C.A. Fleck, Why “wet to dry”? J. Am. Col. Certif. Wound Spec. 1(4), 109–113 (2009). https://doi.org/10.1016/j.jcws.2009.09.003 (Epub 2009/12/01)
Article
Google Scholar
A.J. Wodash, Wet-to-dry dressings do not provide moist wound healing. J. Am. Col. Clin. Wound Spec. 4(3), 63–66 (2012). https://doi.org/10.1016/j.jccw.2013.08.001 (Epub 2012/09/01)
Article
Google Scholar
L.J. Cowan, J. Stechmiller, Prevalence of wet-to-dry dressings in wound care. Adv. Skin Wound Care 22(12), 567–573 (2009). https://doi.org/10.1097/01.ASW.0000363469.25740.74 (Epub 2009/11/26)
Article
Google Scholar
F.K. Field, M.D. Kerstein, Overview of wound healing in a moist environment. Am. J. Surg. 167(1A), 2S-6S (1994). https://doi.org/10.1016/0002-9610(94)90002-7 (Epub 1994/01/01)
Article
CAS
Google Scholar
H. Hamedi, S. Moradi, S.M. Hudson, A.E. Tonelli, Chitosan based hydrogels and their applications for drug delivery in wound dressings: a review. Carbohydr. Polym. 199, 445–460 (2018). https://doi.org/10.1016/j.carbpol.2018.06.114 (Epub 2018/08/26)
Article
CAS
Google Scholar
R. Rodríguez-Rodríguez, H. Espinosa-Andrews, C. Velasquillo-Martínez, Z.Y. García-Carvajal, Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: a review. Int. J. Polym. Mater Polym. Biomater. 69(1), 1–20 (2020). https://doi.org/10.1080/00914037.2019.1581780
Article
CAS
Google Scholar
J. Li, R. Xing, S. Bai, X. Yan, Recent advances of self-assembling peptide-based hydrogels for biomedical applications. Soft Matter 15(8), 1704–1715 (2019). https://doi.org/10.1039/c8sm02573h (Epub 2019/02/07)
Article
CAS
Google Scholar
A. Francesko, P. Petkova, T. Tzanov, Hydrogel dressings for advanced wound management. Curr. Med. Chem. 25(41), 5782–5797 (2018). https://doi.org/10.2174/0929867324666170920161246 (Epub 2017/09/22)
Article
CAS
Google Scholar
R.C. Op’t Veld, X.F. Walboomers, J.A. Jansen, F.A.D.T.G. Wagener, Design considerations for hydrogel wound dressings: strategic and molecular advances. Tissue Eng. Part B Rev. (2020). https://doi.org/10.1089/ten.teb.2019.0281
Article
Google Scholar
C.M. Gonzalez-Henriquez, M.A. Sarabia-Vallejos, J. Rodriguez-Hernandez, Advances in the fabrication of antimicrobial hydrogels for biomedical applications. Materials (Basel) 10(3), 232 (2017). https://doi.org/10.3390/ma10030232
Article
CAS
Google Scholar
A.S. Veiga, J.P. Schneider, Antimicrobial hydrogels for the treatment of infection. Biopolymers 100(6), 637–644 (2013)
Article
CAS
Google Scholar
H. Lu, L. Yuan, X. Yu, C. Wu, D. He, J. Deng, Recent advances of on-demand dissolution of hydrogel dressings. Burns Trauma 6, 35 (2018). https://doi.org/10.1186/s41038-018-0138-8 (Epub 2019/01/09)
Article
Google Scholar
C. Cao, M. Cao, H. Fan, D. Xia, H. Xu, J.R. Lu, Redox modulated hydrogelation of a self-assembling short peptide amphiphile. Chin. Sci. Bull. 57(33), 4296–4303 (2012). https://doi.org/10.1007/s11434-012-5487-2
Article
CAS
Google Scholar
J.P. Wojciechowski, A.D. Martin, P. Thordarson, Kinetically controlled lifetimes in redox-responsive transient supramolecular hydrogels. J. Am. Chem. Soc. 140(8), 2869–2874 (2018). https://doi.org/10.1021/jacs.7b12198
