C.R. Kagan, E. Lifshitz, E.H. Sargent, D.V. Talapin, Building devices from colloidal quantum dots. Science (2016). https://doi.org/10.1126/science.aac5523
Article
Google Scholar
A. Rogalski, Infrared detectors: status and trends. Prog. Quantum Electron. 27, 59–210 (2003)
Article
CAS
Google Scholar
A. Rogalski, J. Antoszewski, L. Faraone, A. Rogalski, J. Antoszewski, L. Faraone, Third-generation infrared photodetector arrays. J. Appl. Phys. 105, 091101 (2017). https://doi.org/10.1063/1.3099572
Article
CAS
Google Scholar
Council, N. R., Expanding the vision of sensor materials (The National Academies Press, Washington, DC, 1995). https://doi.org/10.17226/4782
Book
Google Scholar
C. Downs, T.E. Vandervelde, Progress in infrared photodetectors since 2000. Sensors 13, 5054–5098 (2013). https://doi.org/10.3390/s130405054
Article
CAS
Google Scholar
A. Rogalski, HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 68, 2267 (2005)
Article
CAS
Google Scholar
E.J.D. Klem, C. Gregory, D. Temple, J. Lewis, PbS colloidal quantum dot photodiodes for low-cost SWIR sensing. Proc. SPIE 9451, 945104 (2015)
Article
Google Scholar
D.S. Temple, A. Hilton, E.J.D. Klem, Towards low-cost infrared imagers: how to leverage Si IC ecosystem. Proc. SPIE 9989, 99890E (2016)
Article
Google Scholar
C. Buurma, R.E. Pimpinella, A.J. Ciani, J.S. Feldman, C.H. Grein, P. Guyot-Sionnest, MWIR imaging with low cost colloidal quantum dot films. Proc. SPIE 9933, 993303 (2016). https://doi.org/10.1117/12.2239986
Article
Google Scholar
R. Saran, R.J. Curry, Lead sulphide nanocrystal photodetector technologies. Nat. Photonics 10, 81–92 (2016). https://doi.org/10.1038/nphoton.2015.280
Article
CAS
Google Scholar
G. Konstantatos, E.H. Sargent, Solution-processed quantum dot photodetectors. Proc. IEEE 97, 1666–1683 (2009). https://doi.org/10.1109/JPROC.2009.2025612
Article
CAS
Google Scholar
A. Rogalski, K. Chrzanowski, Infrared devices and techniques. Opto-Electron. Rev. 10, 111–136 (2002)
CAS
Google Scholar
R. Del, P. Moreira, C. Roberto, D.S. Filho, Detection of methane plumes using airborne midwave infrared (3–5 µm) hyperspectral data. Remote Sens. 2, 1–16 (2018). https://doi.org/10.3390/rs10081237
Article
Google Scholar
S. Bagavathiappan, T. Saravanan, J. Philip, T. Jayakumar, B. Raj, R. Karunanithi, T.M.R. Panicker, M.P. Korath, K. Jagadeesan, Infrared thermal imaging for detection of peripheral vascular disorders. J. Med. Phys. 34, 43–47 (2009). https://doi.org/10.4103/0971-6203.48720
Article
CAS
Google Scholar
A. Haddadi, S. Adhikary, A. Dehzangi, M. Razeghi, Mid-wavelength infrared heterojunction phototransistors based on type-II InAs/AlSb/GaSb superlattices. Appl. Phys. Lett. 109, 021107 (2016). https://doi.org/10.1063/1.4958715
Article
CAS
Google Scholar
G. Shen, P. Guyot-Sionnest, HgS and HgS/CdS colloidal quantum dots with infrared intraband transitions and emergence of a surface plasmon. J. Phys. Chem. C 120, 11744–11753 (2016). https://doi.org/10.1021/acs.jpcc.6b04014
Article
CAS
Google Scholar
