J. Schneider, M. Matsuoka, M. Takeuchi, J.L. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014)
Article
Google Scholar
K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C 13, 169–189 (2012)
Article
Google Scholar
K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44, 8269–8285 (2005)
Article
Google Scholar
M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sust. Energy Rev. 11, 401–425 (2007)
Article
Google Scholar
P.C. Maness, S. Smolinski, D.M. Blake, Z. Huang, E.J. Wolfrum, W.A. Jacoby, Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl. Environ. Microbiol. 65, 4094–4098 (1999)
Google Scholar
X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010)
Article
Google Scholar
H. Kisch, Semiconductor photocatalysis: principles and applications (Wiley-VCH Verlag GmbH & Co, Weinheim, 2015)
Google Scholar
D.S. Bhatkhande, V.G. Pangarkar, A.A.C.M. Beenackers, Photocatalytic degradation for environmental applications—A review. J. Chem. Technol. Biotechnol. 77, 102–116 (2002)
Article
Google Scholar
D.L. Narayanan, R.N. Saladi, J.L. Fox, Ultraviolet radiation and skin cancer. Int. J. Dermatol. 49, 978–986 (2010)
Article
Google Scholar
F.R. de Gruijl, Skin cancer and solar UV radiation. Eur. J. Cancer 35, 2003–2009 (1999)
Article
Google Scholar
B.K. Armstrong, A. Kricker, The epidemiology of UV induced skin cancer. J. Photoch. Photobio. B 63, 8–18 (2001)
Article
Google Scholar
J. D’Orazio, S. Jarrett, A. Amaro-Ortiz, T. Scott, UV Radiation and the Skin. Int. J. Mol. Sci. 14, 12222–12248 (2013)
Article
Google Scholar
H. Saito, Y. Nosaka, Mechanism of singlet oxygen generation in visible-light-induced photocatalysis of gold-nanoparticle-deposited titanium dioxide. J. Phys. Chem. C 118, 15656–15663 (2014)
Article
Google Scholar
H. Saito, Y. Nosaka, Enhancement of the generation of photocatalytic active species by loading copper ions on gold-nanoparticle-deposited titanium dioxide. Catal. Commun. 61, 117–120 (2015)
Article
Google Scholar
L.K. Bharat, G. Nagaraju, K.G. Krishna, J.S. Yu, Controlled synthesis of yttrium gallium garnet spherical nanostructures modified by silver oxide nanoparticles for enhanced photocatalytic properties. CrystEngComm 18, 8915–8925 (2016)
Article
Google Scholar
B. Dudem, L.K. Bharat, J.W. Leem, D.H. Kim, J.S. Yu, Hierarchical Ag/TiO2/Si forest-like nano/micr-architectures as antireflective, plasmonic photocatalytic, and self-cleaning coatings. ACS Sustain. Chem. Eng. 6, 1580–1591 (2017)
Article
Google Scholar
S. Linic, U. Aslam, C. Boerigter, M. Morabito, Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14, 567–576 (2015)
Article
Google Scholar
S.V. Boriskina, H. Ghasemi, G. Chen, Plasmonic materials for energy: from physics to applications. Mater. Today 16, 375–386 (2013)
Article
Google Scholar
X.M. Zhang, Y.L. Chen, R.S. Liu, D.P. Tsai, Plasmonic photocatalysis. Rep. Prog. Phys. 76, 046401 (2013)
Article
Google Scholar
P. Wang, B.B. Huang, Y. Dai, M.H. Whangbo, Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys. Chem. Chem. Phys. 14, 9813–9825 (2012)
Article
Google Scholar
