M. Roser, H. Ritchie, Cancer. Our World in Data (2020). https://ourworldindata.org/cancer
A.D. Wagner, N.L. Syn, M. Moehler, W. Grothe, W.P. Yong, B.C. Tai, J. Ho, S. Unverzagt, Chemotherapy for advanced gastric cancer. Cochrane Database Syst. Rev. 8, CD004064 (2017)
Google Scholar
C.-H. Shin, W.-Y. Lee, S.-W. Hong, Y.-G. Chang, Characteristics of gastric cancer recurrence five or more years after curative gastrectomy. Chin. J. Cancer Res. 28(5), 503 (2016)
Article
Google Scholar
L. Moletta, S. Serafini, M. Valmasoni, E.S. Pierobon, A. Ponzoni, C. Sperti, Surgery for recurrent pancreatic cancer: is it effective? Cancers 11(7), 991 (2019)
Article
Google Scholar
A.C. Society, Key Statistics for Pancreatic Cancer. https://www.cancer.org/cancer/pancreatic-cancer/about/key-statistics.html
K. Gurusamy, S. Kumar, B. Davidson, G. Fusai, Resection versus other treatments for locally advanced pancreatic cancer. Cochrane Database Syst. Rev. 12, CD010244 (2012). https://doi.org/10.1002/14651858.CD010244
Article
Google Scholar
F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018)
Article
Google Scholar
T. Conroy, P. Hammel, M. Hebbar, M. Ben Abdelghani, A.C. Wei, J.-L. Raoul, L. Choné, E. Francois, P. Artru, J.J. Biagi et al., Folfirinox or gemcitabine as adjuvant therapy for pancreatic cancer. N. Engl. J. Med. 379(25), 2395–2406 (2018)
Article
CAS
Google Scholar
FDA: FDA approves olaparib for gBRCAm metastatic pancreatic adenocarcinoma. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-olaparib-gbrcam-metastatic-pancreatic-adenocarcinoma
A. Wang-Gillam, C.-P. Li, G. Bodoky, A. Dean, Y.-S. Shan, G. Jameson, T. Macarulla, K.-H. Lee, D. Cunningham, J.F. Blanc et al., Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (napoli-1): a global, randomised, open-label, phase 3 trial. Lancet 387(10018), 545–557 (2016)
Article
CAS
Google Scholar
S.S. Ur Rehman, K. Lim, A. Wang-Gillam, Nanoliposomal irinotecan plus fluorouracil and folinic acid: a new treatment option in metastatic pancreatic cancer. Expert Rev. Anticancer Ther. 16(5), 485–492 (2016)
Article
CAS
Google Scholar
J. Carnevale, A.H. Ko, Mm-398 (nanoliposomal irinotecan): emergence of a novel therapy for the treatment of advanced pancreatic cancer. Fut. Oncol. 12(4), 453–464 (2016)
Article
CAS
Google Scholar
S.J. Park, H. Kim, K. Shin, M.A. Lee, T.H. Hong, Oral chemotherapy for second-line treatment in patients with gemcitabine-refractory advanced pancreatic cancer. World J. Gastrointest. Oncol. 11(11), 1021 (2019)
Article
Google Scholar
G. Giordano, M. Pancione, N. Olivieri, P. Parcesepe, M. Velocci, T. Di Raimo, L. Coppola, G. Toffoli, M.R. D’Andrea, Nano albumin bound-paclitaxel in pancreatic cancer: current evidences and future directions. World J. Gastroenterol. 23(32), 5875 (2017)
Article
CAS
Google Scholar
J. Bridgewater, A. Lopes, D. Palmer, D. Cunningham, A. Anthoney, A. Maraveyas, S. Madhusudan, T. Iveson, J. Valle, H. Wasan, Quality of life, long-term survivors and long-term outcome from the abc-02 study. Br. J. Cancer 114(9), 965–971 (2016)
Article
CAS
Google Scholar
V. Sahai, P.J. Catalano, M.M. Zalupski, S.J. Lubner, M.R. Menge, H.S. Nimeiri, H.G. Munshi, P.J. O’Dwyer et al., Nab-paclitaxel and gemcitabine as first-line treatment of advanced or metastatic cholangiocarcinoma: a phase 2 clinical trial. JAMA Oncol. 4(12), 1707–1712 (2018)
Article
Google Scholar
S.M. Hoy, Pemigatinib: first approval. Drugs 80, 923–929 (2020)
Article
Google Scholar
M. Venerito, R. Vasapolli, T. Rokkas, P. Malfertheiner, Gastric cancer: epidemiology, prevention, and therapy. Helicobacter 23, 12518 (2018)
Article
CAS
Google Scholar
A.S. Rathore, Approval of Ogivri (Parenteral Drug Association (PDA), Bethesda, 2018)
Book
Google Scholar
S.S. Joshi, S.B. Maron, D.V. Catenacci, Pembrolizumab for treatment of advanced gastric and gastroesophageal junction adenocarcinoma. Fut. Oncol. 14(5), 417–430 (2018)
Article
CAS
Google Scholar
J. Kuvendjiska, G. Marjanovic, T. Glatz, B. Kulemann, J. Hoeppner, Hybrid minimally invasive esophagectomy-surgical technique and results. J. Clin. Med. 8(7), 978 (2019)
Article
Google Scholar
ClinicalTriGov Kernel Description. https://clinicaltrials.gov/ct2/show/NCT04390958. Accessed 03 June 2020
A. Lamprecht, N. Ubrich, H. Yamamoto, U. Schäfer, H. Takeuchi, P. Maincent, Y. Kawashima, C.-M. Lehr, Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. J. Pharmacol. Exp. Ther. 299(2), 775–781 (2001)
CAS
Google Scholar
C. Wang, J. Chen, T. Talavage, J. Irudayaraj, Gold nanorod/fe3o4 nanoparticle “nano-pearl-necklaces” for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells. Angewandte Chemie 121(15), 2797–2801 (2009)
Article
Google Scholar
K. Lee, J. Irudayaraj, Correct spectral conversion between surface-enhanced raman and plasmon resonance scattering from nanoparticle dimers for single-molecule detection. Small 9(7), 1106–1115 (2013)
Article
CAS
Google Scholar
R. Letfullin, B. Murphy, Delete gold nanoparticles heated by x-rays for applications to cancer therapies (2015)
