T.Z. Kosc, Particle display technologies become e-paper. Opt. Photon. News. 16, 18–23 (2005). https://doi.org/10.1364/OPN.16.2.000018
Article
CAS
Google Scholar
J.A. Rogers, Toward paperlike displays. Science 291, 1502–1503 (2001). https://doi.org/10.1126/science.291.5508.1502
Article
CAS
Google Scholar
P.F. Bai, R.A. Hayes, M.L. Jin, L.L. Shui, Z.C. Yi, L. Wang, X. Zhang, G.F. Zhou, Review of paper-like display technologies. Prog. Electromagn. Res. 147, 95–116 (2014). https://doi.org/10.2528/pier13120405
Article
Google Scholar
G. Tosini, I. Ferguson, K. Tsubota, Effects of blue light on the circadian system and eye physiology. Mol. Vis. 22, 61–72 (2016)
CAS
Google Scholar
P. Chen, Z. Lai, Y. Wu, L. Xu, X. Cai, J. Qiu, P. Yang, M. Yang, P. Zhou, J. Zhuang, J. Ge, K. Yu, J. Zhuang, Retinal neuron is more sensitive to blue light-induced damage than glia cell due to DNA double-strand breaks. Cells. 8, 68 (2019). https://doi.org/10.3390/cells8010068
Article
Google Scholar
A.M. Chang, D. Aeschbach, J.F. Duffy, C.A. Czeisler, Evening use of light-emitting ereaders negatively affects sleep, circadian timing, and next-morning alertness. Proc. Natl. Acad. Sci. U.S.A. 112, 1232–1237 (2015). https://doi.org/10.1073/pnas.1418490112
Article
CAS
Google Scholar
D. Hertel, Optical measurement standards for reflective e-paper to predict colors displayed in ambient illumination environments. Color Res. Appl. 43, 907–921 (2018). https://doi.org/10.1002/col.22279
Article
Google Scholar
J. Heikenfeld, P. Drzaic, J.-S. Yeo, T. Koch, Review paper: A critical review of the present and future prospects for electronic paper. J. Soc. Inf. Disp. 19, 129–156 (2011). https://doi.org/10.1889/jsid19.2.129
Article
Google Scholar
J.H. Koo, D.C. Kim, H.J. Shim, T.-H. Kim, D.-H. Kim, Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv. Funct. Mater. 28, 1801834 (2018). https://doi.org/10.1002/adfm.201801834
Article
CAS
Google Scholar
I. Ota, J. Ohnishi, M. Yoshiyama, Electrophoretic image display (EPID) panel. Proc. IEEE 61, 832–836 (1973). https://doi.org/10.1109/PROC.1973.9173
Article
CAS
Google Scholar
L.S. Park, J.W. Park, H.Y. Choi, Y.S. Han, Y. Kwon, H.S. Choi, Fabrication of charged particles for electrophoretic display. Curr. Appl. Phys. 6, 644–648 (2006). https://doi.org/10.1016/j.cap.2005.04.012
Article
Google Scholar
J.S. Yeo, T. Emery, G. Combs, V. Korthuis, J. Mabeck, R. Hoffman, T. Koch, Z.L. Zhou, D. Henze, Novel flexible reflective color media integrated with transparent oxide TFT backplane. Digest Tech. Papers SID Int. Symp. 41(1), 1041–1044 (2010)
Article
CAS
Google Scholar
T. Koch, J.-S. Yeo, Z.-L. Zhou, Q. Liu, J. Mabeck, G. Combs, V. Korthuis, R. Hoffman, B. Benson, D. Henze, Novel flexible reflective color media with electronic inks. J. Inf. Disp. 12, 5–10 (2011). https://doi.org/10.1080/15980316.2011.563062
Article
CAS
Google Scholar
R. Hattori, S. Yamada, Y. Masuda, N. Nihei, A novel bistable reflective display using quick-response liquid powder. J. Soc. Inform. Disp. 12, 75–80 (2004). https://doi.org/10.1889/1.1824242
