Lett. **8**(12), 4243–4247 (2008)

Article
Google Scholar

M Tsang, D Psaltis, Magnifying perfect lens and superlens design by coordinate transformation. Phys. Rev. B **77**, 035122 (2008)

Article
Google Scholar

ZH Jiang, MD Gregory, DH Werner, Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission. Phys. Rev. B **84**, 165111 (2011)

Article
Google Scholar

A Boltasseva, HA Atwater, Low-loss plasmonic metamaterials. Science **331**(6015), 290–291 (2011)

Article
Google Scholar

CM Soukoulis, M Wegener, Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photon **5**, 523–530 (2011)

Google Scholar

N Meinzer, WL Barnes, IR Hooper, Plasmonic meta-atoms and metasurfaces. Nature Photon. **8**(12), 889–898 (2014)

Article
Google Scholar

N Yu, F Capasso, Flat optics with designer metasurfaces. Nature Mater. **13**(2), 139–150 (2014)

Article
Google Scholar

DM Pozar, SD Targonski, HD Syrigos, Design of millimeter wave microstrip reflectarrays. IEEE Trans. Antennas Propag. **45**(2), 287–296 (1997)

Article
Google Scholar

JA Encinar, Design of two-layer printed reflectarrays using patches of variable size. IEEE Trans. Antennas Propag. **49**(10), 1403–1410 (2001)

Article
Google Scholar

DT McGrath, Planar three-dimensional constrained lenses. IEEE Trans. Antennas Propag. **34**(1), 46–50 (1986)

Article
Google Scholar

DM Pozar, Flat lens antenna concept using aperture coupled microstrip patches. Electron. Lett. **32**, 2109–2111 (1996)

Article
Google Scholar

P Padilla, A Muñoz-Acevedo, M Sierra-Castañer, M Sierra-Pérez, Electronically reconfigurable transmitarray at Ku band for microwave applications. IEEE Trans. Antennas Propag. **58**(8), 2571–2579 (2010)

Article
Google Scholar

L Verslegers, PB Catrysse, Z Yu, JS White, ES Barnard, ML Brongersma, S Fan, Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film. Nano Lett. **9**(1), 235–238 (2009)

Article
Google Scholar

FM Huang, TS Kao, VA Fedotoc, Y Chen, N Zheludev, Nanohole array as a lens. Nano Lett. **8**(8), 2469–2472 (2008)

Article
Google Scholar

FM Huang, N Zheludev, Super-Resolution without Evanescent Waves. Nano Lett. **9**(3), 1249–1254 (2009)

Article
Google Scholar

ETF Rogers, J Lindberg, T Roy, S Savo, JE Chad, MR Dennis, NI Zheludev, A super-oscillatory lens optical microscope for subwavelength imaging. Nature Mater **11**, 432–435 (2012)

Article
Google Scholar

N Yu, P Genevet, MA Kats, F Aieta, JP Tetienne, F Capasso, Z Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science **334**(6054), 333–337 (2011)

Article
Google Scholar

F Aieta, P Genevet, MA Kats, N Yu, R Blanchard, Z Gaburro, F Capasso, Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. **12**(9), 4932–4936 (2012)

Article
Google Scholar

P Genevet, N Yu, F Aieta, J Lin, MA Kats, R Blanchard, MO Scully, Z Gaburro, F Capasso, Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl. Phys. Lett. **100**, 013101 (2012)

Article
Google Scholar

L Huang, X Chen, H Mühlenbernd, H Zhang, S Chen, B Bai, Q Tan, G Jin, KW Cheah, CW Qiu, J Li, T Zentgraf, S Zhang, Three-dimensional optical holography using a plasmonic metasurface. Nature Commun. **4**, 28 (2013). Semiconductors for plasmonics and metamaterials 08

Google Scholar

F Aieta, P Genevet, N Yu, MA Kats, Z Gaburro, F Capasso, Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. Nano Lett. **12**(3), 1702–1706 (2012)

Article
Google Scholar

R Blanchard, G Aoust, P Genevet, N Yu, MA Kats, Z Gaburro, F Capasso, Modeling nanoscale V-shaped antennas for the design of optical phased arrays. Phys. Rev. B **85**, 155457 (2012)

Article
Google Scholar

S Larouche, DR Smith, Reconciliation of generalized refraction with diffraction theory. Opt. Lett. **37**(12), 2391–2393 (2012)

Article
Google Scholar

E Hasman, V Kleiner, G Biener, A Niv, Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics. Appl. Phys. Lett. **82**(3), 328–330 (2003)

