F. Kiessling, S. Fokong, J. Bzyl, W. Lederle, M. Palmowski, T. Lammers, Recent advances in molecular, multimodal and theranostic ultrasound imaging. Adv. Drug Deliv. Rev. 72, 15 (2014)
CAS
Google Scholar
A. Rix, W. Lederle, B. Theek, T. Lammers, C. Moonen, G. Schmitz, F. Kiessling, Advanced ultrasound technologies for diagnosis and therapy. J. Nucl. Med. 59, 740 (2018)
CAS
Google Scholar
M.L. James, S.S. Gambhir, A molecular imaging primer: modalities, imaging agents, and applications. Physiol. Rev. 92, 897 (2012)
CAS
Google Scholar
J.E. Kennedy, High-intensity focused ultrasound in the treatment of solid tumours. Nat. Rev. Cancer 5, 321 (2005)
CAS
Google Scholar
G. ter Haar, C. Coussios, High intensity focused ultrasound: physical principles and devices. Int. J. Hyperth. 23, 89 (2007)
Google Scholar
O. Babalola, T.-H.J. Lee, C.J. Viviano, Prostate ablation using high intensity focused ultrasound: a literature review of the potential role for patient preference information. J. Urol. 200, 512 (2018)
Google Scholar
M. Ahmed, L. Solbiati, C.L. Brace, D.J. Breen, M.R. Callstrom, J.W. Charboneau, M.-H. Chen, B.I. Choi, T. de Baère, G.D. Dodd, D.E. Dupuy, D.A. Gervais, D. Gianfelice, A.R. Gillams, F.T. Lee, E. Leen, R. Lencioni, P.J. Littrup, T. Livraghi, D.S. Lu, J.P. McGahan, M.F. Meloni, B. Nikolic, P.L. Pereira, P. Liang, H. Rhim, S.C. Rose, R. Salem, C.T. Sofocleous, S.B. Solomon, M.C. Soulen, M. Tanaka, T.J. Vogl, B.J. Wood, S.N. Goldberg, Image-guided tumor ablation: standardization of terminology and reporting criteria—a 10-year update. Radiology 273, 241 (2014)
Google Scholar
S. Mitragotri, Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov. 4, 255 (2005)
CAS
Google Scholar
I. Lentacker, I. De Cock, R. Deckers, S.C. De Smedt, C.T.W. Moonen, Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv. Drug Deliv. Rev. 72, 49 (2014)
CAS
Google Scholar
J. Unga, M. Hashida, Ultrasound induced cancer immunotherapy. Adv. Drug Deliv. Rev. 72, 144 (2014)
CAS
Google Scholar
K. Hynynen, Ultrasound for drug and gene delivery to the brain. Adv. Drug Deliv. Rev. 60, 1209 (2008)
CAS
Google Scholar
K.F. Timbie, B.P. Mead, R.J. Price, Drug and gene delivery across the blood-brain barrier with focused ultrasound. J. Control. Release 219, 61 (2015)
CAS
Google Scholar
A. Yildirim, N.T. Blum, A.P. Goodwin, Colloids, nanoparticles, and materials for imaging, delivery, ablation, and theranostics by focused ultrasound (FUS). Theranostics 9, 2572 (2019)
CAS
Google Scholar
E.G. Schutt, D.H. Klein, R.M. Mattrey, J.G. Riess, Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew. Chemie Int. Ed. 42, 3218 (2003)
CAS
Google Scholar
J.M. Correas, L. Bridal, A. Lesavre, A. Méjean, M. Claudon, O. Hélénon, Ultrasound contrast agents: properties, principles of action, tolerance, and artifacts. Eur. Radiol. (2001). https://doi.org/10.1007/s003300100940
Article
Google Scholar
D.L. Miller, M.A. Averkiou, A.A. Brayman, E.C. Everbach, C.K. Holland, J.H. Wible, J. Wu, Bioeffects considerations for diagnostic ultrasound contrast agents. J Ultrasound Med 27, 611 (2008)
Google Scholar
E. Stride, N. Saffari, Microbubble ultrasound contrast agents: a review. Proc. Inst. Mech. Eng. Part. H. J. Eng. Med. 217, 429 (2003)