Article
CAS
Google Scholar
C.J. Bowerman, B.L. Nilsson, A reductive trigger for peptide self-assembly and hydrogelation. J. Am. Chem. Soc. 132(28), 9526–9527 (2010). https://doi.org/10.1021/ja1025535
Article
CAS
Google Scholar
L. Aulisa, H. Dong, J.D. Hartgerink, Self-assembly of multidomain peptides: sequence variation allows control over cross-linking and viscoelasticity. Biomacromol 10(9), 2694–2698 (2009). https://doi.org/10.1021/bm900634x (Epub 2009/08/27)
Article
CAS
Google Scholar
C. Ren, Z. Song, W. Zheng, X. Chen, L. Wang, D. Kong, Z. Yang, Disulfide bond as a cleavable linker for molecular self-assembly and hydrogelation. Chem. Commun. 47(5), 1619–1621 (2011). https://doi.org/10.1039/C0CC04135A
Article
CAS
Google Scholar
L. Lv, H. Liu, X. Chen, Z. Yang, Glutathione-triggered formation of molecular hydrogels for 3D cell culture. Colloids Surf. B Biointerfaces 108, 352–357 (2013). https://doi.org/10.1016/j.colsurfb.2013.03.013 (Epub 2013/04/17)
Article
CAS
Google Scholar
K. Tsuchiya, Y. Orihara, Y. Kondo, N. Yoshino, T. Ohkubo, H. Sakai, M. Abe, Control of viscoelasticity using redox reaction. J. Am. Chem. Soc. 126(39), 12282–12283 (2004). https://doi.org/10.1021/ja0467162
Article
CAS
Google Scholar
N. Falcone, H.B. Kraatz, Supramolecular assembly of peptide and metallopeptide gelators and their stimuli-responsive properties in biomedical applications. Chemistry 24(54), 14316–14328 (2018). https://doi.org/10.1002/chem.201801247
Article
CAS
Google Scholar
Z. Sun, Z. Li, Y. He, R. Shen, L. Deng, M. Yang, Y. Liang, Y. Zhang, Ferrocenoyl phenylalanine: a new strategy toward supramolecular hydrogels with multistimuli responsive properties. J. Am. Chem. Soc. 135(36), 13379–13386 (2013). https://doi.org/10.1021/ja403345p (Epub 2013/08/30)
Article
CAS
Google Scholar
N. Falcone, S. Basak, B. Dong, J. Syed, A. Ferranco, A. Lough, Z. She, H.B. Kraatz, a ferrocene-tryptophan conjugate: the role of the indolic nitrogen in supramolecular assembly. ChemPlusChem 82(10), 1282–1289 (2017). https://doi.org/10.1002/cplu.201700407 (Epub 2017/10/01)
Article
CAS
Google Scholar
B. Adhikari, H.B. Kraatz, Redox-triggered changes in the self-assembly of a ferrocene-peptide conjugate. Chem. Commun. 50(42), 5551–5553 (2014). https://doi.org/10.1039/c3cc49268k (Epub 2014/03/29)
Article
CAS
Google Scholar
F. Peng, G. Li, X. Liu, S. Wu, Z. Tong, Redox-responsive gel−sol/sol−gel transition in poly(acrylic acid) aqueous solution containing Fe(III) ions switched by light. J. Am. Chem. Soc. 130(48), 16166–16167 (2008). https://doi.org/10.1021/ja807087z
Article
CAS
Google Scholar
Y. Zhang, B. Zhang, Y. Kuang, Y. Gao, J. Shi, X.X. Zhang, B. Xu, A redox responsive, fluorescent supramolecular metallohydrogel consists of nanofibers with single-molecule width. J. Am. Chem. Soc. 135(13), 5008–5011 (2013). https://doi.org/10.1021/ja402490j (Epub 2013/03/26)
Article
CAS
Google Scholar