Article
Google Scholar
Y. Masuda, N. Nihei, R. Sakurai, R. Hattori, A reflective-display qr-lpd®. J. Soc. Inform. Disp. 14, 443–448 (2006). https://doi.org/10.1889/1.2206107
Article
Google Scholar
Y. Zhang, B. Zhen, S.A.S. Al-Shuja’a, G. Zhou, X. Li, Y. Feng, Fast-response and monodisperse silica nanoparticles modified with ionic liquid towards electrophoretic displays. Dyes Pigm. 148, 270–275 (2018). https://doi.org/10.1016/j.dyepig.2017.09.014
Article
CAS
Google Scholar
Y. Zhang, B. Zhen, R. Li, S. Meng, X. Li, Y. Feng, Low density and fast response silica coated with ionic liquid polymer nanoparticles towards electrophoretic displays. Mater. Lett. 211, 17–20 (2018). https://doi.org/10.1016/j.matlet.2017.09.071
Article
CAS
Google Scholar
R. Sakurai, S. Ohno, S.-I. Kita, Y. Masuda, R. Hattori, 68.2: color and flexible electronic paper display using qr-lpd® technology. SID Symp. Digest Tech. Papers. 37, 1922–1925 (2006). https://doi.org/10.1889/1.2433426
Article
Google Scholar
A. Noel, D. Mirbel, E. Cloutet, G. Fleury, C. Schatz, C. Navarro, G. Hadziioannou, C. Brochon, Tridodecylamine, an efficient charge control agent in non-polar media for electrophoretic inks application. Appl. Surf. Sci. 428, 870–876 (2018). https://doi.org/10.1016/j.apsusc.2017.09.171
Article
CAS
Google Scholar
Y. Kwak, J. Park, D.-S. Park, Generating vivid colors on red-green-blue-white electonic-paper display. Appl. Opt. 47, 4491–4500 (2008). https://doi.org/10.1364/AO.47.004491
Article
Google Scholar
W.-C. Kao, J.-C. Tsai, Driving method of three-particle electrophoretic displays. IEEE Trans. Electron Devices 65, 1023–1028 (2018). https://doi.org/10.1109/ted.2018.2791541
Article
Google Scholar
S.J. Telfer, M.D. McCreary, A full-color electrophoretic display. SID Symp. Digest Tech. Papers 47, 574–577 (2016). https://doi.org/10.1002/sdtp.10736
Article
Google Scholar
R.A. Hayes, B.J. Feenstra, Video-speed electronic paper based on electrowetting. Nature 425, 383 (2003)
Article
CAS
Google Scholar
J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, R. Schwartz, Electrofluidic displays using Young–Laplace transposition of brilliant pigment dispersions. Nat. Photonics 3, 292–296 (2009). https://doi.org/10.1038/nphoton.2009.68
Article
CAS
Google Scholar
K. Zhou, K.A. Dean, J. Heikenfeld, Flexible electrofluidic displays using brilliantly colored pigments. SID Symp. Dig. Tech. Pap. 41, 481–486 (2010). https://doi.org/10.1889/1.3500500
Article
Google Scholar
Y. Deng, H. Jiang, D. Ye, R. Zhou, H. Li, B. Tang, M. Jin, N. Li, Y. Guo, G. Zhou, Synthesis and application of an alkylated pyrazole-based azo dye for electrofluidic display. J. Soc. Inform. Disp. 26, 369–375 (2018). https://doi.org/10.1002/jsid.668
Article
CAS
Google Scholar
H. Wu, R.A. Hayes, F. Li, A. Henzen, L. Shui, G. Zhou, Influence of fluoropolymer surface wettability on electrowetting display performance. Displays 53, 47–53 (2018). https://doi.org/10.1016/j.displa.2018.02.002