CAS
Google Scholar
M. Schneider, Characteristics of SonoVueTM. Echocardiography 16, 743 (1999)
Google Scholar
K. Ferrara, R. Pollard, M. Borden, Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng. 9, 415 (2007)
CAS
Google Scholar
Y. Zhou, X. Han, X. Jing, Y. Chen, Construction of silica-based micro/nanoplatforms for ultrasound theranostic biomedicine. Adv. Healthc. Mater. 6, 1700646 (2017)
Google Scholar
S. Garg, A.A. Thomas, M.A. Borden, The effect of lipid monolayer in-plane rigidity on in vivo microbubble circulation persistence. Biomaterials 34, 6862 (2013)
CAS
Google Scholar
S. Sindhwani, A.M. Syed, J. Ngai, B.R. Kingston, L. Maiorino, J. Rothschild, P. MacMillan, Y. Zhang, N.U. Rajesh, T. Hoang, J.L.Y. Wu, S. Wilhelm, A. Zilman, S. Gadde, A. Sulaiman, B. Ouyang, Z. Lin, L. Wang, M. Egeblad, W.C.W. Chan, The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566 (2020)
CAS
Google Scholar
S. Pandit, D. Dutta, S. Nie, Active transcytosis and new opportunities for cancer nanomedicine. Nat. Mater. 19, 478 (2020)
Google Scholar
R.K. Jain, T. Stylianopoulos, Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653 (2010)
CAS
Google Scholar
M. Björnmalm, K.J. Thurecht, M. Michael, A.M. Scott, F. Caruso, Bridging bio-nano science and cancer nanomedicine. ACS Nano 11, 9594 (2017)
Google Scholar
J. Shi, P.W. Kantoff, R. Wooster, O.C. Farokhzad, Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20 (2017)
CAS
Google Scholar
P.S. Sheeran, P.A. Dayton, Phase-change contrast agents for imaging and therapy. Curr. Pharm. Des. 18, 2152 (2012)
CAS
Google Scholar
X. Wang, H. Chen, Y. Chen, M. Ma, K. Zhang, F. Li, Y. Zheng, D. Zeng, Q. Wang, J. Shi, Perfluorohexane-encapsulated mesoporous silica nanocapsules as enhancement agents for highly efficient high intensity focused ultrasound (HIFU). Adv. Mater. (2012). https://doi.org/10.1002/adma.201104033
Article
Google Scholar
A. Liberman, Z. Wu, C.V. Barback, R. Viveros, S.L. Blair, L.G. Ellies, D.R. Vera, R.F. Mattrey, A.C. Kummel, W.C. Trogler, Color doppler ultrasound and gamma imaging of intratumorally injected 500 nm iron-silica nanoshells. ACS Nano (2013). https://doi.org/10.1021/nn402507d
Article
Google Scholar
K. Zhang, H. Chen, F. Li, Q. Wang, S. Zheng, H. Xu, M. Ma, X. Jia, Y. Chen, J. Mou, X. Wang, J. Shi, A continuous tri-phase transition effect for HIFU-mediated intravenous drug delivery. Biomaterials (2014). https://doi.org/10.1016/j.biomaterials.2014.03.043
Article
Google Scholar
K.H. Min, H.S. Min, H.J. Lee, D.J. Park, J.Y. Yhee, K. Kim, I.C. Kwon, S.Y. Jeong, O.F. Silvestre, X. Chen, Y.S. Hwang, E.C. Kim, S.C. Lee, pH-controlled gas-generating mineralized nanoparticles: a theranostic agent for ultrasound imaging and therapy of cancers. ACS Nano. (2015). https://doi.org/10.1021/nn506210a
Article
Google Scholar
Y. Li, Y. Chen, M. Du, Z.-Y. Chen, Ultrasound technology for molecular imaging: from contrast agents to multimodal imaging. ACS Biomater. Sci. Eng. 4, 2716 (2018)
CAS
Google Scholar
Y. Il Yoon, W. Tang, X. Chen, Ultrasound-mediated diagnosis and therapy based on ultrasound contrast agents. Small Methods. 1, 1700173 (2017)
Google Scholar