X.C. Ma, Y. Dai, L. Yu, B.B. Huang, Energy transfer in plasmonic photocatalytic composites. Light-Sci. Appl. 5, e16017 (2016)
Article
Google Scholar
K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res. 88, 428–448 (2016)
Article
Google Scholar
B. Trouiller, R. Reliene, A. Westbrook, P. Solaimani, R.H. Schiestl, Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res. 69, 8784–8789 (2009)
Article
Google Scholar
V.K. Sharma, Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment—A Review. J. Environ. Sci. Health A 44, 1485–1495 (2009)
Article
Google Scholar
E.D. Sternberg, D. Dolphin, C. Bruckner, Porphyrin-based photosensitizers for use in photodynamic therapy. Tetrahedron 54, 4151–4202 (1998)
Article
Google Scholar
A.B. Ormond, H.S. Freeman, Dye sensitizers for photodynamic therapy. Materials 6, 817–840 (2013)
Article
Google Scholar
S. Lacombe, T. Pigot, Materials for selective photo-oxygenation vs. photocatalysis: preparation, properties and applications in environmental and health fields. Catal. Sci. Technol. 6, 1571–1592 (2016)
Article
Google Scholar
A.P. Wojtovich, T.H. Foster, Optogenetic control of ROS production. Redox Biol. 2, 368–376 (2014)
Article
Google Scholar
M. Schieber, N.S. Chandel, ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014)
Article
Google Scholar
K. Jacobson, Z. Rajfur, E. Vitriol, K. Hahn, Chromophore-assisted laser inactivation in cell biology. Trends Cell Biol. 18, 443–450 (2008)
Article
Google Scholar
W.A. Pryor, Oxy-radicals and related species: their formation, lifetimes, and reactions. Ann. Rev. Physiol. 48, 657–667 (1986)
Article
Google Scholar
C.C. Winterbourn, Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278–286 (2008)
Article
Google Scholar
M.S. Baptista, J. Cadet, P. Di Mascio, A.A. Ghogare, A. Greer, M.R. Hamblin, C. Lorente, S.C. Nunez, M.S. Ribeiro, A.H. Thomas, M. Vignoni, T.M. Yoshimura, Type I and Type II photosensitized oxidation reactions: guidelines and mechanistic pathways. Photochem. Photobiol. 93, 912–919 (2017)
Article
Google Scholar
C.S. Foote, Definition of type-I and type-II photosensitized oxidation. Photochem. Photobiol. 54, 659 (1991)
Article
Google Scholar
J. Behler, B. Delley, S. Lorenz, K. Reuter, M. Scheffler, Dissociation of O2 at Al(111): the role of spin selection rules. Phys. Rev. Lett. 94, 036104 (2005)
Article
Google Scholar
A. Blazquez-Castro, Direct 1O2 optical excitation: a tool for redox biology. Redox Biol. 13, 39–59 (2017)
Article
Google Scholar
E. Boix-Garriga, B. Rodriguez-amigo, O. Planas, S. Nonell, in Singlet oxygen: applications in biosciences and nanosciences, vol. 1, ed. by S. Nonell, C. Flors (Royal Society of Chemistry, Cambridge, 2016), p. 25
Chapter
Google Scholar
C. Schweitzer, R. Schmidt, Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev. 103, 1685–1757 (2003)
Article
Google Scholar
J. Lee, N. Koo, D.B. Min, Reactive oxygen species, aging, and antioxidative nutraceuticals. Compr. Rev. Food Sci. Food Saf. 3, 21–33 (2004)
Article
Google Scholar
L.M. Hulten, M. Holmstrom, B. Soussi, Harmful singlet oxygen can be helpful. Free Radic. Biol. Med. 27, 1203–1207 (1999)
Article
Google Scholar