J. Nam, S. Son, L.J. Ochyl, R. Kuai, A. Schwendeman, J.J. Moon, Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 9(1), 1–13 (2018)
Article
CAS
Google Scholar
R. Riley, E. Day, Wiley interdiscip. Rev..: Nanomed. Nanobiotechnol. 9(4), 1449 (2017)
X. Fang, C. Li, L. Zheng, F. Yang, T. Chen, Dual-targeted selenium nanoparticles for synergistic photothermal therapy and chemotherapy of tumors. Chem. An Asian J. 13(8), 996–1004 (2018)
Article
CAS
Google Scholar
Z. Yuan, S. Qu, Y. He, Y. Xu, L. Liang, X. Zhou, L. Gui, Y. Gu, H. Chen, Thermosensitive drug-loading system based on copper sulfide nanoparticles for combined photothermal therapy and chemotherapy in vivo. Biomater. Sci. 6(12), 3219–3230 (2018)
Article
CAS
Google Scholar
A. Banstola, T.T. Pham, J.-H. Jeong, S. Yook, Polydopamine-tailored paclitaxel-loaded polymeric microspheres with adhered nir-controllable gold nanoparticles for chemo-phototherapy of pancreatic cancer. Drug Deliv. 26(1), 629–640 (2019)
Article
CAS
Google Scholar
S.C. Coelho, D.P. Reis, M.C. Pereira, M.A. Coelho, Doxorubicin and varlitinib delivery by functionalized gold nanoparticles against human pancreatic adenocarcinoma. Pharmaceutics 11(11), 551 (2019)
Article
CAS
Google Scholar
T. Vangijzegem, D. Stanicki, S. Laurent, Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv 16(1), 69–78 (2019)
Article
CAS
Google Scholar
A. Marcu, S. Pop, F. Dumitrache, M. Mocanu, C. Niculite, M. Gherghiceanu, C. Lungu, C. Fleaca, R. Ianchis, A. Barbut et al., Magnetic iron oxide nanoparticles as drug delivery system in breast cancer. Appl. Surf. Sci. 281, 60–65 (2013)
Article
CAS
Google Scholar
A. Szuplewska, A. Rękorajska, E. Pocztańska, P. Krysiński, A. Dybko, M. Chudy, Magnetic field-assisted selective delivery of doxorubicin to cancer cells using magnetoliposomes as drug nanocarriers. Nanotechnology 30(31), 315101 (2019)
Article
CAS
Google Scholar
Y. Wang, Y. Zhao, Y. Cui, Q. Zhao, Q. Zhang, S. Musetti, K.A. Kinghorn, S. Wang, Overcoming multiple gastrointestinal barriers by bilayer modified hollow mesoporous silica nanocarriers. Acta Biomater. 65, 405–416 (2018)
Article
CAS
Google Scholar
Y. Zhou, G. Quan, Q. Wu, X. Zhang, B. Niu, B. Wu, Y. Huang, X. Pan, C. Wu, Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm. Sin. B 8(2), 165–177 (2018)
Article
Google Scholar
J. Zhou, G. Tian, L. Zeng, X. Song, X-w Bian, Nanoscaled metal-organic frameworks for biosensing, imaging, and cancer therapy. Adv. Healthcare Mater. 7(10), 1800022 (2018)
Article
CAS
Google Scholar
L. He, Y. Liu, J. Lau, W. Fan, Q. Li, C. Zhang, P. Huang, X. Chen, Recent progress in nanoscale metal-organic frameworks for drug release and cancer therapy. Nanomedicine 14(10), 1343–1365 (2019)
Article
CAS
Google Scholar
G. Lan, K. Ni, Z. Xu, S.S. Veroneau, Y. Song, W. Lin, Nanoscale metal-organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J. Am. Chem. Soc. 140(17), 5670–5673 (2018)
Article
CAS
Google Scholar
J. Feng, Z. Xu, P. Dong, W. Yu, F. Liu, Q. Jiang, F. Wang, X. Liu, Stimuli-responsive multifunctional metal-organic framework nanoparticles for enhanced chemo-photothermal therapy. J. Mater. Chem. B 7(6), 994–1004 (2019)
Article
CAS
Google Scholar
C. He, K. Lu, D. Liu, W. Lin, Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled sirnas to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc. 136(14), 5181–5184 (2014)
Article
CAS
Google Scholar
Y. Wang, B.B. Newell, J. Irudayaraj, Folic acid protected silver nanocarriers for targeted drug delivery. J. Biomed. Nanotechnol. 8(5), 751–759 (2012)
Article
CAS
Google Scholar
Y. Wang, J. Chen, J. Irudayaraj, Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of her2+ breast cancer. ACS Nano 5(12), 9718–9725 (2011)
Article
CAS
Google Scholar
J. Chen, J. Irudayaraj, Quantitative investigation of compartmentalized dynamics of erbb2 targeting gold nanorods in live cells by single molecule spectroscopy. ACS Nano 3(12), 4071–4079 (2009)
Article
CAS
Google Scholar
J.K. Pokorski, N.F. Steinmetz, The art of engineering viral nanoparticles. Mol. Pharm. 8(1), 29–43 (2011)
Article
CAS
Google Scholar
T. Douglas, M. Young, Viruses: making friends with old foes. Science 312(5775), 873–875 (2006)
Article
CAS
Google Scholar
E. Gillitzer, D. Willits, M. Young, T. Douglas, Chemical modification of a viral cage for multivalent presentation. Chem. Commun. 20, 2390–2391 (2002)
Article
CAS
Google Scholar
J.D. Lewis, G. Destito, A. Zijlstra, M.J. Gonzalez, J.P. Quigley, M. Manchester, H. Stuhlmann, Viral nanoparticles as tools for intravital vascular imaging. Nat. Med. 12(3), 354–360 (2006)
Article
CAS
Google Scholar
Q. Wang, T. Lin, J.E. Johnson, M. Finn, Natural supramolecular building blocks. Chem. Biol. 7(9), 813–819 (2002)
Article
Google Scholar
M.L. Flenniken, L.O. Liepold, B.E. Crowley, D.A. Willits, M.J. Young, T. Douglas, Selective attachment and release of a chemotherapeutic agent from the interior of a protein cage architecture. Chem. Commun. 4, 447–449 (2005)