A. Yildirim, R. Chattaraj, N.T. Blum, G.M. Goldscheitter, A.P. Goodwin, Stable encapsulation of air in mesoporous silica nanoparticles: fluorocarbon-free nanoscale ultrasound contrast agents. Adv. Healthc. Mater. 5, 1290 (2016)
CAS
Google Scholar
K. Tamarov, A. Sviridov, W. Xu, M. Malo, V. Andreev, V. Timoshenko, V.-P. Lehto, Nano air seeds trapped in mesoporous janus nanoparticles facilitate cavitation and enhance ultrasound imaging. ACS Appl. Mater. Interfaces 9, 35234 (2017)
CAS
Google Scholar
Q. Jin, C.-Y. Lin, S.-T. Kang, Y.-C. Chang, H. Zheng, C.-M. Yang, C.-K. Yeh, Superhydrophobic silica nanoparticles as ultrasound contrast agents. Ultrason. Sonochem. 36, 262 (2017)
CAS
Google Scholar
J.J. Kwan, R. Myers, C.M. Coviello, S.M. Graham, A.R. Shah, E. Stride, R.C. Carlisle, C.C. Coussios, Ultrasound-propelled nanocups for drug delivery. Small 11, 5305 (2015)
CAS
Google Scholar
R.G. Thomas, U.S. Jonnalagadda, J.J. Kwan, Biomedical applications for gas-stabilizing solid cavitation agents. Langmuir 35, 10106 (2019)
CAS
Google Scholar
J. Montoya Mira, L. Wu, S. Sabuncu, A. Sapre, F. Civitci, S. Ibsen, S. Esener, A. Yildirim, Gas-stabilizing sub-100 nm mesoporous silica nanoparticles for ultrasound theranostics. ACS Omega 5, 24762 (2020)
CAS
Google Scholar
Y.-J. Ho, C.-H. Wu, Q. Jin, C.-Y. Lin, P.-H. Chiang, N. Wu, C.-H. Fan, C.-M. Yang, C.-K. Yeh, Superhydrophobic drug-loaded mesoporous silica nanoparticles capped with β-cyclodextrin for ultrasound image-guided combined antivascular and chemo-sonodynamic therapy. Biomaterials 232, 119723 (2020)
CAS
Google Scholar
N.T. Blum, C.M. Gyorkos, S.J. Narowetz, E.N. Mueller, A.P. Goodwin, Phospholipid-coated hydrophobic mesoporous silica nanoparticles enhance thrombectomy by high-intensity focused ultrasound with low production of embolism-inducing clot debris. ACS Appl. Mater. Interfaces 11, 36324 (2019)
CAS
Google Scholar
C. Mannaris, L. Bau, M. Grundy, M. Gray, H. Lea-Banks, A. Seth, B. Teo, R. Carlisle, E. Stride, C.C. Coussios, Microbubbles, nanodroplets and gas-stabilizing solid particles for ultrasound-mediated extravasation of unencapsulated drugs: an exposure parameter optimization study. Ultrasound Med. Biol. 45, 954 (2019)
Google Scholar
M. Grundy, L. Bau, C. Hill, C. Paverd, C. Mannaris, J. Kwan, C. Crake, C. Coviello, C. Coussios, R. Carlisle, Improved therapeutic antibody delivery to xenograft tumors using cavitation nucleated by gas-entrapping nanoparticles. Nanomedicine 16, 37 (2021)
CAS
Google Scholar
Q. Jin, C.-Y. Lin, Y.-C. Chang, C.-M. Yang, C.-K. Yeh, Roles of textural and surface properties of nanoparticles in ultrasound-responsive systems. Langmuir 34, 1256 (2018)
CAS
Google Scholar
J.J. Kwan, G. Lajoinie, N. de Jong, E. Stride, M. Versluis, C.C. Coussios, Ultrahigh-speed dynamics of micrometer-scale inertial cavitation from nanoparticles. Phys. Rev. Appl. 6, 044004 (2016)
Google Scholar
A. Yildirim, D. Shi, S. Roy, N.T. Blum, R. Chattaraj, J.N. Cha, A.P. Goodwin, Nanoparticle-mediated acoustic cavitation enables high intensity focused ultrasound ablation without tissue heating. ACS Appl. Mater. Interfaces 10, 36786 (2018)
CAS
Google Scholar
C. Mannaris, B.M. Teo, A. Seth, L. Bau, C. Coussios, E. Stride, Gas-stabilizing gold nanocones for acoustically mediated drug delivery. Adv. Healthc. Mater. 7, 1800184 (2018)