Article
CAS
Google Scholar
P. Rosa, Minimal computation structures for visual information applications based on printed electronics (2015).
J. Remmele, D.E. Shen, T. Mustonen, N. Fruehauf, High performance and long-term stability in ambiently fabricated segmented solid-state polymer electrochromic displays. ACS Appl. Mater. Interfaces 7, 12001–12008 (2015). https://doi.org/10.1021/acsami.5b02090
Article
CAS
Google Scholar
A.M. Osterholm, D.E. Shen, J.A. Kerszulis, R.H. Bulloch, M. Kuepfert, A.L. Dyer, J.R. Reynolds, Four shades of brown: tuning of electrochromic polymer blends toward high-contrast eyewear. ACS Appl. Mater. Interfaces 7, 1413–1421 (2015). https://doi.org/10.1021/am507063d
Article
CAS
Google Scholar
H.C. Moon, C.H. Kim, T.P. Lodge, C.D. Frisbie, Multicolored, low-power, flexible electrochromic devices based on ion gels. ACS Appl. Mater. Interfaces 8, 6252–6260 (2016). https://doi.org/10.1021/acsami.6b01307
Article
CAS
Google Scholar
T.-Y. Kim, S.M. Cho, C.S. Ah, H. Ryu, J.Y. Kim, Driving mechanism of high speed electrochromic devices by using patterned array. Sol. Energy Mater. Sol. Cells 145, 76–82 (2016). https://doi.org/10.1016/j.solmat.2015.09.024
Article
CAS
Google Scholar
W.C. Tang, C.H. Hsu, K.Y. Lin, P.W. Chen, Y.L. Hsu, Y.L. Wang, K.Y. Chang, Y.S. Chang, C.C. Tsai, Organic thin film transistor driven backplane for flexible electrophoretic display. SID Symp. Digest Tech. Papers 46(1), 973–975 (2015)
Article
CAS
Google Scholar
E ink holdings inc
J.W. Kim, J.M. Myoung, Flexible and transparent electrochromic displays with simultaneously implementable subpixelated ion gel-based viologens by multiple patterning. Adv. Funct. Mater. 29, 1808911 (2019). https://doi.org/10.1002/adfm.201808911
Article
CAS
Google Scholar
H.C. Moon, T.P. Lodge, C.D. Frisbie, Solution processable, electrochromic ion gels for sub-1 v, flexible displays on plastic. Chem. Mater. 27, 1420–1425 (2015). https://doi.org/10.1021/acs.chemmater.5b00026
Article
CAS
Google Scholar
T.P. Lodge, A unique platform for materials design. Science 321, 50 (2008). https://doi.org/10.1126/science.1159652
Article
CAS
Google Scholar
H. Oh, D.G. Seo, T.Y. Yun, C.Y. Kim, H.C. Moon, Voltage-tunable multicolor, sub-1.5 v, flexible electrochromic devices based on ion gels. ACS Appl. Mater. Interfaces 9, 7658–7665 (2017). https://doi.org/10.1021/acsami.7b00624
Article
CAS
Google Scholar
M.A. Invernale, Y. Ding, G.A. Sotzing, All-organic electrochromic spandex. ACS Appl. Mater. Interfaces 2, 296–300 (2010). https://doi.org/10.1021/am900767p
Article
CAS
Google Scholar
J.Z. Zhang, B.J. Schwartz, J.C. King, C.B. Harris, Ultrafast studies of photochromic spiropyrans in solution. J. Am. Chem. Soc. 114, 10921–10927 (1992)
Article
CAS
Google Scholar
G. Berkovic, V. Krongauz, V. Weiss, Spiropyrans and spirooxazines for memories and switches. Chem. Rev. 100, 1741–1754 (2000)
Article
CAS
Google Scholar