M.P. Lesser, Oxidative stress in marine environments: biochemistry and physiological ecology. Ann. Rev. Physiol. 68, 253–278 (2006)
Article
Google Scholar
K. Asada, Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141, 391–396 (2006)
Article
Google Scholar
S. Trashin, V. Rahemi, K. Ramji, L. Neven, S.M. Gorun, K. De Wael, Singlet oxygen-based electrosensing by molecular photosensitizers. Nat. Commun. 8, 16108 (2017)
Article
Google Scholar
R.L. Strack, D.E. Strongin, D. Bhattacharyya, W. Tao, A. Berman, H.E. Broxmeyer, R.J. Keenan, B.S. Glick, A noncytotoxic DsRed variant for whole-cell labeling. Nat. Methods 5, 955–957 (2008)
Article
Google Scholar
D.M. Chudakov, M.V. Matz, S. Lukyanov, K.A. Lukyanov, Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 90, 1103–1163 (2010)
Article
Google Scholar
B.N. Smith, B.W. Banfield, C.A. Smeraski, C.L. Wilcox, F.E. Dudek, L.W. Enquist, G.E. Pickard, Pseudorabies virus expressing enhanced green fluorescent protein: a tool for in vitro electrophysiological analysis of transsynaptically labeled neurons in identified central nervous system circuits. Proc. Nat. Acad. Sci. USA 97, 9264–9269 (2000)
Article
Google Scholar
O. Tour, R.M. Meijer, D.A. Zacharias, S.R. Adams, R.Y. Tsien, Genetically targeted chromophore-assisted light inactivation. Nat. Biotechnol. 21, 1505–1508 (2003)
Article
Google Scholar
Z.J. Zhou, J.B. Song, L.M. Nie, X.Y. Chen, Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 45, 6597–6626 (2016)
Article
Google Scholar
Y. Sano, W. Watanabe, S. Matsunaga, Chromophore-assisted laser inactivation—towards a spatiotemporal-functional analysis of proteins, and the ablation of chromatin, organelle and cell function. J. Cell Sci. 127, 1621–1629 (2014)
Article
Google Scholar
R.B. Vegh, K.B. Bravaya, D.A. Bloch, A.S. Bommarius, L.M. Tolbert, M. Verkhovsky, A.I. Krylov, K.M. Solntsev, Chromophore photoreduction in red fluorescent proteins is responsible for bleaching and phototoxicity. J. Phys. Chem. B 118, 4527–4534 (2014)
Article
Google Scholar
T. Surrey, M.B. Elowitz, P.E. Wolf, F. Yang, F. Nedelec, K. Shokat, S. Leibler, Chromophore-assisted light inactivation and self-organization of microtubules and motors. Proc. Nat. Acad. Sci. USA 95, 4293–4298 (1998)
Article
Google Scholar
Y.C.B. Qi, E.J. Garren, X.K. Shu, R.Y. Tsien, Y.S. Jin, Photo-inducible cell ablation in Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein miniSOG. Proc. Nat. Acad. Sci. USA 109, 7499–7504 (2012)
Article
Google Scholar
K.E. Mironova, G.M. Proshkina, A.V. Ryabova, O.A. Stremovskiy, S.A. Lukyanov, R.V. Petrov, S.M. Deyev, Genetically encoded immunophotosensitizer 4D5scFv-miniSOG is a highly selective agent for targeted photokilling of tumor cells in vitro. Theranostics 3, 831–840 (2013)
Article
Google Scholar
E.O. Serebrovskaya, E.F. Edelweiss, O.A. Stremovskiy, K.A. Lukyanov, D.M. Chudakov, S.M. Deyev, Targeting cancer cells by using an antireceptor antibody-photosensitizer fusion protein. Proc. Nat. Acad. Sci. USA 106, 9221–9225 (2009)
Article
Google Scholar
Z. Rajfur, P. Roy, C. Otey, L. Romer, K. Jacobson, Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins. Nat. Cell Biol. 4, 286–293 (2002)