Google Scholar
Y. Zhao, Y. Zhu, J. Fu, L. Wang, Effective cancer cell killing by hydrophobic nanovoid-enhanced cavitation under safe low-energy ultrasound. Chem. Asian J. 9, 790 (2014)
CAS
Google Scholar
Y. Zhao, Y. Zhu, Synergistic cytotoxicity of low-energy ultrasound and innovative mesoporous silica-based sensitive nanoagents. J. Mater. Sci. 49, 3665 (2014)
CAS
Google Scholar
F. Caupin, E. Herbert, Cavitation in water: a review. Comptes Rendus Phys. 7, 1000 (2006)
CAS
Google Scholar
E. Herbert, S. Balibar, F. Caupin, Cavitation pressure in water. Phys. Rev. E. 74, 041603 (2006)
Google Scholar
R.E. Apfel, Acoustic cavitation inception. Ultrasonics 22, 167 (1984)
Google Scholar
M. Strasberg, Onset of ultrasonic cavitation in tap water. J. Acoust. Soc. Am. 31, 163 (1959)
Google Scholar
R.E. Apfel, The role of impurities in cavitation-threshold determination. J. Acoust. Soc. Am. 48, 1179 (1970)
Google Scholar
L.A. Crum, Tensile strength of water. Nature 278, 148 (1979)
CAS
Google Scholar
E.N. Harvey, D.K. Barnes, W.D. McElroy, A.H. Whiteley, D.C. Pease, K.W. Cooper, Bubble formation in animals. I. Physical factors. J. Cell. Comp. Physiol. (1944). https://doi.org/10.1002/jcp.1030240102
Article
Google Scholar
A.A. Atchley, A. Prosperetti, The crevice model of bubble nucleation. J. Acoust. Soc. Am. 86, 1065 (1989)
Google Scholar
M. Arora, C.-D. Ohl, K.A. Mørch, Cavitation inception on microparticles: a self-propelled particle accelerator. Phys. Rev. Lett. 92, 174501 (2004)
Google Scholar
H.B. Marschall, K.A. Mørch, A.P. Keller, M. Kjeldsen, Cavitation inception by almost spherical solid particles in water. Phys. Fluids 15, 545 (2003)
CAS
Google Scholar
B.M. Borkent, M. Arora, C.-D. Ohl, Reproducible cavitation activity in water-particle suspensions. J. Acoust. Soc. Am. 121, 1406 (2007)
CAS
Google Scholar
Y. Gu, B. Li, M. Chen, An experimental study on the cavitation of water with effects of SiO2 nanoparticles. Exp. Therm. Fluid Sci. 79, 195 (2016)
CAS
Google Scholar
D. Lohse, X. Zhang, Surface nanobubbles and nanodroplets. Rev. Mod. Phys. 87, 981 (2015)
CAS
Google Scholar
J.R.T. Seddon, E.S. Kooij, B. Poelsema, H.J.W. Zandvliet, D. Lohse, Surface bubble nucleation stability. Phys. Rev. Lett. 106, 056101 (2011)
Google Scholar
S.R. German, X. Wu, H. An, V.S.J. Craig, T.L. Mega, X. Zhang, Interfacial nanobubbles are leaky: permeability of the gas/water interface. ACS Nano (2014). https://doi.org/10.1021/nn5016049
Article
Google Scholar
X.H. Zhang, N. Maeda, V.S.J. Craig, Physical properties of nanobubbles on hydrophobic surfaces in water and aqueous solutions. Langmuir 22, 5025 (2006)
CAS
Google Scholar
C.U. Chan, C.-D. Ohl, Total-internal-reflection-fluorescence microscopy for the study of nanobubble dynamics. Phys. Rev. Lett. 109, 174501 (2012)
Google Scholar
B.M. Borkent, S. Gekle, A. Prosperetti, D. Lohse, Nucleation threshold and deactivation mechanisms of nanoscopic cavitation nuclei. Phys. Fluids 21, 102003 (2009)
Google Scholar
V. Belova, M. Krasowska, D. Wang, J. Ralston, D.G. Shchukin, H. Möhwald, Influence of adsorbed gas at liquid/solid interfaces on heterogeneous cavitation. Chem. Sci. 4, 248 (2013)
CAS