E. Lhuillier, P. Guyot-Sionnest, Recent progresses in mid infrared nanocrystal optoelectronics. IEEE J. Sel. Top. Quantum Electron. 23, 1–8 (2017). https://doi.org/10.1109/JSTQE.2017.2690838
Article
Google Scholar
M.V. Kovalenko, E. Kaufmann, D. Pachinger, J. Roither, M. Huber, J. Stangl, G. Hesser, F. Schäffler, W. Heiss, Colloidal HgTe nanocrystals with widely tunable narrow band gap energies: from telecommunications to molecular vibrations. J. Am. Chem. Soc. 128, 3516–3517 (2006). https://doi.org/10.1021/ja058440j
Article
CAS
Google Scholar
S. Keuleyan, E. Lhuillier, V. Brajuskovic, P. Guyot-Sionnest, Mid-infrared HgTe colloidal quantum dot photodetectors. Nat. Photonics 5, 489–493 (2011). https://doi.org/10.1038/nphoton.2011.142
Article
CAS
Google Scholar
S. Keuleyan, E. Lhuillier, P. Guyot-sionnest, Synthesis of colloidal HgTe quantum dots for narrow Mid-IR emission and detection. J. Am. Chem. Soc. 133, 16422–16424 (2011)
Article
CAS
Google Scholar
E. Lhuillier, S. Keuleyan, P. Rekemeyer, P. Guyot-Sionnest, Thermal properties of mid-infrared colloidal quantum dot detectors. J. Appl. Phys. 110, 033110 (2011). https://doi.org/10.1063/1.3619857
Article
CAS
Google Scholar
P. Howes, M. Green, C. Johnston, A. Crossley, Synthesis and shape control of mercury selenide (HgSe) quantum dots. J. Mater. Chem. 18, 3474–3480 (2008). https://doi.org/10.1039/b804158j
Article
CAS
Google Scholar
S. Keuleyan, J. Kohler, P. Guyot-Sionnest, Photoluminescence of mid-infrared HgTe colloidal quantum dots. J. Phys. Chem. C 118, 2749–2753 (2014). https://doi.org/10.1021/jp409061g
Article
CAS
Google Scholar
E. Lhuillier, S. Keuleyan, H. Liu, P. Guyot-Sionnest, Colloidal HgTe material for low-cost detection into the MWIR. J. Electron. Mater. 41, 2725–2729 (2012). https://doi.org/10.1007/s11664-012-2006-9
Article
CAS
Google Scholar
E. Lhuillier, S. Keuleyan, P. Guyot-Sionnest, Transport properties of mid-infrared colloidal quantum dot films. Proc. SPIE 8271, 827109 (2012). https://doi.org/10.1117/12.906423
Article
CAS
Google Scholar
H. Liu, S. Keuleyan, P. Guyot-Sionnest, N- and p-Type HgTe quantum dot films. J. Phys. Chem. C 116, 1344–1349 (2012). https://doi.org/10.1021/jp2109169
Article
CAS
Google Scholar
M.V. Kovalenko, R.D. Schaller, D. Jarzab, M.A. Loi, D.V. Talapin, Inorganically functionalized PbS-CdS colloidal nanocrystals: integration into amorphous chalcogenide glass and luminescent properties. J. Am. Chem. Soc. 134, 2457–2460 (2012). https://doi.org/10.1021/ja2087689
Article
CAS
Google Scholar
E. Lhuillier, S. Keuleyan, P. Zolotavin, P. Guyot-Sionnest, Mid-infrared HgTe/As2S3 field effect transistors and photodetectors. Adv. Mater. 25, 137–141 (2013). https://doi.org/10.1002/adma.201203012
Article
CAS
Google Scholar
E. Lhuillier, S. Keuleyan, P. Guyot-Sionnest, Colloidal quantum dots for mid-IR applications. Infrared Phys. Technol. 59, 133–136 (2013). https://doi.org/10.1016/j.infrared.2012.12.027
Article
CAS
Google Scholar
M.E. Cryer, J.E. Halpert, 300 Nm spectral resolution in the mid-infrared with robust, high responsivity flexible colloidal quantum dot devices at room temperature. ACS Photonics 5, 3009–3015 (2018). https://doi.org/10.1021/acsphotonics.8b00738