Article
Google Scholar
M.A. McLean, Z. Rajfur, Z.Z. Chen, D. Humphrey, B. Yang, S.G. Sligar, K. Jacobson, Mechanism of chromophore assisted laser inactivation employing fluorescent proteins. Anal. Chem. 81, 1755–1761 (2009)
Article
Google Scholar
A.P. Wojtovich, A.Y. Wei, T.A. Sherman, T.H. Foster, K. Nehrke, Chromophore-assisted light inactivation of mitochondrial electron transport chain complex II in caenorhabditis elegans. Sci. Rep. 6, 29695 (2016)
Article
Google Scholar
M.E. Bulina, K.A. Lukyanov, O.V. Britanova, D. Onichtchouk, S. Lukyanov, D.M. Chudakov, Chromophore-assisted light inactivation (CALI) using the phototoxic fluorescent protein KillerRed. Nat. Protoc. 1, 947–953 (2006)
Article
Google Scholar
K. Takemoto, T. Matsuda, N. Sakai, D. Fu, M. Noda, S. Uchiyama, I. Kotera, Y. Arai, M. Horiuchi, K. Fukui, T. Ayabe, F. Inagaki, H. Suzuki, T. Nagai, SuperNova, a monomeric photosensitizing fluorescent protein for chromophore-assisted light inactivation. Sci. Rep. 3, 2629 (2013)
Article
Google Scholar
C. Teh, D.M. Chudakov, K.L. Poon, I.Z. Mamedov, J.Y. Sek, K. Shidlovsky, S. Lukyanov, V. Korzh, Optogenetic in vivo cell manipulation in KillerRed-expressing zebrafish transgenics. BMC Dev. Biol. 10, 110 (2010)
Article
Google Scholar
K. Jewhurst, M. Levin, K.A. Mclaughlin, Optogenetic control of apoptosis in targeted tissues of Xenopus laevis embryos. J. Cell Death 7, 25–31 (2014)
Article
Google Scholar
L. Greenbaum, C. Rothmann, R. Lavie, Z. Malik, Green fluorescent protein photobleaching: a model for protein damage by endogenous and exogenous singlet oxygen. Biol. Chem. 381, 1251–1258 (2000)
Article
Google Scholar
A. Jimenez-Banzo, S. Nonell, J. Hofkens, C. Flors, Singlet oxygen photosensitization by EGFP and its chromophore HBDI. Biophys. J. 94, 168–172 (2008)
Article
Google Scholar
X.K. Shu, V. Lev-Ram, T.J. Deerinck, Y.C. Qi, E.B. Ramko, M.W. Davidson, Y.S. Jin, M.H. Ellisman, R.Y. Tsien, A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol. 9, e1001041 (2011)
Article
Google Scholar
R. Ruiz-Gonzalez, A.L. Cortajarena, S.H. Mejias, M. Agut, S. Nonell, C. Flors, Singlet oxygen generation by the genetically encoded tag miniSOG. J. Am. Chem. Soc. 135, 9564–9567 (2013)
Article
Google Scholar
M. Westberg, M. Bregnhoj, M. Etzerodt, P.R. Ogilby, No photon wasted: an efficient and selective singlet oxygen photosensitizing protein. J. Phys. Chem. B 121, 9366–9371 (2017)
Article
Google Scholar
J. Torra, A. Burgos-Caminal, S. Endres, M. Wingen, T. Drepper, T. Gensch, R. Ruiz-Gonzalez, S. Nonell, Singlet oxygen photosensitisation by the fluorescent protein Pp2FbFP L30 M, a novel derivative of Pseudomonas putida flavin-binding Pp2FbFP. Photochem. Photobiol. Sci. 14, 280–287 (2015)
Article
Google Scholar
R.B. Vegh, K.M. Solntsev, M.K. Kuimova, S. Cho, Y. Liang, B.L.W. Loo, L.M. Tolbert, A.S. Bommarius, Reactive oxygen species in photochemistry of the red fluorescent protein “Killer Red”. Chem. Commun. 47, 4887–4889 (2011)
Article
Google Scholar
