J. Hou et al., Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nat. Commun. 11(1), 5100 (2020)
Article
CAS
Google Scholar
Zhao, H., et al., Challenges of fast charging for electric vehicles and the role of red phosphorous as anode material: review. Energies 12:20 (2019)
S. Guo et al., A polymeric composite protective layer for stable Li metal anodes. Nano Converg. 7(1), 21 (2020)
Article
CAS
Google Scholar
H. Wang et al., Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Mater 33, 188–215 (2020)
Article
Google Scholar
Norby, T., Early history of solid state ionics. MRS Proc. 135:25 (2011)
D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali-metal ions with poly(ethylene oxide). Polymer 14(11), 589–589 (1973)
Article
CAS
Google Scholar
Armand, M., et al., Fast ion transport in solids 131:23 (1979)
A. Arya, A.L. Sharma, Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23(3), 497–540 (2017)
Article
CAS
Google Scholar
K.S. Ngai et al., A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22(8), 1259–1279 (2016)
Article
CAS
Google Scholar
J.Y. Song, Y.Y. Wang, C.C. Wan, Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sources 77(2), 183–197 (1999)
Article
CAS
Google Scholar
S.J. Tan et al., Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochem. Energy Rev. 1(2), 113–138 (2018)
Article
CAS
Google Scholar
D. Devaux et al., Optimization of block copolymer electrolytes for lithium metal batteries. Chem. Mater. 27(13), 4682–4692 (2015)
Article
CAS
Google Scholar
R. Bouchet et al., Charge transport in nanostructured PS-PEO-PS triblock copolymer electrolytes. Macromolecules 47(8), 2659–2665 (2014)
Article
CAS
Google Scholar
J.E. Weston, B.C.H. Steele, Effects of inert fillers on the mechanical and electrochemical properties of lithium salt poly (ethylene-oxide) polymer electrolytes. Solid State Ionics 7(1), 75–79 (1982)
Article
CAS
Google Scholar
J. Cao et al., Dispersibility of nano-TiO2 on performance of composite polymer electrolytes for Li-ion batteries. Electrochim. Acta 111, 674–679 (2013)
Article
CAS
Google Scholar
J. Cao et al., In situ prepared nano-crystalline TiO2–poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. J. Mater. Chem. A 1(19), 5955–5961 (2013)
Article
CAS
Google Scholar
X.M. He et al., In situ composite of nano SiO2-P(VDF-HFP) porous polymer electrolytes for Li-ion batteries. Electrochim. Acta 51(6), 1069–1075 (2005)
Article
CAS
Google Scholar
Q. Li et al., Interface properties between a lithium metal electrode and a poly(ethylene oxide) based composite polymer electrolyte. J. Power Sources 94(2), 201–205 (2001)
Article
CAS
Google Scholar
M.Y.A. Rahman et al., Fabrication and characterization of a solid polymeric electrolyte of PAN-TiO2-LiClO4. J. Appl. Polym. Sci. 115(4), 2144–2148 (2010)
Article
CAS
Google Scholar
C.G. Tan et al., The effects of ceramic fillers on the PMMA-based polymer electrolyte systems. Ionics 13(5), 361–364 (2007)
Article
CAS
Google Scholar
A.K. Arof et al., Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with a PVdF based gel polymer electrolyte. Int. J. Hydr. Energy 39(6), 2929–2935 (2014)
Article
CAS
Google Scholar
S.K.S. Basha et al., Preparation and dielectric properties of PVP-based polymer electrolyte films for solid-state battery application. Polym. Bull. 75(3), 925–945 (2017)
Article
CAS
Google Scholar
S. Takeoka, H. Ohno, E. Tsuchida, Recent advancement of ion-conductive polymers. Polym. Adv. Technol. 4(23), 53–73 (1993)
Article
CAS
Google Scholar
W.H. Meyer, Polymer electrolytes for lithium-ion batteries. Adv. Mater. 10(6), 439–448 (1998)
Article
CAS
Google Scholar
P. Yao et al., Review on polymer-based composite electrolytes for lithium batteries. Front Chem 7, 522 (2019)
Article
CAS
Google Scholar
Z. Xue, D. He, X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3(38), 19218–19253 (2015)
Article
CAS
Google Scholar
E. Quartarone, P. Mustarelli, A. Magistris, PEO-based composite polymer electrolytes. Solid State Ionics 110(1–2), 1–14 (1998)
Article
CAS
Google Scholar