J. Hobley, U. Pfeifer-Fukumura, M. Bletz, T. Asahi, H. Masuhara, H. Fukumura, Ultrafast photo-dynamics of a reversible photochromic spiropyran. J. Phys. Chem. A 106, 2265–2270 (2002)
Article
CAS
Google Scholar
M.-Q. Zhu, L. Zhu, J.J. Han, W. Wu, J.K. Hurst, A.D. Li, Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence. J. Am. Chem. Soc. 128, 4303–4309 (2006)
Article
CAS
Google Scholar
V.I. Minkin, Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds. Chem. Rev. 104, 2751–2776 (2004)
Article
CAS
Google Scholar
S.-R. Keum, K.-B. Lee, P.M. Kazmaier, E. Buncel, A novel method for measurement of the merocyanine-spiropyran interconversion in non-activated 1,3,3-trimethylspiro-(2h-1-benzopyran-2,2′-indoline) derivatives. Tetrahedron Lett. 35, 1015–1018 (1994)
Article
CAS
Google Scholar
J.T. Wojtyk, A. Wasey, N.-N. Xiao, P.M. Kazmaier, S. Hoz, C. Yu, R.P. Lemieux, E. Buncel, Elucidating the mechanisms of acidochromic spiropyran-merocyanine interconversion. J. Phys. Chem. A 111, 2511–2516 (2007)
Article
CAS
Google Scholar
R. Rosario, D. Gust, M. Hayes, F. Jahnke, J. Springer, A.A. Garcia, Photon-modulated wettability changes on spiropyran-coated surfaces. Langmuir 18, 8062–8069 (2002)
Article
CAS
Google Scholar
C. Lenoble, R.S. Becker, Photophysics, photochemistry, kinetics, and mechanism of the photochromism of 6′-nitroindolinospiropyran. J. Phys. Chem. 90, 62–65 (1986)
Article
CAS
Google Scholar
S.L. Potisek, D.A. Davis, N.R. Sottos, S.R. White, J.S. Moore, Mechanophore-linked addition polymers. J. Am. Chem. Soc. 129, 13808–13809 (2007)
Article
CAS
Google Scholar
D.A. Davis, A. Hamilton, J. Yang, L.D. Cremar, D. Van Gough, S.L. Potisek, M.T. Ong, P.V. Braun, T.J. Martinez, S.R. White, J.S. Moore, N.R. Sottos, Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459, 68–72 (2009). https://doi.org/10.1038/nature07970
Article
CAS
Google Scholar
G. O’Bryan, B.M. Wong, J.R. McElhanon, Stress sensing in polycaprolactone films via an embedded photochromic compound. ACS Appl. Mater. Interfaces 2, 1594–1600 (2010). https://doi.org/10.1021/am100050v
Article
CAS
Google Scholar
M.H. Barbee, K. Mondal, J.Z. Deng, V. Bharambe, T.V. Neumann, J.J. Adams, N. Boechler, M.D. Dickey, S.L. Craig, Mechanochromic stretchable electronics. ACS Appl. Mater. Interfaces 10, 29918–29924 (2018). https://doi.org/10.1021/acsami.8b09130
Article
CAS
Google Scholar
P. Vukusic, J.R. Sambles, Photonic structures in biology. Nature 424, 852 (2003)
Article
CAS
Google Scholar
G. Zyla, A. Kovalev, M. Grafen, E.L. Gurevich, C. Esen, A. Ostendorf, S. Gorb, Generation of bioinspired structural colors via two-photon polymerization. Sci. Rep. 7, 17622 (2017). https://doi.org/10.1038/s41598-017-17914-w
Article
CAS
Google Scholar
M. Aryal, D.-H. Ko, J.R. Tumbleston, A. Gadisa, E.T. Samulski, R. Lopez, Large area nanofabrication of butterfly wing’s three dimensional ultrastructures. J. Vacuum Sci. Technol. B Nanotechnol. Microelectron. Mater. Process Measur. Phenom. 30, 061802 (2012)
Google Scholar