Google Scholar
V. Belova, D.A. Gorin, D.G. Shchukin, H. Möhwald, Selective ultrasonic cavitation on patterned hydrophobic surfaces. Angew. Chemie Int. Ed. 49, 7129 (2010)
CAS
Google Scholar
Q. Jin, S.-T. Kang, Y.-C. Chang, H. Zheng, C.-K. Yeh, Inertial cavitation initiated by polytetrafluoroethylene nanoparticles under pulsed ultrasound stimulation. Ultrason. Sonochem. 32, 1 (2016)
CAS
Google Scholar
H. Peng, M.A. Hampton, A.V. Nguyen, Nanobubbles do not sit alone at the solid-liquid interface. Langmuir 29, 6123 (2013)
CAS
Google Scholar
D. Li, Y. Pan, X. Zhao, B. Bhushan, Study on nanobubble-on-pancake objects forming at polystyrene/water interface. Langmuir 32, 11256 (2016)
CAS
Google Scholar
Q. Wu, F. Zhang, X. Pan, Z. Huang, Z. Zeng, H. Wang, J. Jiao, X. Xiong, L. Bai, D. Zhou, H. Liu, Surface wettability of nanoparticle modulated sonothrombolysis. Adv. Mater. 33, 2007073 (2021)
CAS
Google Scholar
I.V. Larina, B.M. Evers, T.V. Ashitkov, C. Bartels, K.V. Larin, R.O. Esenaliev, Enhancement of drug delivery in tumors by using interaction of nanoparticles with ultrasound radiation. Technol. Cancer Res. Treat. 4, 217 (2005)
Google Scholar
I.V. Larina, C. Bartels, K.V. Larin, R.O. Esenaliev, Cavitation-Induced Drug Delivery in Tumors for Cancer Chemotherapy: Phantom Studies, In D.D. Duncan, S.L. Jacques, P.C. Johnson (eds) Laser-Tissue Interaction XII: Photochemical, Photothermal, and Photomechanical, vol. 4257 (2001), SPIE, p. 385
R.O. Esenaliev, I.V. Larina, Y. Ivanova, T.V. Ashitkov, R. Thomas, and B.M. Evers, Cavitation-Induced Drug Delivery in Tumors for Cancer Chemotherapy: Animal Studies, In Laser-Tissue Interaction XII: Photochemical, Photothermal, and Photomechanical, vol. 4257 (2001), p. 393
S.J. Wagstaffe, H.A. Schiffter, M. Arora, and C.-C. Coussios, Sonosensitive Nanoparticles for Controlled Instigation of Cavitation and Drug Delivery by Ultrasound, In AIP Conference Proceedings, vol. 1481 (2012), American Institute of Physics, p. 426.
A. Yildirim, R. Chattaraj, N.T. Blum, A.P. Goodwin, Understanding acoustic cavitation initiation by porous nanoparticles: toward nanoscale agents for ultrasound imaging and therapy. Chem. Mater. 28, 5962 (2016)
CAS
Google Scholar
N.T. Blum, A. Yildirim, C. Gyorkos, D. Shi, A. Cai, R. Chattaraj, A.P. Goodwin, Temperature-responsive hydrophobic silica nanoparticle ultrasound contrast agents directed by phospholipid phase behavior. ACS Appl. Mater. Interfaces 11, 15233 (2019)
CAS
Google Scholar
A. Yildirim, R. Chattaraj, N.T. Blum, D. Shi, K. Kumar, A.P. Goodwin, Phospholipid capped mesoporous nanoparticles for targeted high intensity focused ultrasound ablation. Adv. Healthc. Mater. 6, 1700514 (2017)
Google Scholar
X. Su, R.G. Thomas, L.D. Bharatula, J.J. Kwan, Remote targeted implantation of sound-sensitive biodegradable multi-cavity microparticles with focused ultrasound. Sci. Rep. 9, 9612 (2019)
Google Scholar
L. Zhang, V. Belova, H. Wang, W. Dong, H. Möhwald, Controlled cavitation at nano/microparticle surfaces. Chem. Mater. 26, 2244 (2014)
CAS
Google Scholar
A. Ancona, A. Troia, N. Garino, B. Dumontel, V. Cauda, G. Canavese, Leveraging re-chargeable nanobubbles on amine-functionalized ZnO nanocrystals for sustained ultrasound cavitation towards echographic imaging. Ultrason Sonochem 67, 105132 (2020)