D.R. Sadoway, Block and graft copolymer, electrolytes for high-performance, solid-state, lithium batteries. J. Power Sources 129(1), 1–3 (2004)
Article
CAS
Google Scholar
J.F. Le Nest et al., A new polymer network for ionic conduction. Electrochim. Acta 37(9), 1585–1588 (1992)
Article
Google Scholar
Hu, S., Z. Zhang, and S. Fang, Advanced develpment of solid polymer electrolytes used in lithium batteries. Polym. Bull. 15: 23 (2001)
F. Zhao et al., Advances in ionic conductive polymer electrolytes. Progress Chem. 14(5), 374–383 (2002)
CAS
Google Scholar
O.E. Geiculescu et al., Solid polymer electrolytes from polyanionic lithium salts based on the LiTFSI anion structure. J. Electrochem. Soc. 151(9), A1363–A1368 (2004)
Article
CAS
Google Scholar
W. Gorecki et al., Physical-properties of solid polymer electrolyte peo(Litfsi) complexes. J. Phys. Condens. Matter 7(34), 6823–6832 (1995)
Article
CAS
Google Scholar
Z.X. Wang et al., Spectroscopic studies on interactions and microstructures in propylene carbonate—LiTFSI electrolytes. J. Raman Spectrosc. 32(11), 900–905 (2001)
Article
CAS
Google Scholar
O. Borodin, G.D. Smith, LiTFSI structure and transport in ethylene carbonate from molecular dynamics simulations. J Phys Chem B 110(10), 4971–4977 (2006)
Article
CAS
Google Scholar
M. Marzantowicz et al., Influence of crystalline complexes on electrical properties of PEO: LiTFSI electrolyte. Electrochim. Acta 53(4), 1518–1526 (2007)
Article
CAS
Google Scholar
C.D. Robitaille, D. Fauteux, Phase-Diagrams and Conductivity Characterization of Some Peo-Lix Electrolytes. J. Electrochem. Soc. 133(2), 315–325 (1986)
Article
CAS
Google Scholar
M. Marzantowicz et al., Crystalline phases, morphology and conductivity of PEO: LiTFSI electrolytes in the eutectic region. J. Power Sources 159(1), 420–430 (2006)
Article
CAS
Google Scholar
S. Lascaud et al., Phase-diagrams and conductivity behavior of poly(ethylene oxide) molten-salt rubbery electrolytes. Macromolecules 27(25), 7469–7477 (1994)
Article
CAS
Google Scholar
H. Ericson et al., A Raman spectroscopic investigation of methoxyl end capped PPO doped with NaCF3SO3. Electrochim. Acta 43(10–11), 1401–1405 (1998)
Article
CAS
Google Scholar
X.F. Yang et al., Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal –OH group? Energy Environ. Sci. 13(5), 1318–1325 (2020)
Article
CAS
Google Scholar
Devaux, D., et al., Mechanism of ion transport in PEO/LiTFSI complexes: Effect of temperature, molecular weight and end groups. Solid State Ionics 2012. 227:119–127
Zewde, B.W., et al., enhanced lithium battery with polyethylene oxide‐based electrolyte containing silane–Al2O3 ceramic filler 6(8):1400–1405 (2013)
Zhang, N., et al., Composite solid electrolyte PEO/SN/LiAlO 2 for a solid-state lithium battery 54(13):9603–9612 (2019)
Y. Zhao et al., A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries. 295, 65–71 (2016)
CAS
Google Scholar
L. Zhu et al., A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery. LLTO 292, 718–726 (2018)
CAS
Google Scholar
Wan, Z., et al., Low resistance–integrated all‐solid‐state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder 29(1):1805301 (2019)
Chen, L., et al., PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic” 46:176–184 (2018)
Y.J. Lim, Y.H. An, N.J. Jo, Polystyrene-Al2O3 composite solid polymer electrolyte for lithium secondary battery. Nanoscale Res. Lett. 7(1), 19 (2012)
Article
Google Scholar
S.A. Suthanthiraraj, D.J. Sheeba, Structural investigation on PEO-based polymer electrolytes dispersed with Al2O3 nanoparticles. Ionics 13(6), 447–450 (2007)
Article
CAS
Google Scholar
Gondaliya, N., et al. Dielectric and conductivity in silver‐poly (ethylene oxide) solid polymer electrolytes dispersed with SiO2 nanoparticles. Am. Instit. Phys. Conf. Series. 2010
F. Croce et al., Nanocomposite polymer electrolytes for lithium batteries. Polymer 394(6692), 456–458 (1998)
CAS
Google Scholar
H.M. Xiong et al., Stable polymer electrolytes based on polyether-grafted ZnO nanoparticles for all-solid-state lithium batteries. J. Mater. Chem. 16(14), 1345–1349 (2006)