K. Chung, S. Yu, C.J. Heo, J.W. Shim, S.M. Yang, M.G. Han, H.S. Lee, Y. Jin, S.Y. Lee, N. Park, Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings. Adv. Mater. 24, 2375–2379 (2012)
Article
CAS
Google Scholar
I.R. Howell, C. Li, N.S. Colella, K. Ito, J.J. Watkins, Strain-tunable one dimensional photonic crystals based on zirconium dioxide/slide-ring elastomer nanocomposites for mechanochromic sensing. ACS Appl. Mater. Interfaces 7, 3641–3646 (2015). https://doi.org/10.1021/am5079946
Article
CAS
Google Scholar
K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, S. Matsui, Brilliant blue observation from a morpho-butterfly-scale quasi-structure. Jpn. J. Appl. Phys. 44, L48 (2004)
Article
Google Scholar
E.P. Chan, J.J. Walish, E.L. Thomas, C.M. Stafford, Block copolymer photonic gel for mechanochromic sensing. Adv. Mater. 23, 4702–4706 (2011). https://doi.org/10.1002/adma.201102662
Article
CAS
Google Scholar
Y. Kang, J.J. Walish, T. Gorishnyy, E.L. Thomas, Broad-wavelength-range chemically tunable block-copolymer photonic gels. Nat. Mater. 6, 957–960 (2007). https://doi.org/10.1038/nmat2032
Article
CAS
Google Scholar
E. Kim, C. Kang, H. Baek, K. Hwang, D. Kwak, E. Lee, Y. Kang, E.L. Thomas, Control of optical hysteresis in block copolymer photonic gels: a step towards wet photonic memory films. Adv. Func. Mater. 20, 1728–1732 (2010). https://doi.org/10.1002/adfm.201000329
Article
CAS
Google Scholar
T.H. Park, S. Yu, S.H. Cho, H.S. Kang, Y. Kim, M.J. Kim, H. Eoh, C. Park, B. Jeong, S.W. Lee, D.Y. Ryu, J. Huh, C. Park, Block copolymer structural color strain sensor. NPG Asia Mater. 10, 328–339 (2018). https://doi.org/10.1038/s41427-018-0036-3
Article
CAS
Google Scholar
M.A. Haque, T. Kurokawa, J.P. Gong, Anisotropic hydrogel based on bilayers: color, strength, toughness, and fatigue resistance. Soft Matter. 8, 8008–8016 (2012). https://doi.org/10.1039/c2sm25670c
Article
CAS
Google Scholar
M.A. Haque, T. Kurokawa, G. Kamita, J.P. Gong, Lamellar bilayers as reversible sacrificial bonds to toughen hydrogel: hysteresis, self-recovery, fatigue resistance, and crack blunting. Macromolecules 44, 8916–8924 (2011). https://doi.org/10.1021/ma201653t
Article
CAS
Google Scholar
M.A. Haque, T. Kurokawa, G. Kamita, Y. Yue, J.P. Gong, Rapid and reversible tuning of structural color of a hydrogel over the entire visible spectrum by mechanical stimulation. Chem. Mater. 23, 5200–5207 (2011). https://doi.org/10.1021/cm2021142
Article
CAS
Google Scholar
S.A. Asher, J. Holtz, L. Liu, Z. Wu, Self-assembly motif for creating submicron periodic materials. Polymerized crystalline colloidal arrays. J. Am. Chem. Soc. 116, 4997–4998 (1994)
Article
CAS
Google Scholar
H. Fudouzi, T. Sawada, Photonic rubber sheets with tunable color by elastic deformation. Langmuir 22, 1365–1368 (2006)
Article
CAS
Google Scholar
K. Matsubara, M. Watanabe, Y. Takeoka, A thermally adjustable multicolor photochromic hydrogel. Angew. Chem. Int. Ed. Engl. 46, 1688–1692 (2007). https://doi.org/10.1002/anie.200603554
Article
CAS
Google Scholar