Article
CAS
Google Scholar
P. Singh, G. Destito, A. Schneemann, M. Manchester, Canine parvovirus-like particles, a novel nanomaterial for tumor targeting. J. Nanobiotechnol. 4(1), 2 (2006)
Article
CAS
Google Scholar
K. Cho, X. Wang, S. Nie, D.M. Shin et al., Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14(5), 1310–1316 (2008)
Article
CAS
Google Scholar
I. Yildiz, S. Shukla, N.F. Steinmetz, Applications of viral nanoparticles in medicine. Curr. Opin. Biotechnol. 22(6), 901–908 (2011)
Article
CAS
Google Scholar
M.L. Flenniken, D.A. Willits, A.L. Harmsen, L.O. Liepold, A.G. Harmsen, M.J. Young, T. Douglas, Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture. Chem. Biol. 13(2), 161–170 (2006)
Article
CAS
Google Scholar
A. Chatterji, W. Ochoa, L. Shamieh, S.P. Salakian, S.M. Wong, G. Clinton, P. Ghosh, T. Lin, J.E. Johnson, Chemical conjugation of heterologous proteins on the surface of cowpea mosaic virus. Bioconjug. Chem. 15(4), 807–813 (2004)
Article
CAS
Google Scholar
M. Manchester, P. Singh, Virus-based nanoparticles (vnps): platform technologies for diagnostic imaging. Adv. Drug Deliv. Rev. 58(14), 1505–1522 (2006)
Article
CAS
Google Scholar
M.T. Klem, D. Willits, M. Young, T. Douglas, 2-d array formation of genetically engineered viral cages on au surfaces and imaging by atomic force microscopy. J. Am. Chem. Soc. 125(36), 10806–10807 (2003)
Article
CAS
Google Scholar
Q. Wang, T. Lin, L. Tang, J.E. Johnson, M. Finn, Icosahedral virus particles as addressable nanoscale building blocks. Angewandte Chemie Int. Ed. 41(3), 459–462 (2002)
Article
CAS
Google Scholar
K.S. Raja, Q. Wang, M. Finn, Icosahedral virus particles as polyvalent carbohydrate display platforms. ChemBioChem 4(12), 1348–1351 (2003)
Article
CAS
Google Scholar
E. Strable, J.E. Johnson, M. Finn, Natural nanochemical building blocks: icosahedral virus particles organized by attached oligonucleotides. Nano Lett. 4(8), 1385–1389 (2004)
Article
CAS
Google Scholar
D.J. Evans, The bionanoscience of plant viruses: templates and synthons for new materials. J. Mater. Chem. 18(32), 3746–3754 (2008)
Article
CAS
Google Scholar
C.E. Flynn, S.-W. Lee, B.R. Peelle, A.M. Belcher, Viruses as vehicles for growth, organization and assembly of materials. Acta Mater. 51(19), 5867–5880 (2003)
Article
CAS
Google Scholar
M.T. Klem, M. Young, T. Douglas, Biomimetic magnetic nanoparticles. Mater. Today 8(9), 28–37 (2005)
Article
CAS
Google Scholar
M. Manchester, N.F. Steinmetz, Viruses and nanotechnology (Springer, Berlin, 2009)
Book
Google Scholar
R. Singh, K. Kostarelos, Designer adenoviruses for nanomedicine and nanodiagnostics. Trends Biotechnol. 27(4), 220–229 (2009)
Article
CAS
Google Scholar
E. Strable, M. Finn, Chemical modification of viruses and virus-like particles, Viruses and nanotechnology (Springer, Berlin, 2009), pp. 1–21
Google Scholar
M. Young, W. Debbie, M. Uchida, T. Douglas, Plant viruses as biotemplates for materials and their use in nanotechnology. Annu. Rev. Phytopathol. 46, 361–384 (2008)
Article
CAS
Google Scholar
Q. Wang, T.R. Chan, R. Hilgraf, V.V. Fokin, K.B. Sharpless, M. Finn, Bioconjugation by copper (i)-catalyzed azide-alkyne [3+ 2] cycloaddition. J. Am. Chem. Soc. 125(11), 3192–3193 (2003)
Article
CAS
Google Scholar
T.L. Schlick, Z. Ding, E.W. Kovacs, M.B. Francis, Dual-surface modification of the tobacco mosaic virus. J. Am. Chem. Soc. 127(11), 3718–3723 (2005)
Article
CAS
Google Scholar
M. Rawat, D. Singh, S. Saraf, S. Saraf, Nanocarriers: promising vehicle for bioactive drugs. Biol. Pharm. Bull. 29(9), 1790–1798 (2006)
Article
CAS
Google Scholar
L. Prabu, S. Tnk, Nov appro drug des dev role of natural polymers in drug delivery systems as challenging ailments. Mini Rev. 3(1), 1–5 (2017)
Google Scholar
H. Kharkwal, B. Malhotra, S. Janaswamy, 1 natural polymers for drug delivery: an introduction (CABI international, Wallingford, 2017)
Google Scholar
H. Karatas, Y. Aktas, Y. Gursoy-Ozdemir, E. Bodur, M. Yemisci, S. Caban, A. Vural, O. Pinarbasli, Y. Capan, E. Fernandez-Megia et al., A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection. J. Neurosci. 29(44), 13761–13769 (2009)
Article
CAS
Google Scholar
Y. Aktaş, M. Yemisci, K. Andrieux, R.N. Gürsoy, M.J. Alonso, E. Fernandez-Megia, R. Novoa-Carballal, E. Quiñoá, R. Riguera, M.F. Sargon et al., Development and brain delivery of chitosan- peg nanoparticles functionalized with the monoclonal antibody ox26. Bioconjug. Chem. 16(6), 1503–1511 (2005)
Article
CAS
Google Scholar
L. Dai, C. Si, Recent advances on cellulose-based nano-drug delivery systems: design of prodrugs and nanoparticles. Curr. Med. Chem. 26(14), 2410–2429 (2019)
Article
CAS
Google Scholar
U. Garg, S. Chauhan, U. Nagaich, N. Jain, Current advances in chitosan nanoparticles based drug delivery and targeting. Adv. Pharm. Bull. 9(2), 195 (2019)
Article
CAS
Google Scholar
F. Alexis, J. Zeng, W. Shu, Pei nanoparticles for targeted gene delivery. Cold Spring Harb. Protoc. 2006(1), 4451 (2006)