A. Douza, J.H. Yoon, H. Beaman, P. Gosavi, Z. Lengyel-Zhand, A. Sternisha, G. Centola, L.R. Marshall, M.D. Wehrman, K.M. Schultz, M.B. Monroe, O.V. Makhlynets, Nine-residue peptide self-assembles in the presence of silver to produce a self-healing, cytocompatible antimicrobial hydrogel. ACS Appl. Mater. Interfaces 12(14), 17091–17099 (2020). https://doi.org/10.1021/acsami.0c01154 (Epub 2020/03/11)
Article
CAS
Google Scholar
W. Ahn, J.-H. Lee, S.R. Kim, J. Lee, E.J. Lee, Designed protein- and peptide-based hydrogels for biomedical sciences. J. Mater. Chem. B. 9(8), 1919–1940 (2021). https://doi.org/10.1039/D0TB02604B
Article
CAS
Google Scholar
A.M. Jonker, D.W.P.M. Löwik, J.C.M. van Hest, Peptide- and protein-based hydrogels. Chem. Mater. 24(5), 759–773 (2012). https://doi.org/10.1021/cm202640w
Article
CAS
Google Scholar
N. Mukherjee, A. Adak, S. Ghosh, Recent trends in the development of peptide and protein-based hydrogel therapeutics for the healing of CNS injury. Soft Matter 16(44), 10046–10064 (2020). https://doi.org/10.1039/D0SM00885K
Article
CAS
Google Scholar
U. Hersel, C. Dahmen, H. Kessler, RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24(24), 4385–4415 (2003). https://doi.org/10.1016/s0142-9612(03)00343-0 (Epub 2003/08/19)
Article
CAS
Google Scholar
C.H. Li, J.L. Zuo, Self-healing polymers based on coordination bonds. Adv. Mater. 32(27), e1903762 (2020). https://doi.org/10.1002/adma.201903762 (Epub 2019/10/11)
Article
CAS
Google Scholar
L. Shi, P. Ding, Y. Wang, Y. Zhang, D. Ossipov, J. Hilborn, Self-healing polymeric hydrogel formed by metal-ligand coordination assembly: design, fabrication, and biomedical applications. Macromol. Rapid Commun. 40(7), e1800837 (2019). https://doi.org/10.1002/marc.201800837
Article
CAS
Google Scholar
S. Varghese, A. Lele, R. Mashelkar, Metal-ion-mediated healing of gels. J. Polym. Sci., Part A: Polym. Chem. 44(1), 666–670 (2006). https://doi.org/10.1002/pola.21177
Article
CAS
Google Scholar
G. Janarthanan, I. Noh, Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications. J. Mater. Sci. Technol. 63, 35–53 (2021). https://doi.org/10.1016/j.jmst.2020.02.052
Article
Google Scholar
M. Krogsgaard, M.A. Behrens, J.S. Pedersen, H. Birkedal, Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromol 14(2), 297–301 (2013). https://doi.org/10.1021/bm301844u
Article
CAS
Google Scholar
N. Holten-Andersen, A. Jaishankar, M. Harrington, D.E. Fullenkamp, G. DiMarco, L. He, G.H. McKinley, P.B. Messersmith, K.Y. Lee, Metal-coordination: using one of nature’s tricks to control soft material mechanics. J. Mater. Chem. B. 2(17), 2467–2472 (2014). https://doi.org/10.1039/C3TB21374A
Article
CAS
Google Scholar
L. Shi, Y. Zhao, Q. Xie, C. Fan, J. Hilborn, J. Dai, D.A. Ossipov, Moldable hyaluronan hydrogel enabled by dynamic metal-bisphosphonate coordination chemistry for wound healing. Adv, Healthc. Mater. 7(5), 1700973 (2018). https://doi.org/10.1002/adhm.201700973
Article
CAS
Google Scholar
S. Basak, J. Nanda, A. Banerjee, Multi-stimuli responsive self-healing metallo-hydrogels: tuning of the gel recovery property. Chem. Commun. 50(18), 2356–2359 (2014). https://doi.org/10.1039/c3cc48896a
Article
CAS
Google Scholar