Article
Google Scholar

L Liu, Z Zhang, M Kenney, X Su, N Xu, C Ouyang, Y Shi, J Han, W Zhang, S Zhang, Broadband metasurfaces with simultaneous control of phase and amplitude. Adv. Mater. **26**(29), 5031–5036 (2014)

Article
Google Scholar

MA Kats, P Genevet, G Aoust, NF Yu, R Blanchard, F Aieta, Z Gaburro, F Capasso, Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy. Proc. Natl. Acad. Sci. **109**, 12364–12368 (2012)

Article
Google Scholar

D Hu, X Wang, S Feng, J Ye, W Sun, Q Kan, PJ Klar, Y Zhang, Ultrathin terahertz planar lenses. Adv. Opt. Mater. **1**(2), 186–191 (2013)

Article
Google Scholar

X Ni, S Ishii, AV Kildishev, VM Shalaev, Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light: Science & Applications **2**(4), e72 (2013)

Article
Google Scholar

F Aieta, MA Kats, P Genevet, F Cappaso, Multiwavelength Achromatic Metasurfaces by Dispersive Phase Compensation. Science **347**(6228), 1342–1345 (2015)

Article
Google Scholar

X Chen, L Huang, H Muhlenbernd, G Li, B Bai, Q Tan, G Jin, CW Qiu, S Zhang, T Zentgraf, Dual-polarity plasmonic metalens for visible light. Nature Commun. **3**, 1198 (2012)

Article
Google Scholar

X Chen, L Huang, H Muhlenbernd, G Li, B Bai, Q Tan, G Jin, CW Qiu, T Zentgraf, S Zhang, Reversible Three Dimensional Focusing of Visible Light with Ultrathin Plasmonic Flat Lens. Adv. Opt. Mater. **1**(7), 517–521 (2013)

Article
Google Scholar

F Cervera, L Sanchis, JV Sánchez-Pérez, R Martínez-Sala, C Rubio, F Meseguer, C López, D Caballero, J Sánchez-Dehesa, Refractive acoustic devices for airborne sound. Phys. Rev. Lett. **88**, 023902 (2001)

Article
Google Scholar

M Ke, Z Liu, Z Cheng, J Li, P Peng, J Shi, Flat superlens by using negative refraction in two-dimensional phononic crystals. Solid State Commun. **142**(3), 177–180 (2007)

Article
Google Scholar

J Liu, CT Chan, Double-negative acoustic metamaterial. Phys. Rev. E **70**, 055602(R) (2004)

Article
Google Scholar

N Fang, D Xi, J Xu, M Ambati, W Srituravanich, C Sun, X Zhang, Ultrasonic metamaterials with negative modulus. Nature Mater. **5**, 452–456 (2006)

Article
Google Scholar

S Zhang, L Yin, N Fang, Focusing ultrasound with an acoustic metamaterial network. Phys. Rev. Lett. **102**, 194301 (2009)

Article
Google Scholar

S Guenneau, A Movchan, G Pétursson SA, Ramakrishna. Acoustic metamaterials for sound focusing and confinement. New J. Phys **9**, 399 (2007)

Article
Google Scholar

X Ao, CT Chan, Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials. Phys. Rev. E **77**, 025601(R) (2008)

Article
Google Scholar

J Li, L Fok, X Yin, G Bartal, X Zhang, Experimental demonstration of an acoustic magnifying hyperlens. Nature Mater **8**, 931–934 (2009)

Article
Google Scholar

MJ Freire, R Marqués, L Jelinek, Experimental demonstration of a μ = −1 metamaterial lens for magnetic resonance imaging. Appl. Phys. Lett **93**, 231108 (2008)

Article
Google Scholar

G Lipworth, J Ensworth, K Seetharam, D Huang, JS Lee, P Schmalenberg, T Nomura, MS Reynolds, DR Smith, Y Urzhumov, Magnetic Metamaterial Superlens for Increased Range Wireless Power Transfer. Sci. Rep. **4**, 3642 (2014)

Article
Google Scholar

L Cui, Y Huang, J Wang, KY Zhu, Ultrafast modulation of near-field heat transfer with tunable metamaterials. Appl. Phys. Lett. **102**(5), 053106 (2013)

Article
Google Scholar

S Narayana, Y Sato, Heat Flux Manipulation with Engineered Thermal Materials. Phys. Rev. Lett. **108**, 214303 (2012)

Article
Google Scholar

AV Kildishev, A Boltasseva, VM Shalaev, Planar Photonics with Metasurfaces. Science **339**(6125), 1232009 (2013)

Article
Google Scholar