Article
Google Scholar
C. Vauthier, D. Labarre, G. Ponchel, Design aspects of poly (alkylcyanoacrylate) nanoparticles for drug delivery. J. Drug Target. 15(10), 641–663 (2007)
Article
CAS
Google Scholar
M. Gou, X. Wei, K. Men, B. Wang, F. Luo, X. Zhao, Y. Wei, Z. Qian, Pcl/peg copolymeric nanoparticles: potential nanoplatforms for anticancer agent delivery. Curr. Drug Targets 12(8), 1131–1150 (2011)
Article
CAS
Google Scholar
J. Cheng, B.A. Teply, I. Sherifi, J. Sung, G. Luther, F.X. Gu, E. Levy-Nissenbaum, A.F. Radovic-Moreno, R. Langer, O.C. Farokhzad, Formulation of functionalized plga-peg nanoparticles for in vivo targeted drug delivery. Biomaterials 28(5), 869–876 (2007)
Article
CAS
Google Scholar
A. Naz, Y. Cui, C.J. Collins, D.H. Thompson, J. Irudayaraj, Plga-peg nano-delivery system for epigenetic therapy. Biomed. Pharmacother. 90, 586–597 (2017)
Article
CAS
Google Scholar
Y. Cui, A. Naz, D.H. Thompson, J. Irudayaraj, Decitabine nanoconjugate sensitizes human glioblastoma cells to temozolomide. Mol. Pharm. 12(4), 1279–1288 (2015)
Article
CAS
Google Scholar
R.Z. Xiao, Z.W. Zeng, G.L. Zhou, J.J. Wang, F.Z. Li, A.M. Wang, Recent advances in peg-pla block copolymer nanoparticles. Int. J. Nanomed. 5, 1057 (2010)
CAS
Google Scholar
M.L. Hans, A.M. Lowman, Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mater. Sci. 6(4), 319–327 (2002)
Article
CAS
Google Scholar
P. Bhandari, O. Lei, J. Irudayaraj, Hypoxia re-programming oxygen nanobubbles sensitize human glioblastoma cells to temozolomide via methylation alterations. J. Bionanosci. 11(5), 337–345 (2017)
Article
CAS
Google Scholar
P.N. Bhandari, Y. Cui, B.D. Elzey, C.J. Goergen, C.M. Long, J. Irudayaraj, Oxygen nanobubbles revert hypoxia by methylation programming. Sci. Rep. 7(1), 1–14 (2017)
Article
CAS
Google Scholar
P. Bhandari, G. Novikova, C.J. Goergen, J. Irudayaraj, Ultrasound beam steering of oxygen nanobubbles for enhanced bladder cancer therapy. Sci. Rep. 8(1), 1–10 (2018)
Article
CAS
Google Scholar
E. Batrakova, T.Y. Dorodnych, E.Y. Klinskii, E. Kliushnenkova, O. Shemchukova, O. Goncharova, S. Arjakov, V.Y. Alakhov, A. Kabanov, Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anti-cancer activity. Br. J. Cancer 74(10), 1545–1552 (1996)
Article
CAS
Google Scholar
T. Nakanishi, S. Fukushima, K. Okamoto, M. Suzuki, Y. Matsumura, M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka, Development of the polymer micelle carrier system for doxorubicin. J. Control. Release 74(1–3), 295–302 (2001)
Article
CAS
Google Scholar
M.L. Adams, A. Lavasanifar, G.S. Kwon, Amphiphilic block copolymers for drug delivery. J. Pharm. Sci. 92(7), 1343–1355 (2003)
Article
CAS
Google Scholar
J. Wang, S. Li, Y. Han, J. Guan, S. Chung, C. Wang, D. Li, Poly (ethylene glycol)-polylactide micelles for cancer therapy. Front. Pharmacol. 9, 202 (2018)
Article
CAS
Google Scholar
K.K. Gill, A. Kaddoumi, S. Nazzal, Peg-lipid micelles as drug carriers: physiochemical attributes, formulation principles and biological implication. J. Drug Target. 23(3), 222–231 (2015)
Article
CAS
Google Scholar
D. Keskin, A. Tezcaner, Micelles as delivery system for cancer treatment. Curr. Pharm. Des. 23(35), 5230–5241 (2017)
CAS
Google Scholar
J. Shi, S. Liu, Y. Yu, C. He, L. Tan, Y.-M. Shen, Rgd peptide-decorated micelles assembled from polymer-paclitaxel conjugates towards gastric cancer therapy. Colloids Surf. B Biointerfaces 180, 58–67 (2019)
Article
CAS
Google Scholar
S. Svenson, D.A. Tomalia, Dendrimers in biomedical applications—reflections on the field. Adv. Drug Deliv. Rev. 64, 102–115 (2012)
Article
Google Scholar
J. Li, H. Liang, J. Liu, Z. Wang, Poly (amidoamine)(pamam) dendrimer mediated delivery of drug and pdna/sirna for cancer therapy. Int. J. Pharm. 546(1–2), 215–225 (2018)
Article
CAS
Google Scholar
L. Palmerston Mendes, J. Pan, V.P. Torchilin, Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 22(9), 1401 (2017)
Article
CAS
Google Scholar
P.-Y. Jin, Z.-H. Zheng, H.-J. Lu, J. Yan, G.-H. Zheng, Y.-L. Zheng, D.-M. Wu, J. Lu, Roles of \(\beta\)-catenin, tcf-4, and survivin in nasopharyngeal carcinoma: correlation with clinicopathological features and prognostic significance. Cancer Cell Int. 19(1), 48 (2019)
Article
Google Scholar
E.B. Bahadır, M.K. Sezgintürk, Poly (amidoamine)(pamam): an emerging material for electrochemical bio (sensing) applications. Talanta 148, 427–438 (2016)
Article
CAS
Google Scholar
Y. Cheng, L. Zhao, Y. Li, T. Xu, Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem. Soc. Rev. 40(5), 2673–2703 (2011)
Article
CAS
Google Scholar
P. Kesharwani, K. Jain, N.K. Jain, Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci. 39(2), 268–307 (2014)
Article
CAS
Google Scholar
A.R. Menjoge, R.M. Kannan, D.A. Tomalia, Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov. Today 15(5–6), 171–185 (2010)
Article
CAS
Google Scholar
F. Liko, F. Hindre, E. Fernandez-Megia, Dendrimers as innovative radiopharmaceuticals in cancer radionanotherapy. Biomacromolecules 17(10), 3103–3114 (2016)