Article
CAS
Google Scholar
X. Guo, R.Z. Yuan, On the grain-boundaries of Zro2-based solid-electrolyte. Solid State Ionics 80(1–2), 159–166 (1995)
Article
CAS
Google Scholar
F. Capuano, F. Croce, B. Scrosati, Composite polymer electrolytes. J. Electrochem. Soc. 138(7), 1918–1922 (1991)
Article
CAS
Google Scholar
B. Kumar, L.G. Scanlon, Polymer-ceramic composite electrolytes. J. Power Sources 52(2), 261–268 (1994)
Article
CAS
Google Scholar
W. Wieczorek, Z. Florjanczyk, J.R. Stevens, Composite polyether based solid electrolytes. Electrochim. Acta 40(13–14), 2251–2258 (1995)
Article
CAS
Google Scholar
F. Croce et al., Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim. Acta 46(16), 2457–2461 (2001)
Article
CAS
Google Scholar
S. Chung et al., Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. 97, 644–648 (2001)
Google Scholar
G. Appetecchi et al., Transport and interfacial properties of composite polymer electrolytes. Electrochem Acta 45(8–9), 1481–1490 (2000)
Article
CAS
Google Scholar
W. Liu et al., Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10(12), 11407–11413 (2016)
Article
CAS
Google Scholar
J.X. Yang, Y.Z. Jia, Z.X. Yao, Study on the lithium solid electrolytes of Li3N-Li3Bi-LiCl ternary system—2Li(3)Bi center dot 3LiCl lithium solid electrolyte. Solid State Ionics 96(3–4), 215–218 (1997)
Article
CAS
Google Scholar
Kitahama, K., et al., Synthesis and Nmr-study of solid electrolytes in the system Li3n-Licl. Solid State Ionics 3: 335–339 (1981)
N. Zhang et al., Composite solid electrolyte PEO/SN/LiAlO2 for a solid-state lithium battery. J. Mater. Sci. 54(13), 9603–9612 (2019)
Article
CAS
Google Scholar
I. Villarreal, E. Morales, J.L. Acosta, Ionic conductivity and spectroscopic characterisation of γ-LiAlO2-filled polymer electrolytes. Angew. Makromol. Chem. 266(1), 24–29 (1999)
Article
CAS
Google Scholar
Meesala, Y., et al., All-solid-state li-ion battery using Li1.5Al0.5Ge1.5(PO4)(3) as electrolyte without polymer interfacial adhesion. J. Phys. Chem. C 122(26): 14383–14389 (2018)
Liu, L.H., et al., Li1.4Al0.4Ti1.6(PO4)(3) nanoparticle-reinforced solid polymer electrolytes for all-solid-state lithium batteries. Solid State Ionics 331:89–95 (2019)
S. Yu et al., Insights into a layered hybrid solid electrolyte and its application in long lifespan high-voltage all-solid-state lithium batteries. J. Mater. Chem. A 7(8), 3882–3894 (2019)
Article
CAS
Google Scholar
W. Liu et al., Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2(5), 17035 (2017)
Article
CAS
Google Scholar
A.-N. Wang et al., Mechanical properties of the solid electrolyte Al-substituted Li7La3Zr2O12 (LLZO) by utilizing micro-pillar indentation splitting test. J. Eur. Ceram. Soc. 38(9), 3201–3209 (2018)
Article
CAS
Google Scholar
J. Li et al., A promising composite solid electrolyte incorporating LLZO into PEO/PVDF matrix for all-solid-state lithium-ion batteries. Ionics 26(3), 1101–1108 (2020)
Article
CAS
Google Scholar
S. Yu et al., Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 28(1), 197–206 (2016)
Article
CAS
Google Scholar
C.R.A. Catlow, Atomistic mechanisms of ionic transport in fast-ion conductors. J. Chem. Soc. Faraday Trans. 86(8), 1167–1176 (1990)
Article
CAS
Google Scholar
X. He, Y. Zhu, Y. Mo, Origin of fast ion diffusion in super-ionic conductors. Nat Commun 8(1), 15893 (2017)
Article
CAS
Google Scholar
A. Manthiram, X.W. Yu, S.F. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2(4), 16103 (2017)
Article
CAS
Google Scholar
J.B. Goodenough, H.Y.P. Hong, J.A. Kafalas, Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 11(2), 203–220 (1976)
Article
CAS
Google Scholar
H.Y.P. Hong, Crystal-structure and ionic-conductivity of Li14zn(Geo4)4 and other new Li+ superionic conductors. Mater. Res. Bull. 13(2), 117–124 (1978)
Article
CAS
Google Scholar
Y. Inaguma et al., High ionic-conductivity in lithium lanthanum titanate. Solid State Commun. 86(10), 689–693 (1993)
Article
CAS
Google Scholar
C.A. Geiger et al., Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorg. Chem. 50(3), 1089–1097 (2011)