M.E. Bulina, D.M. Chudakov, O.V. Britanova, Y.G. Yanushevich, D.B. Staroverov, T.V. Chepurnykh, E.M. Merzlyak, M.A. Shkrob, S. Lukyanov, K.A. Lukyanov, A genetically encoded photosensitizer. Nat. Biotechnol. 24, 95–99 (2006)
Article
Google Scholar
X. Ragas, L.P. Cooper, J.H. White, S. Nonell, C. Flors, Quantification of photosensitized singlet oxygen production by a fluorescent protein. ChemPhysChem 12, 161–165 (2011)
Article
Google Scholar
J.W. Leem, J. Park, S.W. Kim, S.R. Kim, S.H. Choi, K.H. Choi, Y.L. Kim, Green light-activated photoreaction via genetic hybridization of far-red fluorescent protein and silk. Adv. Sci. (2018). DOI: https://doi.org/10.1002/advs.201700863
Google Scholar
O. Shimomura, The discovery of aequorin and green fluorescent protein. J. Microsc. Oxf. 217, 3–15 (2005)
Article
Google Scholar
R.N. Day, M.W. Davidson, The fluorescent protein palette: tools for cellular imaging. Chem. Soc. Rev. 38, 2887–2921 (2009)
Article
Google Scholar
J.W. Choi, Y.S. Nam, S.J. Park, W.H. Lee, D. Kim, M. Fujihira, Rectified photocurrent of molecular photodiode consisting of cytochrome c/GFP hetero thin films. Biosens. Bioelectron. 16, 819–825 (2001)
Article
Google Scholar
J.W. Choi, Y.S. Nam, W.H. Lee, D. Kim, M. Fujihira, Rectified photocurrent of the protein-based bio-photodiode. Appl. Phys. Lett. 79, 1570–1572 (2001)
Article
Google Scholar
K. Deepankumar, A. George, G.K. Priya, M. Ilamaran, N.R. Kamini, T.S. Senthil, S. Easwaramoorthi, N. Ayyadurai, Next generation designed protein as a photosensitizer for biophotovoltaics prepared by expanding the genetic code. ACS Sustain. Chem. Eng. 5, 72–77 (2017)
Article
Google Scholar
Z.G. Chirgwandi, I. Panas, L.G. Johansson, B. Norden, M. Willander, D. Winkler, H. Agren, Properties of a biophotovoltaic nanodevice. J. Phys. Chem. C 112, 18717–18721 (2008)
Article
Google Scholar
D.C. Prasher, V.K. Eckenrode, W.W. Ward, F.G. Prendergast, M.J. Cormier, Primary structure of the Aequorea victoria green-rluorescent protein. Gene 111, 229–233 (1992)
Article
Google Scholar
J.J. van Thor, Photoreactions and dynamics of the green fluorescent protein. Chem. Soc. Rev. 38, 2935–2950 (2009)
Article
Google Scholar
A. Jimenez-Banzo, X. Ragas, S. Abbruzzetti, C. Viappiani, B. Campanini, C. Flors, S. Nonell, Singlet oxygen photosensitisation by GFP mutants: oxygen accessibility to the chromophore. Photochem. Photobiol. Sci. 9, 1336–1341 (2010)
Article
Google Scholar
M. Qin, H.J. Hah, G. Kim, G.C. Nie, Y.E.K. Lee, R. Kopelman, Methylene blue covalently loaded polyacrylamide nanoparticles for enhanced tumor-targeted photodynamic therapy. Photochem. Photobiol. Sci. 10, 832–841 (2011)
Article
Google Scholar
F.M. Pimenta, R.L. Jensen, T. Breitenbach, M. Etzerodt, P.R. Ogilby, Oxygen-dependent photochemistry and photophysics of “MiniSOG,” a protein-encased flavin. Photochem. Photobiol. 89, 1116–1126 (2013)
Article
Google Scholar
Swiss-model http://swissmodel.expasy.org. Accessed 1 Jan 2018
S. Pletnev, N.G. Gurskaya, N.V. Pletneva, K.A. Lukyanov, D.M. Chudakov, V.I. Martynov, V.O. Popov, M.V. Kovalchuk, A. Wlodawer, Z. Dauter, V. Pletnev, Structural basis for phototoxicity of the genetically encoded photosensitizer KillerRed. J. Biol. Chem. 284, 32028–32039 (2009)