P.S. Yavvari, A. Srivastava, Robust, self-healing hydrogels synthesised from catechol rich polymers. J. Mater. Chem. B 3, 899–910 (2015)
Article
CAS
Google Scholar
G. Borkow, J. Gabbay, R. Dardik, A.I. Eidelman, Y. Lavie, Y. Grunfeld, S. Ikher, M. Huszar, R.C. Zatcoff, M. Marikovsky, Molecular mechanisms of enhanced wound healing by copper oxide-impregnated dressings. Wound Repair. Regen. 18(2), 266–275 (2010). https://doi.org/10.1111/j.1524-475X.2010.00573.x (Epub 2010/04/23)
Article
Google Scholar
G.D. Mulder, L.M. Patt, L. Sanders, J. Rosenstock, M.I. Altman, M.E. Hanley, G.W. Duncan, Enhanced healing of ulcers in patients with diabetes by topical treatment with glycyl-l-histidyl-l-lysine copper. Wound Repair Regen. 2(4), 259–269 (1994). https://doi.org/10.1046/j.1524-475X.1994.20406.x (Epub 1994/10/01)
Article
CAS
Google Scholar
B. Tao, C. Lin, Y. Deng, Z. Yuan, X. Shen, M. Chen, Y. He, Z. Peng, Y. Hu, K. Cai, Copper-nanoparticle-embedded hydrogel for killing bacteria and promoting wound healing with photothermal therapy. J. Mater. Chem. B 7(15), 2534–2548 (2019). https://doi.org/10.1039/c8tb03272f (Epub 2020/04/08)
Article
CAS
Google Scholar
S. Zhao, L. Li, H. Wang, Y. Zhang, X. Cheng, N. Zhou, M.N. Rahaman, Z. Liu, W. Huang, C. Zhang, Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model. Biomaterials 53, 379–391 (2015). https://doi.org/10.1016/j.biomaterials.2015.02.112 (Epub 2015/04/22)
Article
CAS
Google Scholar
M.A. Mofazzal Jahromi, P. Sahandi Zangabad, S.M. Moosavi Basri, K. Sahandi Zangabad, A. Ghamarypour, A.R. Aref, M. Karimi, M.R. Hamblin, Nanomedicine and advanced technologies for burns: preventing infection and facilitating wound healing. Adv. Drug Deliv. Rev. 123, 33–64 (2018). https://doi.org/10.1016/j.addr.2017.08.001 (Epub 2017/08/08)
Article
CAS
Google Scholar
G. Borkow, Using copper to improve the well-being of the skin. Curr. Chem. Biol. 8(2), 89–102 (2014). https://doi.org/10.2174/2212796809666150227223857 (Epub 2015/09/12)
Article
CAS
Google Scholar
L.M. De Leon Rodriguez, Y. Hemar, J. Cornish, M.A. Brimble, Structure–mechanical property correlations of hydrogel forming β-sheet peptides. Chem. Soc. Rev. 45(17), 4797–4824 (2016). https://doi.org/10.1039/C5CS00941C
Article
Google Scholar
C. Marambio-Jones, E.M.V. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 12, 1531–1551 (2010)
Article
CAS
Google Scholar
L. Pickart, The human tri-peptide GHK and tissue remodeling. J. Biomater. Sci. Polym. Ed. 19(8), 969–988 (2008). https://doi.org/10.1163/156856208784909435
Article
CAS
Google Scholar
P.A. O’Brien, R. Kulier, F.M. Helmerhorst, M. Usher-Patel, C. d’Arcangues, Copper-containing, framed intrauterine devices for contraception: a systematic review of randomized controlled trials. Contraception 77(5), 318–327 (2008). https://doi.org/10.1016/j.contraception.2007.12.011 (Epub 2008/04/12)
Article
CAS
Google Scholar
R.D. Harris, J.T. Auletta, S.A. Mohaghegh Motlagh, M.J. Lawless, N.M. Perri, S. Saxena, L.M. Weiland, D.H. Waldeck, W.W. Clark, T.Y. Meyer, Chemical and electrochemical manipulation of mechanical properties in stimuli-responsive copper-cross-linked hydrogels. ACS Macro Lett. 2, 1095–1099 (2013)