CAS
Google Scholar
X. Wang, X. Yu, X. Wang, M. Qi, J. Pan, Q. Wang, One-step nanosurface self-assembly of D-peptides renders bubble-free ultrasound theranostics. Nano Lett. 19, 2251 (2019)
CAS
Google Scholar
X. Wang, L. Qiao, X. Yu, X. Wang, L. Jiang, Q. Wang, Controllable formation of ternary inorganic-supramolecular-polymeric hydrogels by amidation-fueled self-assembly and enzymatic post-cross-linking for ultrasound theranostic. ACS Biomater. Sci. Eng. 5, 5888 (2019)
CAS
Google Scholar
P. Hiltl, A. Grebner, M. Fink, S. Rupitsch, H. Ermert, G. Lee, Inertial cavitation of lyophilized and rehydrated nanoparticles of poly(L-Lactic Acid) at 835 KHz and 1.8 MPa ultrasound. Sci. Rep. 9, 12148 (2019)
Google Scholar
X. Su, M. Rakshit, P. Das, I. Gupta, D. Das, M. Pramanik, K.W. Ng, J. Kwan, Ultrasonic implantation and imaging of sound-sensitive theranostic agents for the treatment of arterial inflammation. ACS Appl. Mater. Interfaces 13, 24422 (2021)
CAS
Google Scholar
U.S. Jonnalagadda, X. Su, J.J. Kwan, Nanostructured TiO2 cavitation agents for dual-modal sonophotocatalysis with pulsed ultrasound. Ultrason. Sonochem. 73, 105530 (2021)
CAS
Google Scholar
Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387 (1986)
CAS
Google Scholar
A.K. Iyer, G. Khaled, J. Fang, H. Maeda, Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 11, 812 (2006)
CAS
Google Scholar
S.E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C.M. Cobley, Y. Xia, Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res. 41, 1587 (2008)
CAS
Google Scholar
D. Shen, J. Yang, X. Li, L. Zhou, R. Zhang, W. Li, L. Chen, R. Wang, F. Zhang, D. Zhao, Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 14, 923 (2014)
CAS
Google Scholar
R. Deckers, L.G. Merckel, B. Denis De Senneville, G. Schubert, M. Köhler, F.M. Knuttel, W.P.T.M. Mali, C.T.W. Moonen, M.A.A.J. Van Den Bosch, L.W. Bartels, Performance analysis of a dedicated breast MR-HIFU system for tumor ablation in breast cancer patients. Phys. Med. Biol. 60, 5527 (2015)
CAS
Google Scholar
R.O. Illing, J.E. Kennedy, F. Wu, G.R. ter Haar, A.S. Protheroe, P.J. Friend, F.V. Gleeson, D.W. Cranston, R.R. Phillips, M.R. Middleton, The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population. Br. J. Cancer 93, 890 (2005)
CAS
Google Scholar
R. Golan, A. Bernstein, A. Sedrakyan, T.J. Daskivich, D.T. Du, B. Ehdaie, B. Fisher, M.A. Gorin, I. Grunberger, B. Hunt, H.H. Jiang, H.L. Kim, D. Marinac-Dabic, L.S. Marks, T.D. McClure, J.S. Montgomery, D.J. Parekh, S. Punnen, S. Scionti, C.J. Viviano, J.T. Wei, S. Wenske, J.S. Wysock, J. Rewcastle, M. Carol, M. Oczachowski, J.C. Hu, Development of a nationally representative coordinated registry network for prostate ablation technologies. J. Urol. 199, 1488 (2018)
Google Scholar
S.B. Devarakonda, M.R. Myers, M. Lanier, C. Dumoulin, R.K. Banerjee, Assessment of gold nanoparticle-mediated-enhanced hyperthermia using MR-guided high-intensity focused ultrasound ablation procedure. Nano Lett. 17, 2532 (2017)
CAS
Google Scholar
N. Hijnen, E. Kneepkens, M. de Smet, S. Langereis, E. Heijman, H. Grüll, Thermal combination therapies for local drug delivery by magnetic resonance-guided high-intensity focused ultrasound. Proc. Natl. Acad. Sci. 114, E4802 (2017)