Article
Google Scholar
P. Carpentier, S. Violot, L. Blanchoin, D. Bourgeois, Structural basis for the phototoxicity of the fluorescent protein KillerRed. FEBS Lett. 583, 2839–2842 (2009)
Article
Google Scholar
A. Roy, P. Carpentier, D. Bourgeois, M. Field, Diffusion pathways of oxygen species in the phototoxic fluorescent protein KillerRed. Photochem. Photobiol. Sci. 9, 1342–1350 (2010)
Article
Google Scholar
N.V. Blough, D.J. Simpson, Chemically mediated fluorescence yield switching in nitroxide fluorophore adducts—Optical sensors of radical redox reactions. J. Am. Chem. Soc. 110, 1915–1917 (1988)
Article
Google Scholar
C.A. Cohn, S.R. Simon, M.A.A. Schoonen, Comparison of fluorescence-based techniques for the quantification of particle-induced hydroxyl radicals. Part. Fibre Toxicol. 5, 2 (2008)
Article
Google Scholar
G.R. Buettner, The spin-trapping of superoxide and hydroxyl free-radicals with DMPO (5,5-dimethylpyrroline-n-oxide)—more about iron. Free Rad. Res. Commun. 19, S79–S87 (1993)
Article
Google Scholar
S.L. de Menezes, O. Augusto, EPR detection of glutathionyl and protein-tyrosyl radicals during the interaction of peroxynitrite with macrophages (J774). J. Biol. Chem. 276, 39879–39884 (2001)
Article
Google Scholar
C. Bucana, I. Saiki, R. Nayar, Uptake and accumulation of the vital dye hydroethidine in neoplastic cells. J. Histochem. Cytochem. 34, 1109–1115 (1986)
Article
Google Scholar
J.M. Lu, P.H. Lin, Q.Z. Yao, C.Y. Chen, Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J. Cell Mol. Med. 14, 840–860 (2010)
Article
Google Scholar
W.F. van Zyl, S.M. Deane, L.M.T. Dicks, Use of the mCherry fluorescent protein to study intestinal colonization by Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 in mice. Appl. Environ. Microbiol. 81, 5993–6002 (2015)
Article
Google Scholar
N.C. Shaner, R.E. Campbell, P.A. Steinbach, B.N.G. Giepmans, A.E. Palmer, R.Y. Tsien, Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004)
Article
Google Scholar
P.P. Chapagain, C.K. Regmi, W. Castillo, Fluorescent protein barrel fluctuations and oxygen diffusion pathways in mCherry. J. Chem. Phys. 135, 235101 (2011)
Article
Google Scholar
E.M. Merzlyak, J. Goedhart, D. Shcherbo, M.E. Bulina, A.S. Shcheglov, A.F. Fradkov, A. Gaintzeva, K.A. Lukyanov, S. Lukyanov, T.W.J. Gadella, D.M. Chudakov, Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat. Methods 4, 555–557 (2007)
Article
Google Scholar
O.M. Subach, V.N. Malashkevich, W.D. Zencheck, K.S. Morozova, K.D. Piatkevich, S.C. Almo, V.V. Verkhusha, Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins. Chem. Biol. 17, 333–341 (2010)
Article
Google Scholar
C. Flors, M.J. Fryer, J. Waring, B. Reeder, U. Bechtold, P.M. Mullineaux, S. Nonell, M.T. Wilson, N.R. Baker, Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green®. J. Exper. Botany 57, 1725–1734 (2006)
Article
Google Scholar
X. Ragas, A. Jimenez-Banzo, D. Sanchez-Garcia, X. Batllori, S. Nonell, Singlet oxygen photosensitisation by the fluorescent probe Singlet Oxygen Sensor Green®. Chem. Commun. 20, 2920–2922 (2009)