Article
CAS
Google Scholar
E.N. Cline, M.-H. Li, S.K. Choi, J.F. Herbstman, N. Kaul, E. Meyhöfer, G. Skiniotis, J.R. Baker, R.G. Larson, N.G. Walter, Paclitaxel-conjugated pamam dendrimers adversely affect microtubule structure through two independent modes of action. Biomacromolecules 14(3), 654–664 (2013)
Article
CAS
Google Scholar
S. Ray, Z. Li, C.-H. Hsu, L.-P. Hwang, Y.-C. Lin, P.-T. Chou, Y.-Y. Lin, Dendrimer-and copolymer-based nanoparticles for magnetic resonance cancer theranostics. Theranostics 8(22), 6322 (2018)
Article
CAS
Google Scholar
T. Veerati, F. Moheimani, S.Y. Wu, A.K. Sood, S. Hua, Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6, 286 (2015)
Google Scholar
R. Gharib, H. Greige-Gerges, S. Fourmentin, C. Charcosset, L. Auezova, Liposomes incorporating cyclodextrin-drug inclusion complexes: current state of knowledge. Carbohydr. Polym. 129, 175–186 (2015)
Article
CAS
Google Scholar
M.B. De Jesus, I.S. Zuhorn, Solid lipid nanoparticles as nucleic acid delivery system: properties and molecular mechanisms. J. Control. Release 201, 1–13 (2015)
Article
CAS
Google Scholar
S. Azzi, J.K. Hebda, J. Gavard, Vascular permeability and drug delivery in cancers. Front. Oncol. 3, 211 (2013)
Article
Google Scholar
Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46(12 Part 1), 6387–6392 (1986)
CAS
Google Scholar
H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, Tumor vascular permeability and the epr effect in macromolecular therapeutics: a review. J. Control. Release 65(1–2), 271–284 (2000)
Article
CAS
Google Scholar
J.O. Eloy, R. Petrilli, L.N.F. Trevizan, M. Chorilli, Immunoliposomes: a review on functionalization strategies and targets for drug delivery. Colloids Surf. B Biointerfaces 159, 454–467 (2017)
Article
CAS
Google Scholar
V.P. Torchilin, Multifunctional nanocarriers. Adv. Drug Deliv. Rev. 58(14), 1532–1555 (2006)
Article
CAS
Google Scholar
G.T. Noble, J.F. Stefanick, J.D. Ashley, T. Kiziltepe, B. Bilgicer, Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol 32(1), 32–45 (2014)
Article
CAS
Google Scholar
R. Petrilli, O.J. Eloy, M.J. Marchetti, F.V.R. Lopez, J.R. Lee, Targeted lipid nanoparticles for antisense oligonucleotide delivery. Curr. Pharm. Biotechnol. 15(9), 847–855 (2014)
Article
CAS
Google Scholar
T.X. Nguyen, L. Huang, M. Gauthier, G. Yang, Q. Wang, Recent advances in liposome surface modification for oral drug delivery. Nanomedicine 11(9), 1169–1185 (2016)
Article
CAS
Google Scholar
C. Li, Y. Zhang, T. Su, L. Feng, Y. Long, Z. Chen, Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin. Int. J. Nanomed. 7, 5995 (2012)
Article
CAS
Google Scholar
H. Chen, J. Wu, M. Sun, C. Guo, A. Yu, F. Cao, L. Zhao, Q. Tan, G. Zhai, N-trimethyl chitosan chloride-coated liposomes for the oral delivery of curcumin. J. Liposome Res. 22(2), 100–109 (2012)
Article
CAS
Google Scholar
Q.-Y. Bao, N. Zhang, D.-D. Geng, J.-W. Xue, M. Merritt, C. Zhang, Y. Ding, The enhanced longevity and liver targetability of paclitaxel by hybrid liposomes encapsulating paclitaxel-conjugated gold nanoparticles. Int. J. Pharm. 477(1–2), 408–415 (2014)
Article
CAS
Google Scholar
P. Kesharwani, A. Gothwal, A.K. Iyer, K. Jain, M.K. Chourasia, U. Gupta, Dendrimer nanohybrid carrier systems: an expanding horizon for targeted drug and gene delivery. Drug Discov. Today 23(2), 300–314 (2018)
Article
CAS
Google Scholar
F.F. de Cancerologie Digestive, Gemcitabine With or Without Combination Chemotherapy and Radiation Therapy in Treating Patients With Nonmetastatic Pancreatic Cancer That Cannot Be Removed By Surgery. https://clinicaltrials.gov/ct2/show/NCT00416507?term=liposome&cond=Cancer+of+Pancreas&draw=3&rank=16
M.D.A.C. Center, Cisplatin HAI study in patients with advanced cancer and dominant liver involvement. https://clinicaltrials.gov/ct2/show/NCT00507962?term=liposomal+cisplatin&draw=5&rank=6
M. Murata, Inflammation and cancer. Environ. Health Prev. Med. 23(1), 1–8 (2018)
Article
CAS
Google Scholar
N. Singh, D. Baby, J.P. Rajguru, P.B. Patil, S.S. Thakkannavar, V.B. Pujari, Inflammation and cancer. Ann. Afr. Med. 18(3), 121 (2019)
Article
Google Scholar
W. Park, Y.-J. Heo, D.K. Han, New opportunities for nanoparticles in cancer immunotherapy. Biomater. Res. 22(1), 1–10 (2018)
Article
CAS
Google Scholar
A. Eldar-Boock, D. Polyak, A. Scomparin, R. Satchi-Fainaro, Nano-sized polymers and liposomes designed to deliver combination therapy for cancer. Curr. Opin. Biotechnol. 24(4), 682–689 (2013)
Article
CAS
Google Scholar
T. Feng, Y. Wei, R.J. Lee, L. Zhao, Liposomal curcumin and its application in cancer. Int. J. Nanomed. 12, 6027 (2017)
Article
CAS
Google Scholar
Y. Chen, C. Chen, X. Zhang, C. He, P. Zhao, M. Li, T. Fan, R. Yan, Y. Lu, R.J. Lee et al., Platinum complexes of curcumin delivered by dual-responsive polymeric nanoparticles improve chemotherapeutic efficacy based on the enhanced anti-metastasis activity and reduce side effects. Acta Pharm. Sin. B 10(6), 1106–1121 (2020)