Article
CAS
Google Scholar
C. Jiao, J. Zhang, T. Liu, X. Peng, H. Wang, Mechanically strong, tough, and shape deformable poly(acrylamide-co-vinylimidazole) hydrogels based on Cu2+ complexation. ACS Appl. Mater. Interfaces. 12(39), 44205–44214 (2020). https://doi.org/10.1021/acsami.0c13654
Article
CAS
Google Scholar
S. Kawano, N. Fujita, S. Shinkai, A coordination gelator that shows a reversible chromatic change and sol-gel phase-transition behavior upon oxidative/reductive stimuli. J. Am. Chem. Soc. 126(28), 8592–8593 (2004). https://doi.org/10.1021/ja048943+
Article
CAS
Google Scholar
X. Wang, I. Bergenfeld, P.S. Arora, J.W. Canary, Reversible redox reconfiguration of secondary structures in a designed peptide. Angew. Chem. Int. Ed. 51(48), 12099–12101 (2012). https://doi.org/10.1002/anie.201206009 (Epub 2012/10/31)
Article
CAS
Google Scholar
M.R. Gunther, P.M. Hanna, R.P. Mason, M.S. Cohen, Hydroxyl radical formation from cuprous ion and hydrogen peroxide: a spin-trapping study. Arch. Biochem. Biophys. 316(1), 515–522 (1995). https://doi.org/10.1006/abbi.1995.1068 (Epub 1995/01/10)
Article
CAS
Google Scholar
P. Bainbridge, Wound healing and the role of fibroblasts. J. Wound Care. 22(8), 407–8, 10–12 (2013). https://doi.org/10.12968/jowc.2013.22.8.407.
A.K. Miller, Z. Li, K.A. Streletzky, A.M. Jamieson, S.J. Rowan, Redox-induced polymerization/depolymerization of metallo-supramolecular polymers. Polym. Chem. 3, 3132 (2012)
Article
CAS
Google Scholar
S.M. Smith, R. Balasubramanian, A.C. Rosenzweig, Metal reconstitution of particulate methane monooxygenase and heterologous expression of the pmoB subunit. Methods Enzymol. 495, 195–210 (2011). https://doi.org/10.1016/B978-0-12-386905-0.00013-9 (Epub 2011/03/23)
Article
CAS
Google Scholar
O.V. Makhlynets, P.M. Gosavi, I.V. Korendovych, Short self-assembling peptides are able to bind to copper and activate oxygen. Angew. Chem. Int. Ed. 55, 9017–9020 (2016)
Article
CAS
Google Scholar
C. Bortolini, L. Liu, S.V. Hoffmann, N.C. Jones, T.P.J. Knowles, M. Dong, Exciton coupling of phenylalanine reveals conformational changes of cationic peptides. ChemistrySelect 2(8), 2476–2479 (2017). https://doi.org/10.1002/slct.201601916
Article
CAS
Google Scholar
Y. Liu, S.H. Hsu, Synthesis and biomedical applications of self-healing hydrogels. Front Chem. 6, 449 (2018). https://doi.org/10.3389/fchem.2018.00449
Article
CAS
Google Scholar
M. Guvendiren, H.D. Lu, J.A. Burdick, Shear-thining hydrogels for biomedical applications. Soft Matter 8, 260–272 (2012)
Article
CAS
Google Scholar
D.L. Taylor, M. In Het Panhuis, Self-healing hydrogels. Adv. Mater. 28(41), 9060–9093 (2016). https://doi.org/10.1002/adma.201601613
Article
CAS
Google Scholar
K. Nagy-Smith, E. Moore, J. Schneider, R. Tycko, Molecular structure of monomorphic peptide fibrils within a kinetically trapped hydrogel network. Proc. Natl. Acad. Sci. 112(32), 9816–9821 (2015). https://doi.org/10.1073/pnas.1509313112 (Epub 2015/07/29)
Article
CAS
Google Scholar