Article
Google Scholar
D. Shcherbo, C.S. Murphy, G.V. Ermakova, E.A. Solovieva, T.V. Chepurnykh, A.S. Shcheglov, V.V. Verkhusha, V.Z. Pletnev, K.L. Hazelwood, P.M. Roche, S. Lukyanov, A.G. Zaraisky, M.W. Davidson, D.M. Chudakov, Far-red fluorescent tags for protein imaging in living tissues. Biochem. J. 418, 567–574 (2009)
Article
Google Scholar
R.L. Strack, B. Hein, D. Bhattacharyya, S.W. Hell, R.J. Keenan, B.S. Glick, A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling. Biochemistry 48, 8179–8281 (2009)
Article
Google Scholar
S. Pletnev, D. Shcherbo, D.M. Chudakov, N. Pletneva, E.M. Merzlyak, A. Wlodawer, Z. Dauter, V. Pletnev, A crystallographic study of bright far-red fluorescent protein mKate reveals pH-induced cis-trans isomerization of the chromophore. J. Biol. Chem. 283, 28980–28987 (2008)
Article
Google Scholar
J.W. Leem, S.H. Choi, S.R. Kim, S.W. Kim, K.H. Choi, Y.L. Kim, Scalable and continuous nanomaterial integration with transgenic fibers for enhanced photoluminescence. Mater. Horiz. 4, 281–289 (2017)
Article
Google Scholar
L.Y. Zeng, L.J. Luo, Y.W. Pan, S. Luo, G.M. Lu, A.G. Wu, In vivo targeted magnetic resonance imaging and visualized photodynamic therapy in deep-tissue cancers using folic acid-functionalized superparamagnetic-upconversion nanocomposites. Nanoscale 7, 8946–8954 (2015)
Article
Google Scholar
C.H. Fang, H.L. Jia, S. Chang, Q.F. Ruan, P. Wang, T. Chen, J.F. Wang, (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species. Energy Environ. Sci. 7, 3431–3438 (2014)
Article
Google Scholar
A.C. Stiel, S. Trowitzsch, G. Weber, M. Andresen, C. Eggeling, S.W. Hell, S. Jakobs, M.C. Wahl, 1.8 angstrom bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem. J. 402, 35–42 (2007)
Article
Google Scholar
A.G. Evdokimov, M.E. Pokross, N.S. Egorov, A.G. Zaraisky, I.V. Yampolsky, E.M. Merzlyak, A.N. Shkoporov, I. Sander, K.A. Lukyanov, D.M. Chudakov, Structural basis for the fast maturation of Arthropoda green fluorescent protein. EMBO Rep. 7, 1006–1012 (2006)
Article
Google Scholar
N.V. Pletneva, V.Z. Pletnev, K.S. Sarkisyan, D.A. Gorbachev, E.S. Egorov, A.S. Mishin, K.A. Lukyanov, Z. Dauter, S. Pletnev, Crystal structure of phototoxic orange fluorescent proteins with a tryptophan-based chromophore. PLoS ONE 10, e0145740 (2015)
Article
Google Scholar
N. Pletneva, V. Pletnev, T. Tikhonova, A.A. Pakhomov, V. Popov, V.I. Martynov, A. Wlodawer, Z. Dauter, S. Pletnev, Refined crystal structures of red and green fluorescent proteins from the button polyp Zoanthus. Acta Crystallogr. D 63, 1082–1093 (2007)
Article
Google Scholar
K.S. Sarkisyan, O.A. Zlobovskaya, D.A. Gorbachev, N.G. Bozhanova, G.V. Sharonov, D.B. Staroverov, E.S. Egorov, A.V. Ryabova, K.M. Solntsev, A.S. Mishin, K.A. Lukyanov, KillerOrange, a genetically encoded photosensitizer activated by blue and green light. PLoS ONE 10, e0145287 (2015)
Article
Google Scholar
J.L. Wardlaw, T.J. Sullivan, C.N. Lux, F.W. Austin, Photodynamic therapy against common bacteria causing wound and skin infections. Vet. J. 192, 374–377 (2012)
Article
Google Scholar