Article
Google Scholar
K. Kakimi, T. Karasaki, H. Matsushita, T. Sugie, Advances in personalized cancer immunotherapy. Breast Cancer 24(1), 16–24 (2017)
Article
Google Scholar
S. Poilil Surendran, M.J. Moon, R. Park, Y.Y. Jeong, Bioactive nanoparticles for cancer immunotherapy. Int. J. Mol. Sci. 19(12), 3877 (2018)
Article
CAS
Google Scholar
J. Mograo, C.A. da Costa, R. Gaspar, H.F. Florindo, Modulation of dendritic cells by nanotechnology-based immunotherapeutic strategies. J. Biomed. Nanotechnol. 12(3), 405–434 (2016)
Article
CAS
Google Scholar
P. Gotwals, S. Cameron, D. Cipolletta, V. Cremasco, A. Crystal, B. Hewes, B. Mueller, S. Quaratino, C. Sabatos-Peyton, L. Petruzzelli et al., Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat. Rev. Cancer 17(5), 286–301 (2017)
Article
CAS
Google Scholar
K. Kim, H. Choi, E.S. Choi, M.-H. Park, J.-H. Ryu, Hyaluronic acid-coated nanomedicine for targeted cancer therapy. Pharmaceutics 11(7), 301 (2019)
Article
CAS
Google Scholar
A. Dolor, F.C. Szoka Jr., Digesting a path forward: the utility of collagenase tumor treatment for improved drug delivery. Mol. Pharm. 15(6), 2069–2083 (2018)
Article
CAS
Google Scholar
A. Zinger, L. Koren, O. Adir, M. Poley, M. Alyan, Z. Yaari, N. Noor, N. Krinsky, A. Simon, H. Gibori et al., Collagenase nanoparticles enhance the penetration of drugs into pancreatic tumors. ACS Nano 13(10), 11008–11021 (2019)
Article
CAS
Google Scholar
J. Cayún, S. Contreras, J. Stojanova, L. Quiñones et al., Can pharmacogenetics explain efficacy and safety of cisplatin pharmacotherapy? Front. Genet. 5, 391 (2014)
Google Scholar
G. Tiram, A. Scomparin, P. Ofek, R. Satchi-Fainaro, Interfering cancer with polymeric sirna nanomedicines. J. Biomed. Nanotechnol. 10(1), 50–66 (2014)
Article
CAS
Google Scholar
S. Onoue, S. Yamada, H.-K. Chan, Nanodrugs: pharmacokinetics and safety. Int. J. nanomed. 9, 1025 (2014)
Article
CAS
Google Scholar
X. Cao, Y. Hu, S. Luo, Y. Wang, T. Gong, X. Sun, Y. Fu, Z. Zhang, Neutrophil-mimicking therapeutic nanoparticles for targeted chemotherapy of pancreatic carcinoma. Acta Pharm. Sin. B 9(3), 575–589 (2019)
Article
Google Scholar
Y. Hu, X. Chen, Y. Xu, X. Han, M. Wang, T. Gong, Z.-R. Zhang, W.J. Kao, Y. Fu, Hierarchical assembly of hyaluronan coated albumin nanoparticles for pancreatic cancer chemoimmunotherapy. Nanoscale 11(35), 16476–16487 (2019)
Article
CAS
Google Scholar
B.L. Tan, M.E. Norhaizan, Curcumin combination chemotherapy: the implication and efficacy in cancer. Molecules 24(14), 2527 (2019)
Article
CAS
Google Scholar
S. Khan, S. Setua, S. Kumari, N. Dan, A. Massey, B.B. Hafeez, M.M. Yallapu, Z.E. Stiles, A. Alabkaa, J. Yue et al., Superparamagnetic iron oxide nanoparticles of curcumin enhance gemcitabine therapeutic response in pancreatic cancer. Biomaterials 208, 83–97 (2019)
Article
CAS
Google Scholar
A. Shetty, P.K. Nagesh, S. Setua, B.B. Hafeez, M. Jaggi, M.M. Yallapu, S.C. Chauhan, Novel paclitaxel nanoformulation impairs de novo lipid synthesis in pancreatic cancer cells and enhances gemcitabine efficacy. ACS Omega 5(15), 8982–8991 (2020)
Article
CAS
Google Scholar
S.T. Tucci, A. Kheirolomoom, E.S. Ingham, L.M. Mahakian, S.M. Tam, J. Foiret, N.E. Hubbard, A.D. Borowsky, M. Baikoghli, R.H. Cheng et al., Tumor-specific delivery of gemcitabine with activatable liposomes. J. Control. Release 309, 277–288 (2019)
Article
CAS
Google Scholar
S. Sato, C. Kunisaki, Y. Tanaka, K. Sato, H. Miyamoto, N. Yukawa, Y. Fujii, J. Kimura, R. Takagawa, M. Takahashi et al., A phase ii study of tri-weekly low-dose nab-paclitaxel chemotherapy for patients with advanced gastric cancer. Anticancer Res. 38(12), 6911–6917 (2018)
Article
Google Scholar
J. Cai, L. Ding, P. Gong, J. Huang, A colorimetric detection of microrna-148a in gastric cancer by gold nanoparticle-rna conjugates. Nanotechnology 31(9), 095501 (2019)
Article
CAS
Google Scholar
K. Shitara, A. Takashima, K. Fujitani, K. Koeda, H. Hara, N. Nakayama, S. Hironaka, K. Nishikawa, Y. Makari, K. Amagai et al., Nab-paclitaxel versus solvent-based paclitaxel in patients with previously treated advanced gastric cancer (absolute): an open-label, randomised, non-inferiority, phase 3 trial. Lancet Gastroenterol. Hepatol. 2(4), 277–287 (2017)
Article
Google Scholar
P. Katsaounis, A. Kotsakis, N. Kentepozidis, A. Polyzos, M. Bakogeorgos, F. Koinis, L. Vamvakas, N. Vardakis, K. Kalbakis, I. Boukovinas et al., Nab-paclitaxel as second-line treatment in advanced gastric cancer: a multicenter phase ii study of the hellenic oncology research group. Ann. Gastroenterol. 31(1), 65 (2018)
Google Scholar
D. Westmeier, G. Posselt, A. Hahlbrock, S. Bartfeld, C. Vallet, C. Abfalter, D. Docter, S.K. Knauer, S. Wessler, R.H. Stauber, Nanoparticle binding attenuates the pathobiology of gastric cancer-associated helicobacter pylori. Nanoscale 10(3), 1453–1463 (2018)
Article
CAS
Google Scholar