Article
CAS
Google Scholar
Alpen, U., Li3N: A promising Li ionic conductor. J. Solid State Chem. 29(3):379–392 (1979)
E. Kelder, A new ceramic lithium solid electrolyte for rechargeable swing type batteries. Solid State Ionics 85(1–4), 285–291 (1996)
Article
CAS
Google Scholar
J. Zheng, M.X. Tang, Y.Y. Hu, Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angewandte Chem Int Edition 55(40), 12538–12542 (2016)
Article
CAS
Google Scholar
R.J. Chen et al., Preparation and performance of novel LLTO thin film electrolytes for thin film lithium batteries. Chin. Sci. Bull. 57(32), 4199–4204 (2012)
Article
CAS
Google Scholar
Y.L. Xiong et al., Effects of annealing temperature on structure and opt-electric properties of ion-conducting LLTO thin films prepared by RF magnetron sputtering. J. Alloy. Compd. 509(5), 1910–1914 (2011)
Article
CAS
Google Scholar
Y.J. Wang et al., Conductivity studies of plasticized PEO-Lithium chlorate-FIC filler composite polymer electrolytes. Mater. Lett. 59(24–25), 3021–3026 (2005)
Article
CAS
Google Scholar
Wang, Y.J., et al., Characterization of (PEO)LiClO4-Li1.3Al0.3Ti1.7(PO4)(3) composite polymer electrolytes with different molecular weights of PEO. J. Appl. Polym. Sci. 102(5):4269–4275 (2006)
C. Wang, X.-W. Zhang, A.J. Appleby, Solvent-free composite PEO-ceramic fiber/mat electrolytes for lithium secondary cells. J. Electrochem. Soc. 152(1), A205 (2005)
Article
CAS
Google Scholar
Ji, K.-S., et al., Role of functional nano-sized inorganic fillers in poly (ethylene) oxide-based polymer electrolytes 117(1-2):124–130 (2003)
Z.X. Wang, X.J. Huang, L.Q. Chen, Understanding of effects of nano-Al2O3 particles on ionic conductivity of composite polymer electrolytes. Electrochem. Solid State Lett. 6(11), E40–E44 (2003)
Article
CAS
Google Scholar
Q. Li, H. Ardebili, Atomistic investigation of the nanoparticle size and shape effects on ionic conductivity of solid polymer electrolytes. Solid State Ionics 268, 156–161 (2014)
Article
CAS
Google Scholar
O. Borodin et al., Molecular dynamics study of the influence of solid interfaces on poly(ethylene oxide) structure and dynamics. Macromolecules 36(20), 7873–7883 (2003)
Article
CAS
Google Scholar
J.X. Zhang et al., Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 28, 447–454 (2016)
Article
CAS
Google Scholar
C. Hu, Y. Shen, L. Chen, Recent advances in nanostructured composite solid electrolyte. Curr. Opin. Electrochem. 22, 51–57 (2020)
Article
CAS
Google Scholar
J. Yue, S. Xin, Y.-G. Guo, Recent progress and design principles of nanocomposite solid electrolytes. Curr. Opin. Electrochem. 22, 195–202 (2020)
Article
CAS
Google Scholar
Wang, Y.-J. , Y. Pan, Li1.3Al0.3Ti1.7(PO4)3 filler effect on (PEO)LiClO4 solid polymer electrolyte. J. Polym. Sci. Part B 43(6):743–751 (2005)
X.Y. Tao et al., Solid-State lithium sulfur batteries operated at 37 degrees C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett. 17(5), 2967–2972 (2017)
Article
CAS
Google Scholar
B. Kumar, L.G. Scanlon, Polymer-ceramic composite electrolytes: conductivity and thermal history effects. Solid State Ionics 124(3–4), 239–254 (1999)
Article
CAS
Google Scholar
B. Kumar et al., Structural evolution and conductivity of PEO: LiBF4-MgO composite electrolytes. Electrochim. Acta 46(10–11), 1515–1521 (2001)
Article
CAS
Google Scholar
Gray, F.M., J.R. Maccallum, C.A. Vincent, Poly(Ethylene Oxide)—Licf3so3—polystyrene electrolyte systems. Solid State Ionics 18-9(part-P1):282–286 (1986)
G.B. Appetecchi et al., Hot-pressed, dry, composite, PEO-based electrolyte membranes. J. Power Sources 114(1), 105–112 (2003)
Article
CAS
Google Scholar
Appetecchi, G.B., et al., Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes II. All solid-state Li/LiFePO4 polymer batteries. J. Power Sources 124(1):246–253 (2003)
J.W. Rhim et al., Effect of the processing methods on the performance of polylactide films: thermocompression versus solvent casting. J. Appl. Polym. Sci. 101(6), 3736–3742 (2006)
Article
CAS
Google Scholar