R. Yin, T.H. Dai, P. Avci, A.E.S. Jorge, W.C.M.A. de Melo, D. Vecchio, Y.Y. Huang, A. Gupta, M.R. Hamblin, Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond. Curr. Opin. Pharmacol. 13, 731–762 (2013)
Article
Google Scholar
R. Fagan, D.E. McCormack, D.D. Dionysiou, S.C. Pillai, A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mater. Sci. Semicon. Proc. 42, 2–14 (2016)
Article
Google Scholar
K.R. Wigginton, B.M. Pecson, T. Sigstam, F. Bosshard, T. Kohn, Virus inactivation mechanisms: impact of disinfectants on virus function and structural integrity. Environ. Sci. Technol. 46, 12069–12078 (2012)
Article
Google Scholar
R. Nakano, M. Hara, H. Ishiguro, Y.Y. Yao, T. Ochiai, K. Nakata, T. Murakami, J. Kajioka, K. Sunada, K. Hashimoto, A. Fujishima, Y. Kubota, Broad spectrum microbicidal activity of photocatalysis by TiO2. Catalysts 3, 310–323 (2013)
Article
Google Scholar
P. Hajkova, P. Spatenka, J. Horsky, I. Horska, A. Kolouch, Photocatalytic effect of TiO2 films on viruses and bacteria. Plasma Process. Polym. 4, S397–S401 (2007)
Article
Google Scholar
M.V. Liga, S.J. Maguire-Boyle, H.R. Jafry, A.R. Barron, Q.L. Li, Silica decorated TiO2 for virus inactivation in drinking water—Simple synthesis method and mechanisms of enhanced inactivation kinetics. Environ. Sci. Technol. 47, 6463–6470 (2013)
Article
Google Scholar
E. Alves, M.A.F. Faustino, M.G.P.M.S. Neves, A. Cunha, H. Nadais, A. Almeida, Potential applications of porphyrins in photodynamic inactivation beyond the medical scope. J. Photochem. Photobiol. C 22, 34–57 (2015)
Article
Google Scholar
T. Ben Amor, G. Jori, Sunlight-activated insecticides: historical background and mechanisms of phototoxic activity. Insect Biochem. Mol. Biol. 30, 915–925 (2000)
Article
Google Scholar
R. Bonnett, M.A. Krysteva, I.G. Lalov, S.V. Artarsky, Water disinfection using photosensitizers immobilized on chitosan. Water Res. 40, 1269–1275 (2006)
Article
Google Scholar
G. Jori, M. Magaraggia, C. Fabris, M. Soncin, M. Camerin, L. Tallandini, O. Coppellotti, L. Guidolin, Photodynamic inactivation of microbial pathogens: disinfection of water and prevention of water-borne diseases. J. Environ. Pathol. Toxicol. Oncol. 30, 261–271 (2011)
Article
Google Scholar
D.W. Kim, O.J. Lee, S.W. Kim, C.S. Ki, J.R. Chao, H. Yoo, S.I. Yoon, J.E. Lee, Y.R. Park, H. Kweon, K.G. Lee, D.L. Kaplan, C.H. Park, Novel fabrication of fluorescent silk utilized in biotechnological and medical applications. Biomaterials 70, 48–56 (2015)
Article
Google Scholar
T. Iizuka, H. Sezutsu, K. Tatematsu, I. Kobayashi, N. Yonemura, K. Uchino, K. Nakajima, K. Kojima, C. Takabayashi, H. Machii, K. Yamada, H. Kurihara, T. Asakura, Y. Nakazawa, A. Miyawaki, S. Karasawa, H. Kobayashi, J. Yamaguchi, N. Kuwabara, T. Nakamura, K. Yoshii, T. Tamura, Colored fluorescent silk made by transgenic silkworms. Adv. Funct. Mater. 23, 5232–5239 (2013)
Article
Google Scholar
F. Teule, Y.G. Miao, B.H. Sohn, Y.S. Kim, J.J. Hull, M.J. Fraser, R.V. Lewis, D.L. Jarvis, Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc. Nat. Acad. Sci. USA 109, 923–928 (2012)
Article
Google Scholar