X. Wang, H. Zhang, M. Bai, T. Ning, S. Ge, T. Deng, R. Liu, L. Zhang, G. Ying, Y. Ba, Exosomes serve as nanoparticles to deliver anti-mir-214 to reverse chemoresistance to cisplatin in gastric cancer. Mol. Ther. 26(3), 774–783 (2018)
Article
CAS
Google Scholar
J. Zhang, T. Zhao, F. Han, Y. Hu, Y. Li, Photothermal and gene therapy combined with immunotherapy to gastric cancer by the gold nanoshell-based system. J. Nanobiotechnol. 17(1), 80 (2019)
Article
CAS
Google Scholar
H. Chen, J. Lin, Y. Shan, L. Zhengmao, The promotion of nanoparticle delivery to two populations of gastric cancer stem cells by cd133 and cd44 antibodies. Biomed. Pharmacother. 115, 108857 (2019)
Article
CAS
Google Scholar
H. Meng, M. Wang, H. Liu, X. Liu, A. Situ, B. Wu, Z. Ji, C.H. Chang, A.E. Nel, Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano 9(4), 3540–3557 (2015)
Article
CAS
Google Scholar
A.A. Markeb, N.A. El-Maali, D.M. Sayed, A. Osama, M.A. Abdel-Malek, A.H. Zaki, M.E. Elwanis, J.J. Driscoll, Synthesis, structural characterization, and preclinical efficacy of a novel paclitaxel-loaded alginate nanoparticle for breast cancer treatment. Int. J. Breast Cancer (2016). https://doi.org/10.1155/2016/7549372
Article
Google Scholar
J.J. Jayapal, S. Dhanaraj, Exemestane loaded alginate nanoparticles for cancer treatment: Formulation and in vitro evaluation. Int. J. Biol. Macromol. 105, 416–421 (2017)
Article
CAS
Google Scholar
X. Liu, X. Deng, X. Li, D. Xue, H. Zhang, T. Liu, Q. Liu, N.J. Mellors, Y. Li, Y. Peng, A visualized investigation at the atomic scale of the antitumor effect of magnetic nanomedicine on gastric cancer cells. Nanomedicine 9(9), 1389–1402 (2014)
Article
CAS
Google Scholar
J.M. Silva, M. Videira, R. Gaspar, V. Préat, H.F. Florindo, Immune system targeting by biodegradable nanoparticles for cancer vaccines. J. Control. Release 168(2), 179–199 (2013)
Article
CAS
Google Scholar
R. Klippstein, D. Pozo, Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomed. Nanotechnol. Biol. Med. 6(4), 523–529 (2010)
Article
CAS
Google Scholar
S. Ahmad, A.A. Zamry, H.-T.T. Tan, K.K. Wong, J. Lim, R. Mohamud, Targeting dendritic cells through gold nanoparticles: a review on the cellular uptake and subsequent immunological properties. Mol. Immunol. 91, 123–133 (2017)
Article
CAS
Google Scholar
E. Zupančič, C. Curato, J.-S. Kim, E. Yeini, Z. Porat, A.S. Viana, A. Globerson-Levin, T. Waks, Z. Eshhar, J.N. Moreira et al., Nanoparticulate vaccine inhibits tumor growth via improved t cell recruitment into melanoma and huher2 breast cancer. Nanomed. Nanotechnol. Biol. Med. 14(3), 835–847 (2018)
Article
CAS
Google Scholar
J. Conniot, A. Scomparin, C. Peres, E. Yeini, S. Pozzi, A.I. Matos, R. Kleiner, L.I. Moura, E. Zupančič, A.S. Viana et al., Immunization with mannosylated nanovaccines and inhibition of the immune-suppressing microenvironment sensitizes melanoma to immune checkpoint modulators. Nat. Nanotechnol. 14(9), 891–901 (2019)
Article
CAS
Google Scholar
H. Lu, G. Yang, F. Ran, T. Gao, C. Sun, Q. Zhao, S. Wang, Polymer-functionalized mesoporous carbon nanoparticles on overcoming multiple barriers and improving oral bioavailability of probucol. Carbohydr. Polym. 229, 115508 (2020)
Article
CAS
Google Scholar
J. Lu, X. Liu, Y.-P. Liao, F. Salazar, B. Sun, W. Jiang, C.H. Chang, J. Jiang, X. Wang, A.M. Wu et al., Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat. Commun. 8(1), 1–14 (2017)
Article
CAS
Google Scholar
J. Gao, K. Fan, Y. Jin, L. Zhao, Q. Wang, Y. Tang, H. Xu, Z. Liu, S. Wang, J. Lin et al., Pegylated lipid bilayer coated mesoporous silica nanoparticles co-delivery of paclitaxel and curcumin leads to increased tumor site drug accumulation and reduced tumor burden. Eur. J. Pharm. Sci. 140, 105070 (2019)
Article
CAS
Google Scholar
X. Liu, A. Situ, Y. Kang, K.R. Villabroza, Y. Liao, C.H. Chang, T. Donahue, A.E. Nel, H. Meng, Irinotecan delivery by lipid-coated mesoporous silica nanoparticles shows improved efficacy and safety over liposomes for pancreatic cancer. ACS Nano 10(2), 2702–2715 (2016)
Article
CAS
Google Scholar
F. Maiyo, M. Singh, Selenium nanoparticles: potential in cancer gene and drug delivery. Nanomedicine 12(9), 1075–1089 (2017)
Article
CAS
Google Scholar
C. Springfeld, D. Jäger, M.W. Büchler, O. Strobel, T. Hackert, D.H. Palmer, J.P. Neoptolemos, Chemotherapy for pancreatic cancer. La Presse Medicale 48(3), 159–174 (2019)
Article
Google Scholar
N. Ahmad, M.A. Alam, R. Ahmad, A.A. Naqvi, F.J. Ahmad, Preparation and characterization of surface-modified plga-polymeric nanoparticles used to target treatment of intestinal cancer. Artif. Cells Nanomed. Biotechnol. 46(2), 432–446 (2018)
Article
CAS
Google Scholar
of South Carolina, M.U.: The impact of adjuvant liquid alginate on endoscopic ablation therapy of complicated Barrett’s esophagus. https://clinicaltrials.gov/ct2/show/NCT03193216?term=alginate&cond=cancer&draw=2&rank=6
K. Matthes, M. Mino-Kenudson, D.V. Sahani, N. Holalkere, K.D. Fowers, R. Rathi, W.R. Brugge, Eus-guided injection of paclitaxel (oncogel) provides therapeutic drug concentrations in the porcine pancreas (with video). Gastrointest. Endosc. 65(3), 448–453 (2007)