Article
CAS
Google Scholar
S.E. Keuleyan, P. Guyot-Sionnest, C. Delerue, G. Allan, Mercury telluride colloidal quantum dots: electronic structure, size-dependent spectra, and photocurrent detection up to 12 μm. ACS Nano 8, 8676–8682 (2014). https://doi.org/10.1021/nn503805h
Article
CAS
Google Scholar
P. Guyot-Sionnest, J.A. Roberts, Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots. Appl. Phys. Lett. 107, 253104 (2015). https://doi.org/10.1063/1.4938135
Article
CAS
Google Scholar
M. Ackerman, X. Tang, P. Guyot-Sionnest, Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors. ACS Nano 12, 7264–7271 (2018). https://doi.org/10.1021/acsnano.8b03425
Article
CAS
Google Scholar
A.J. Ciani, R.E. Pimpinella, C.H. Grein, P. Guyot-Sionnest, Colloidal quantum dots for low-cost MWIR imaging. Proc. SPIE 9819, 981919 (2016). https://doi.org/10.1117/12.2234734
Article
Google Scholar
X. Tang, X. Tang, K.W.C. Lai, Scalable fabrication of infrared detectors with multispectral photoresponse based on patterned colloidal quantum dot films. ACS Photonics 3, 2396–2404 (2016). https://doi.org/10.1021/acsphotonics.6b00620
Article
CAS
Google Scholar
C. Buurma, A.J. Ciani, R.E. Pimpinella, J.S. Feldman, C.H. Grein, P. Guyot-Sionnest, Advances in HgTe colloidal quantum dots for infrared detectors. J. Electron. Mater. 46, 6685–6688 (2017). https://doi.org/10.1007/s11664-017-5720-5
Article
CAS
Google Scholar
M. Chen, P. Guyot-Sionnest, Reversible electrochemistry of mercury chalcogenide colloidal quantum dot films. ACS Nano 11, 4165–4173 (2017). https://doi.org/10.1021/acsnano.7b01014
Article
CAS
Google Scholar
C. Livache, N. Goubet, B. Martinez, A. Jagtap, J. Qu, S. Ithurria, M.G. Silly, B. Dubertret, E. Lhuillier, Band edge dynamics and multiexciton generation in narrow band gap HgTe nanocrystals. ACS Appl. Mater. Interfaces 10, 11880–11887 (2018). https://doi.org/10.1021/acsami.8b00153
Article
CAS
Google Scholar
G. Shen, M. Chen, P. Guyot-Sionnest, Synthesis of nonaggregating HgTe Colloidal quantum dots and the emergence of air-stable n-doping. J. Phys. Chem. Lett. 8, 2224–2228 (2017). https://doi.org/10.1021/acs.jpclett.7b00775
Article
CAS
Google Scholar
N. Goubet, A. Jagtap, C. Livache, B. Martinez, H. Portalès, X.Z. Xu, R.P.S.M. Lobo, B. Dubertret, E. Lhuillier, Terahertz HgTe nanocrystals: beyond confinement. J. Am. Chem. Soc. 140, 5033–5036 (2018). https://doi.org/10.1021/jacs.8b02039
Article
CAS
Google Scholar
G. Shen, P. Guyot-sionnest, HgTe/CdTe and HgSe/CdX (X = S, Se, and Te) core/shell mid-infrared quantum dots. Chem. Mater. (2018). https://doi.org/10.1021/acs.chemmater.8b04727
Article
Google Scholar
E. Lhuillier, M. Scarafagio, P. Hease, B. Nadal, H. Aubin, X.Z. Xu, N. Lequeux, G. Patriarche, S. Ithurria, B. Dubertret, Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz. Nano Lett. 16, 1282–1286 (2016). https://doi.org/10.1021/acs.nanolett.5b04616
Article
CAS
Google Scholar
B. Martinez, C. Livache, L.D. Notemgnou Mouafo, N. Goubet, S. Keuleyan, H. Cruguel, S. Ithurria, H. Aubin, A. Ouerghi, B. Doudin et al., HgSe self-doped nanocrystals as a platform to investigate the effects of vanishing confinement. ACS Appl. Mater. Interfaces 9, 36173–36180 (2017). https://doi.org/10.1021/acsami.7b10665