D. Yang, S. Ye, J. Ge, From metastable colloidal crystalline arrays to fast responsive mechanochromic photonic gels: an organic gel for deformation-based display panels. Adv. Func. Mater. 24, 3197–3205 (2014). https://doi.org/10.1002/adfm.201303555
Article
CAS
Google Scholar
J.J. Walish, Y. Kang, R.A. Mickiewicz, E.L. Thomas, Bioinspired electrochemically tunable block copolymer full color pixels. Adv. Mater. 21, 3078–3081 (2009). https://doi.org/10.1002/adma.200900067
Article
CAS
Google Scholar
Y. Lu, H. Xia, G. Zhang, C. Wu, Electrically tunable block copolymer photonic crystals with a full color display. J. Mater. Chem. 19, 5952–5955 (2009). https://doi.org/10.1039/b905760a
Article
CAS
Google Scholar
K. Hwang, D. Kwak, C. Kang, D. Kim, Y. Ahn, Y. Kang, Electrically tunable hysteretic photonic gels for nonvolatile display pixels. Angew. Chem. Int. Ed. Engl. 50, 6311–6314 (2011). https://doi.org/10.1002/anie.201100398
Article
CAS
Google Scholar
A.C. Arsenault, D.P. Puzzo, I. Manners, G.A. Ozin, Photonic-crystal full-colour displays. Nat. Photonics 1, 468–472 (2007). https://doi.org/10.1038/nphoton.2007.140
Article
CAS
Google Scholar
D.P. Puzzo, A.C. Arsenault, I. Manners, G.A. Ozin, Electroactive inverse opal: a single material for all colors. Angew. Chem. Int. Ed. Engl. 48, 943–947 (2009). https://doi.org/10.1002/anie.200804391
Article
CAS
Google Scholar
T.S. Shim, S.H. Kim, J.Y. Sim, J.M. Lim, S.M. Yang, Dynamic modulation of photonic bandgaps in crystalline colloidal arrays under electric field. Adv. Mater. 22, 4494–4498 (2010). https://doi.org/10.1002/adma.201001227
Article
CAS
Google Scholar
M.G. Han, C.-J. Heo, C.G. Shin, H. Shim, J.W. Kim, Y.W. Jin, S. Lee, Electrically tunable photonic crystals from long-range ordered crystalline arrays composed of copolymer colloids. J. Mater. Chem. C. 1, 5791–5798 (2013). https://doi.org/10.1039/c3tc31192a
Article
CAS
Google Scholar
Q. Fu, H. Zhu, J. Ge, Electrically tunable liquid photonic crystals with large dielectric contrast and highly saturated structural colors. Adv. Funct. Mater. 28, 1804628 (2018). https://doi.org/10.1002/adfm.201804628
Article
CAS
Google Scholar
K.H. Ko, E. Park, H. Lee, W. Lee, Low-power all-organic electrophoretic display using self-assembled charged poly(t-butyl methacrylate) microspheres in isoparaffinic fluid. ACS Appl. Mater. Interfaces 10, 11776–11784 (2018). https://doi.org/10.1021/acsami.7b17122
Article
CAS
Google Scholar
R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836–839 (2000)
Article
CAS
Google Scholar
S.H. Foulger, P. Jiang, A. Lattam, D.W. Smith, J. Ballato, D.E. Dausch, S. Grego, B.R. Stoner, Photonic crystal composites with reversible high-frequency stop band shifts. Adv. Mater. 15, 685–689 (2003). https://doi.org/10.1002/adma.200304566
Article
CAS
Google Scholar
J. Xia, Y. Ying, S.H. Foulger, Electric-field-induced rejection-wavelength tuning of photonic-bandgap composites. Adv. Mater. 17, 2463–2467 (2005). https://doi.org/10.1002/adma.200501166
Article
CAS