CAS
Google Scholar
C.M.C. Tempany, N.J. McDannold, K. Hynynen, F.A. Jolesz, Focused ultrasound surgery in oncology: overview and principles. Radiology 259, 39 (2011)
Google Scholar
T.D. Khokhlova, W.L. Monsky, Y.A. Haider, A.D. Maxwell, Y.-N. Wang, T.J. Matula, Histotripsy liquefaction of large hematomas. Ultrasound Med. Biol. 42, 1491 (2016)
Google Scholar
V.A. Khokhlova, J.B. Fowlkes, W.W. Roberts, G.R. Schade, Z. Xu, T.D. Khokhlova, T.L. Hall, A.D. Maxwell, Y.-N. Wang, C.A. Cain, Histotripsy methods in mechanical disintegration of tissue: towards clinical applications. Int. J. Hyperth. 31, 145 (2015)
Google Scholar
T.L. Hall, C.R. Hempel, K. Wojno, Z. Xu, C.A. Cain, W.W. Roberts, Histotripsy of the prostate: dose effects in a chronic canine model. Urology 74, 932 (2009)
Google Scholar
A. Liberman, Z. Wu, C.V. Barback, R.D. Viveros, J. Wang, L.G. Ellies, R.F. Mattrey, W.C. Trogler, A.C. Kummel, S.L. Blair, Hollow iron-silica nanoshells for enhanced high intensity focused ultrasound. J. Surg. Res. 190, 391 (2014)
CAS
Google Scholar
S. Bhatnagar, J.J. Kwan, A.R. Shah, C.-C. Coussios, R.C. Carlisle, Exploitation of sub-micron cavitation nuclei to enhance ultrasound-mediated transdermal transport and penetration of vaccines. J. Control. Release 238, 22 (2016)
CAS
Google Scholar
R. Myers, C. Coviello, P. Erbs, J. Foloppe, C. Rowe, J. Kwan, C. Crake, S. Finn, E. Jackson, J.-M. Balloul, C. Story, C. Coussios, R. Carlisle, Polymeric cups for cavitation-mediated delivery of oncolytic vaccinia virus. Mol. Ther. 24, 1627 (2016)
CAS
Google Scholar
R. Myers, M. Grundy, C. Rowe, C. Coviello, L. Bau, P. Erbs, J. Foloppe, J.-M. Balloul, C. Story, C. Coussios, R. Carlisle, Ultrasound-mediated cavitation does not decrease the activity of small molecule, antibody or viral-based medicines. Int. J. Nanomed. 13, 337 (2018)
CAS
Google Scholar
J.L. Paris, C. Mannaris, M.V. Cabañas, R. Carlisle, M. Manzano, M. Vallet-Regí, C.C. Coussios, Ultrasound-mediated cavitation-enhanced extravasation of mesoporous silica nanoparticles for controlled-release drug delivery. Chem. Eng. J. 340, 2 (2018)
CAS
Google Scholar
M. Lafond, S. Yoshizawa, S. Umemura, Sonodynamic therapy: advances and challenges in clinical translation. J. Ultrasound Med. 38, 567 (2019)
Google Scholar
D. Costley, C. Mc Ewan, C. Fowley, A.P. McHale, J. Atchison, N. Nomikou, J.F. Callan, Treating cancer with sonodynamic therapy: a review. Int. J. Hyperth. 31, 107 (2015)
CAS
Google Scholar
Z. Gong, Z. Dai, Design and challenges of sonodynamic therapy system for cancer theranostics: from equipment to sensitizers. Adv. Sci. 8, 2002178 (2021)
CAS
Google Scholar
D.L. Miller, N.B. Smith, M.R. Bailey, G.J. Czarnota, K. Hynynen, I.R.S. Makin, Overview of therapeutic ultrasound applications and safety considerations. J. Ultrasound Med. 31, 623 (2012)
Google Scholar
E.L. Carstensen, Acoustic cavitation and the safety of diagnostic ultrasound. Ultrasound Med. Biol. 13, 597 (1987)
CAS
Google Scholar
L. Galluzzi, A. Buqué, O. Kepp, L. Zitvogel, G. Kroemer, Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97 (2017)
CAS
Google Scholar