Article
CAS
Google Scholar
Z. Deng, K.S. Jeong, P. Guyot-Sionnest, Colloidal quantum dots intraband photodetectors. ACS Nano 8, 11707–11714 (2014). https://doi.org/10.1021/nn505092a
Article
CAS
Google Scholar
J. Jeong, B. Yoon, Y.W. Kwon, D. Choi, K.S. Jeong, Singly and doubly occupied higher quantum states in nanocrystals. Nano Lett. 17, 1187–1193 (2017). https://doi.org/10.1021/acs.nanolett.6b04915
Article
CAS
Google Scholar
Z. Deng, P. Guyot-Sionnest, Intraband luminescence from HgSe/CdS core/shell quantum dots. ACS Nano 10, 2121–2127 (2016). https://doi.org/10.1021/acsnano.5b06527
Article
CAS
Google Scholar
K. Sagar, W. Walravens, J. Maes, P. Geiregat, Z. Hens, HgSe/CdE (E = S, Se) core/shell nanocrystals by colloidal atomic layer deposition. J. Phys. Chem. C 121, 13816–13822 (2017). https://doi.org/10.1021/acs.jpcc.7b02803
Article
CAS
Google Scholar
L.C. Ugent, P.G. Ugent, W.W. Ugent, Synthesis of novel HgSe/CdS and HgSe/CdSe core-shell nanocrystals by C-ALD approach in the infra-red. FQDots15, Book of abstracts 1–3 (2015)
S. Ithurria, D.V. Talapin, Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. J. Am. Chem. Soc. 134, 18585–18590 (2012). https://doi.org/10.1021/ja308088d
Article
CAS
Google Scholar
A. Robin, C. Livache, S. Ithurria, E. Lacaze, B. Dubertret, E. Lhuillier, Surface control of doping in self-doped nanocrystals. ACS Appl. Mater. Interfaces 8, 27122–27128 (2016). https://doi.org/10.1021/acsami.6b09530
Article
CAS
Google Scholar
X. Tang, G. Fu Wu, K.W.C. Lai, Plasmon resonance enhanced colloidal HgSe quantum dot filterless narrowband photodetectors for mid-wave infrared. J. Mater. Chem. C 5, 362–369 (2017). https://doi.org/10.1039/c6tc04248a
Article
CAS
Google Scholar
N. Goubet, C. Livache, B. Martinez, X.Z. Xu, S. Ithurria, S. Royer, H. Cruguel, G. Patriarche, A. Ouerghi, M. Silly et al., Wave-function engineering in HgSe/HgTe colloidal heterostructures to enhance mid-infrared photoconductive properties. Nano Lett. 18, 4590–4597 (2018). https://doi.org/10.1021/acs.nanolett.8b01861
Article
CAS
Google Scholar
K.S. Jeong, Z. Deng, S. Keuleyan, H. Liu, P. Guyot-Sionnest, Air-stable n-doped colloidal HgS quantum dots. J. Phys. Chem. Lett. 5, 1139–1143 (2014). https://doi.org/10.1021/jz500436x
Article
CAS
Google Scholar
B. Yoon, J. Jeong, K.S. Jeong, Higher quantum state transitions in colloidal quantum dot with heavy electron doping. J. Phys. Chem. C 120, 22062–22068 (2016). https://doi.org/10.1021/acs.jpcc.6b07331
Article
CAS
Google Scholar
J. Kim, B. Yoon, J. Kim, Y. Choi, Y.W. Kwon, S.K. Park, K.S. Jeong, High electron mobility of β-HgS colloidal quantum dots with doubly occupied quantum states. RSC Adv. 7, 38166–38170 (2017). https://doi.org/10.1039/c7ra07193k
Article
CAS
Google Scholar
A. Sahu, A. Khare, D.D. Deng, D.J. Norris, Quantum confinement in silver selenide semiconductor nanocrystals. Chem. Commun. 48, 5458–5460 (2012). https://doi.org/10.1039/c2cc30539a
Article