Google Scholar
D.Y. Kim, S. Choi, H. Cho, J.Y. Sun, Electroactive soft photonic devices for the synesthetic perception of color and sound. Adv. Mater. 31, e1804080 (2019). https://doi.org/10.1002/adma.201804080
Article
CAS
Google Scholar
Q. Wang, G.R. Gossweiler, S.L. Craig, X. Zhao, Cephalopod-inspired design of electro-mechano-chemically responsive elastomers for on-demand fluorescent patterning. Nat. Commun. 5, 4899 (2014). https://doi.org/10.1038/ncomms5899
Article
CAS
Google Scholar
M.-C. Choi, Y. Kim, C.-S. Ha, Polymers for flexible displays: from material selection to device applications. Prog. Polym. Sci. 33, 581–630 (2008). https://doi.org/10.1016/j.progpolymsci.2007.11.004
Article
CAS
Google Scholar
S. Dal Kim, B. Lee, T. Byun, I.S. Chung, J. Park, I. Shin, N.Y. Ahn, M. Seo, Y. Lee, Y. Kim, W.Y. Kim, H. Kwon, H. Moon, S. Yoo, S.Y. Kim, Poly(amide-imide) materials for transparent and flexible displays. Sci. Adv. 4, 10 (2018). https://doi.org/10.1126/sciadv.aau1956
Article
Google Scholar
W.A. MacDonald, Engineered films for display technologies. J. Mater. Chem. 14, 4–10 (2004). https://doi.org/10.1039/b310846p
Article
CAS
Google Scholar
R. Sakurai, R. Hattori, M. Asakawa, T. Nakashima, I. Tanuma, A. Yokoo, N. Nihei, Y. Masuda, A flexible electronic-paper display with an ultra-thin and flexible LSI driver using quick-response liquid-powder technology. J. Soc. Inform. Disp. 16, 155–160 (2008). https://doi.org/10.1889/1.2835022
Article
Google Scholar
J. Liu, G. Zong, L. He, Y. Zhang, C. Liu, L. Wang, Effects of fumed and mesoporous silica nanoparticles on the properties of sylgard 184 polydimethylsiloxane. Micromachines 6, 855–864 (2015). https://doi.org/10.3390/mi6070855
Article
Google Scholar
Y. Zhao, X. Huang, Mechanisms and materials of flexible and stretchable skin sensors. Micromachines. 8, 69 (2017). https://doi.org/10.3390/mi8030069
Article
Google Scholar
X. Sun, J. Zhang, X. Lu, X. Fang, H. Peng, Mechanochromic photonic-crystal fibers based on continuous sheets of aligned carbon nanotubes. Angew. Chem. Int. Ed. Engl. 54, 3630–3634 (2015). https://doi.org/10.1002/anie.201412475
Article
CAS
Google Scholar
H. Kai, W. Suda, Y. Ogawa, K. Nagamine, M. Nishizawa, Intrinsically stretchable electrochromic display by a composite film of poly(3,4-ethylenedioxythiophene) and polyurethane. ACS Appl. Mater. Interfaces 9, 19513–19518 (2017). https://doi.org/10.1021/acsami.7b03124
Article
CAS
Google Scholar
W. Hu, X. Niu, L. Li, S. Yun, Z. Yu, Q. Pei, Intrinsically stretchable transparent electrodes based on silver-nanowire-crosslinked-polyacrylate composites. Nanotechnology 23, 344002 (2012). https://doi.org/10.1088/0957-4484/23/34/344002
Article
CAS
Google Scholar
Y. Zhang, C.J. Sheehan, J. Zhai, G. Zou, H. Luo, J. Xiong, Y.T. Zhu, Q.X. Jia, Polymer-embedded carbon nanotube ribbons for stretchable conductors. Adv. Mater. 22, 3027–3031 (2010). https://doi.org/10.1002/adma.200904426
Article
CAS
Google Scholar