Article
Google Scholar
J. Cai, K. Qian, X. Zuo, W. Yue, Y. Bian, J. Yang, J. Wei, W. Zhao, H. Qian, B. Liu, Plga nanoparticle-based docetaxel/ly294002 drug delivery system enhances antitumor activities against gastric cancer. J. Biomater. Appl. 33(10), 1394–1406 (2019)
Article
CAS
Google Scholar
E. Fernandes, D. Ferreira, A. Peixoto, R. Freitas, M. Relvas-Santos, C. Palmeira, G. Martins, A. Barros, L.L. Santos, B. Sarmento et al., Glycoengineered nanoparticles enhance the delivery of 5-fluoroucil and paclitaxel to gastric cancer cells of high metastatic potential. Int. J. Pharm. 570, 118646 (2019)
Article
CAS
Google Scholar
M. Mir, N. Ahmed, A. ur Rehman, Recent applications of plga based nanostructures in drug delivery. Colloids Surf. B Biointerfaces 159, 217–231 (2017)
Article
CAS
Google Scholar
J.B. Wolinsky, Y.L. Colson, M.W. Grinstaff, Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J. Control. Release 159(1), 14–26 (2012)
Article
CAS
Google Scholar
M.A. Mohammed, J. Syeda, K.M. Wasan, E.K. Wasan, An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 9(4), 53 (2017)
Article
CAS
Google Scholar
U. Nagarajan, K. Kawakami, S. Zhang, B. Chandrasekaran, B.U. Nair, Fabrication of solid collagen nanoparticles using electrospray deposition. Chem. Pharm. Bull. 62(5), 422–428 (2014)
Article
CAS
Google Scholar
V.S. Cardoso, P.V. Quelemes, A. Amorin, F.L. Primo, G.G. Gobo, A.C. Tedesco, A.C. Mafud, Y.P. Mascarenhas, J.R. Corrêa, S.A. Kuckelhaus et al., Collagen-based silver nanoparticles for biological applications: synthesis and characterization. J. Nanobiotechnol. 12(1), 1–9 (2014)
Article
CAS
Google Scholar
S.F. Chin, F.B. Jimmy, S.C. Pang, Size controlled fabrication of cellulose nanoparticles for drug delivery applications. J. Drug Deliv. Sci. Technol. 43, 262–266 (2018)
Article
CAS
Google Scholar
Abdellatif, A.A.H.: Targeted polymeric nanoparticles loaded with cetuximab and decorated with somatostatin analogue to colon cancer. https://ourworldindata.org/cancer0
H. Vahidi, H. Barabadi, M. Saravanan, Emerging selenium nanoparticles to combat cancer: a systematic review. J. Clust. Sci. 31(2), 301–309 (2020)
Article
CAS
Google Scholar
A.P. Bidkar, P. Sanpui, S.S. Ghosh, Efficient induction of apoptosis in cancer cells by paclitaxel-loaded selenium nanoparticles. Nanomedicine 12(21), 2641–2651 (2017)
Article
CAS
Google Scholar
P. Singh, S. Pandit, V. Mokkapati, A. Garg, V. Ravikumar, I. Mijakovic, Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci. 19(7), 1979 (2018)
Article
CAS
Google Scholar
A.K. Hauser, M.I. Mitov, E.F. Daley, R.C. McGarry, K.W. Anderson, J.Z. Hilt, Targeted iron oxide nanoparticles for the enhancement of radiation therapy. Biomaterials 105, 127–135 (2016)
Article
CAS
Google Scholar
A.S. Thakor, J.V. Jokerst, P. Ghanouni, J.L. Campbell, E. Mittra, S.S. Gambhir, Clinically approved nanoparticle imaging agents. J. Nuclear Med 57(12), 1833–1837 (2016)
Article
CAS
Google Scholar
C. Martinelli, C. Pucci, G. Ciofani, Nanostructured carriers as innovative tools for cancer diagnosis and therapy. APL Bioeng. 3(1), 011502 (2019)
Article
CAS
Google Scholar
D.-J. Lim, M. Sim, L. Oh, K. Lim, H. Park, Carbon-based drug delivery carriers for cancer therapy. Arch. Pharm. Res. 37(1), 43–52 (2014)
Article
CAS
Google Scholar
L. Muzi, C. Ménard-Moyon, J. Russier, J. Li, C.F. Chin, W.H. Ang, G. Pastorin, G. Risuleo, A. Bianco, Diameter-dependent release of a cisplatin pro-drug from small and large functionalized carbon nanotubes. Nanoscale 7(12), 5383–5394 (2015)
Article
CAS
Google Scholar
Yu, X.-J.: Efficacy and safety of paclitaxel liposome and S-1 as first-line therapy in advanced pancreatic cancer patients. https://ourworldindata.org/cancer1
A. Pharmaceuticals, aroplatin and gemcitabine in patients with advanced pancreatic cancer resistant to standard therapies. https://ourworldindata.org/cancer2
J. Xiao, Pegliposomal doxorubicin and 5-fluorouracil as second line therapy for metastatic gastric cancer. https://ourworldindata.org/cancer3
K.S. Lee, H.C. Chung, S.A. Im, Y.H. Park, C.S. Kim, S.-B. Kim, S.Y. Rha, M.Y. Lee, J. Ro, Multicenter phase ii trial of genexol-pm, a cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res. Treat. 108(2), 241–250 (2008)
Article
CAS
Google Scholar
S.Y. Oh, Docetaxel-polymeric micelles(PM) and oxaliplatin for esophageal carcinoma (DOSE). https://ourworldindata.org/cancer4
L Orient Europharma Co., Combination therapy With NC-6004 and gemcitabine versus gemcitabine alone in pancreatic cancer. https://ourworldindata.org/cancer5
N.M. Molino, M. Neek, J.A. Tucker, E.L. Nelson, S.-W. Wang, Viral-mimicking protein nanoparticle vaccine for eliciting anti-tumor responses. Biomaterials 86, 83–91 (2016)
Article
CAS
Google Scholar
Y.L. Tan, H.K. Ho, Navigating albumin-based nanoparticles through various drug delivery routes. Drug Discov. Today 23(5), 1108–1114 (2018)
Article
CAS
Google Scholar