CAS
Google Scholar
A. Sahu, L. Qi, M.S. Kang, D. Deng, D.J. Norris, Facile synthesis of silver chalcogenide (Ag2E; E = Se, S, Te) semiconductor nanocrystals. J. Am. Chem. Soc. 133, 6509–6512 (2011). https://doi.org/10.1021/ja200012e
Article
CAS
Google Scholar
M. Park, D. Choi, Y. Choi, H. Shin, K.S. Jeong, Mid-infrared intraband transition of metal excess colloidal Ag2Se nanocrystals. ACS Photonics 5, 1907–1911 (2018). https://doi.org/10.1021/acsphotonics.8b00291
Article
CAS
Google Scholar
J. Qu, N. Goubet, C. Livache, B. Martinez, D. Amelot, C. Gréboval, A. Chu, J. Ramade, H. Cruguel, S. Ithurria et al., Intraband mid-infrared transitions in Ag2Se nanocrystals: potential and limitations for Hg-Free low-cost photodetection. J. Phys. Chem. C 122, 18161–18167 (2018). https://doi.org/10.1021/acs.jpcc.8b05699
Article
CAS
Google Scholar
Y. Zhang, D.J. Hellebusch, N.D. Bronstein, C. Ko, D.F. Ogletree, M. Salmeron, A.P. Alivisatos, Ultrasensitive photodetectors exploiting electrostatic trapping and percolation transport. Nat. Commun. 7, 11924 (2016)
Article
CAS
Google Scholar
G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, E.H. Sargent, Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006). https://doi.org/10.1038/nature04855
Article
CAS
Google Scholar
J.P. Clifford, G. Konstantatos, K.W. Johnston, S. Hoogland, L. Levina, E.H. Sargent, Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nat. Nanotechnol. 4, 40–44 (2009). https://doi.org/10.1038/nnano.2008.313
Article
CAS
Google Scholar
B.N. Pal, I. Robel, A. Mohite, R. Laocharoensuk, D.J. Werder, V.I. Klimov, High-sensitivity P–n junction photodiodes based on PbS nanocrystal quantum dots. Adv. Funct. Mater. 22, 1741–1748 (2012). https://doi.org/10.1002/adfm.201102532
Article
CAS
Google Scholar
A.D. Stiff-Roberts, Quantum-dot infrared photodetectors: a review. J. Nanophoton. 3, 031607 (2009). https://doi.org/10.1117/1.3125802
Article
CAS
Google Scholar
E. Lhuillier, S. Keuleyan, H. Liu, P. Guyot-Sionnest, Mid-IR colloidal nanocrystals. Chem. Mater. 25, 1272–1282 (2013). https://doi.org/10.1021/cm303801s
Article
CAS
Google Scholar
Y. Yifat, M. Ackerman, P. Guyot-Sionnest, Mid-IR colloidal quantum dot detectors enhanced by optical nano-antennas. Appl. Phys. Lett. 110, 041106 (2017). https://doi.org/10.1063/1.4975058
Article
CAS
Google Scholar
M.H. Hudson, M. Chen, V. Kamysbayev, E.M. Janke, X. Lan, G. Allan, C. Delerue, B. Lee, P. Guyot-Sionnest, D.V. Talapin, Conduction band fine structure in colloidal HgTe quantum dots. ACS Nano 12, 9397–9404 (2018). https://doi.org/10.1021/acsnano.8b04539
Article
CAS
Google Scholar
W.E. Tennant, D. Lee, M. Zandian, E. Piquette, M. Carmody, MBE HgCdTe technology: a very general solution to IR detection, described by “Rule 07”, a very convenient heuristic. J. Electron. Mater. 37, 1406–1410 (2008). https://doi.org/10.1007/s11664-008-0426-3
Article
CAS
Google Scholar
X. Tang, M.M. Ackerman, P. Guyot-Sionnest, Thermal imaging with plasmon resonance enhanced HgTe colloidal quantum dot photovoltaic devices. ACS Nano 12, 7362–7370 (2018). https://doi.org/10.1021/acsnano.8b03871