C. Yan, W. Kang, J. Wang, M. Cui, X. Wang, C.Y. Foo, K.J. Chee, P.S. Lee, Stretchable and wearable electrochromic devices. ACS Nano 8, 316–322 (2013)
Article
Google Scholar
Q. Liu, Z. Xu, W. Qiu, C. Hou, Y. Wang, P. Yao, R. Yu, W. Guo, X.Y. Liu, Ultraflexible, stretchable and fast-switching electrochromic devices with enhanced cycling stability. RSC Adv. 8, 18690–18697 (2018). https://doi.org/10.1039/c8ra02829j
Article
CAS
Google Scholar
C. Keplinger, J.Y. Sun, C.C. Foo, P. Rothemund, G.M. Whitesides, Z. Suo, Stretchable, transparent, ionic conductors. Science. 341, 984–987 (2013). https://doi.org/10.1126/science.1240228
Article
CAS
Google Scholar
C. Larson, B. Peele, S. Li, S. Robinson, M. Totaro, L. Beccai, B. Mazzolai, R. Shepherd, Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351, 1071–1074 (2016)
Article
CAS
Google Scholar
S. Li, B.N. Peele, C.M. Larson, H. Zhao, R.F. Shepherd, A stretchable multicolor display and touch interface using photopatterning and transfer printing. Adv. Mater. 28, 9770–9775 (2016). https://doi.org/10.1002/adma.201603408
Article
CAS
Google Scholar
I. Shiyanovskaya, A. Khan, S. Green, G. Magyar, O. Pishnyak, D. Marhefka, J.W. Doane, Single-substrate encapsulated cholesteric LCDs: coatable, drapable, and foldable. J. Soc. Inform. Disp. 14, 181–186 (2006). https://doi.org/10.1889/1.2176121
Article
Google Scholar
E. Kreit, M. Dhindsa, S. Yang, M. Hagedon, K. Zhou, I. Papautsky, J. Heikenfeld, Laplace barriers for electrowetting thresholding and virtual fluid confinement. Langmuir 26, 18550–18556 (2010). https://doi.org/10.1021/la104090t
Article
CAS
Google Scholar
K. Amundson, Electrophoretic imaging films for electronic paper displays. P. Gregory, A.C.L. Crawford, editors. (2005), pp. 369–391
Z. Zhu, G. Yang, R. Li, T. Pan, Photopatternable pedot: PSS/PEG hybrid thin film with moisture stability and sensitivity. Microsyst. Nanoeng. 3, 17004 (2017). https://doi.org/10.1038/micronano.2017.4
Article
CAS
Google Scholar
S.M. Lee, H.J. Byeon, J.H. Lee, D.H. Baek, K.H. Lee, J.S. Hong, S.H. Lee, Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals. Sci. Rep. 4, 6074 (2014). https://doi.org/10.1038/srep06074
Article
CAS
Google Scholar
J. Tang, J. Li, J.J. Vlassak, Z. Suo, Adhesion between highly stretchable materials. Soft Matter 12, 1093–1099 (2016). https://doi.org/10.1039/c5sm02305j
Article
CAS
Google Scholar
P. Le Floch, X. Yao, Q. Liu, Z. Wang, G. Nian, Y. Sun, L. Jia, Z. Suo, Wearable and washable conductors for active textiles. ACS Appl. Mater. Interfaces 9, 25542–25552 (2017). https://doi.org/10.1021/acsami.7b07361
Article
CAS
Google Scholar
P. Le Floch, S. Meixuanzi, J. Tang, J. Liu, Z. Suo, Stretchable seal. ACS Appl. Mater. Interfaces 10, 27333–27343 (2018). https://doi.org/10.1021/acsami.8b08910
Article
CAS
Google Scholar
K. Amundson, T. Sjodin, Invited paper: achieving graytone images in a microencapsulated electrophoretic display. SID Symp. Digest Tech. Papers 37, 1918–1921 (2006). https://doi.org/10.1889/1.2433425
Article
Google Scholar