Article
CAS
Google Scholar
B. Martinez, E. Lacaze, A. Proust, S. Ithurria, M.G. Silly, G. Cabailh, F. Volatron, E. Lhuillier, Polyoxometalate as control agent for the doping in HgSe self-doped nanocrystals. J. Phys. Chem. C 122, 26680 (2018). https://doi.org/10.1021/acs.jpcc.8b07190
Article
CAS
Google Scholar
B. Martinez, A. Robin, N. Goubet, B. Dubertret, H. Wang, S. Ithurria, E. Lhuillier, Investigation of the self-doping process in HgSe nanocrystals. Phys. Status Solidi A 215, 1700294 (2018). https://doi.org/10.1002/pssa.201700294
Article
CAS
Google Scholar
J.-D. Park, W. Zheng, Human exposure and health effects of inorganic and elemental mercury. J. Prev. Med. Public Health 45, 344–352 (2012). https://doi.org/10.3961/jpmph.2012.45.6.344
Article
Google Scholar
P. Martyniuk, A. Rogalski, HOT infrared photodetectors. Opto-Electron. Rev. 21, 239–257 (2013). https://doi.org/10.2478/s11772-013-0090-x
Article
CAS
Google Scholar
J. Piotrowski, J. Pawluczyk, A. Piotrowski, W. Gawron, M. Romanis, K. Kłos, Uncooled MWIR and LWIR photodetectors in Poland. Opto-Electron. Rev. 18, 318 (2010). https://doi.org/10.2478/s11772-010-1022-y
Article
Google Scholar
Y.-S. Park, W.K. Bae, J.M. Pietryga, V.I. Klimov, Auger recombination of biexcitons and negative and positive trions in individual quantum dots. ACS Nano 8, 7288–7296 (2014). https://doi.org/10.1021/nn5023473
Article
CAS
Google Scholar
I. Robel, R. Gresback, U. Kortshagen, R.D. Schaller, V.I. Klimov, Universal size-dependent trend in auger recombination in direct-gap and indirect-gap semiconductor nanocrystals. Phys. Rev. Lett. 102, 177404 (2009). https://doi.org/10.1103/PhysRevLett.102.177404
Article
CAS
Google Scholar
T. Nishihara, H. Tahara, M. Okano, M. Ono, Y. Kanemitsu, Fast dissociation and reduced auger recombination of multiple excitons in closely packed PbS nanocrystal thin films. J. Phys. Chem. Lett. 6, 1327–1332 (2015). https://doi.org/10.1021/acs.jpclett.5b00293
Article
CAS
Google Scholar
A. Kurzmann, A. Ludwig, A.D. Wieck, A. Lorke, M. Geller, Auger recombination in self-assembled quantum dots: quenching and broadening of the charged exciton transition. Nano Lett. 16, 3367–3372 (2016). https://doi.org/10.1021/acs.nanolett.6b01082
Article
CAS
Google Scholar
J.-S. Lee, M.V. Kovalenko, J. Huang, D.S. Chung, D.V. Talapin, Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol. 6, 348 (2011). https://doi.org/10.1038/nnano.2011.46
Article
CAS
Google Scholar
J.-H. Choi, A.T. Fafarman, S.J. Oh, D.-K. Ko, D.K. Kim, B.T. Diroll, S. Muramoto, J.G. Gillen, C.B. Murray, C.R. Kagan, Bandlike transport in strongly coupled and doped quantum dot solids: a route to high-performance thin-film electronics. Nano Lett. 12, 2631–2638 (2012). https://doi.org/10.1021/nl301104z
Article
CAS
Google Scholar
J. Jang, D.S. Dolzhnikov, W. Liu, S. Nam, M. Shim, D.V. Talapin, Solution-processed transistors using colloidal nanocrystals with composition-matched molecular “solders”: approaching single crystal mobility. Nano Lett. 15, 6309–6317 (2015). https://doi.org/10.1021/acs.nanolett.5b01258
Article
CAS
Google Scholar