Pendry JB: Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000,85(18):3966–3969. 10.1103/PhysRevLett.85.3966
Article
Google Scholar
Milton GW, Nicorovici NAP, McPhedran RC, Podolskiy VA: A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance. Proc. R. Soc. A 2005,461(2064):3999–4034. 10.1098/rspa.2005.1570
Article
Google Scholar
Jacob Z, Alekseyev LV, Narimanov E: Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 2006,14(18):8247–8256. 10.1364/OE.14.008247
Article
Google Scholar
Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR: Metamaterial electromagnetic cloak at microwave frequencies. Science 2006,314(5801):977–980. 10.1126/science.1133628
Article
Google Scholar
Milton GW, Nicorovici N-AP: On the cloaking effects associated with anomalous localized resonance. Proc. R. Soc. A 2006,462(2074):3027–3059. 10.1098/rspa.2006.1715
Article
Google Scholar
Kabashin A, Evans P, Pastkovsky S, Hendren W, Wurtz G, Atkinson R, Pollard R, Podolskiy V, Zayats A: Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 2009,8(11):867–871. 10.1038/nmat2546
Article
Google Scholar
Govyadinov AA, Podolskiy VA: Metamaterial photonic funnels for subdiffraction light compression and propagation. Phys. Rev. B 2006,73(15):155108. 10.1103/PhysRevB.73.155108
Article
Google Scholar
Smolyaninov II, Hung Y-J: Modeling of time with metamaterials. J. Opt. Soc. Am. B 2011,28(7):1591–1595. 10.1364/JOSAB.28.001591
Article
Google Scholar
Cai W, Shalaev V: Optical metamaterials: fundamentals and applications Vol. 10. Springer, Berlin, Germany; (2010).
Book
Google Scholar
Pendry JB, Schurig D, Smith DR: Controlling electromagnetic fields. Science 2006,312(5781):1780–1782. 10.1126/science.1125907
Article
Google Scholar
Plum E, Liu XX, Fedotov VA, Chen Y, Tsai DP, Zheludev NI: Metamaterials: optical activity without chirality. Phys. Rev. Lett. 2009,102(11):113902. 10.1103/PhysRevLett.102.113902
Article
Google Scholar
Liu N, Liu H, Zhu S, Giessen H: Stereometamaterials. Nat. Photonics 2009,3(3):157–162. 10.1038/nphoton.2009.4
Article
Google Scholar
Smith DR, Kolinko P, Schurig D: Negative refraction in indefinite media. J. Opt. Soc. Am. B 2004,21(5):1032–1043. 10.1364/JOSAB.21.001032
Article
Google Scholar
Podolskiy VA, Narimanov EE: Strongly anisotropic waveguide as a nonmagnetic left-handed system. Phys. Rev. B 2005,71(20):201101. 10.1103/PhysRevB.71.201101
Article
Google Scholar
Belov PA, Simovski CR, Ikonen P: Canalization of subwavelength images by electromagnetic crystals. Phys. Rev. B 2005,71(19):193105. 10.1103/PhysRevB.71.193105
Article
Google Scholar
Poddubny A, Iorsh I, Belov P, Kivshar Y: Hyperbolic metamaterials. Nat. Photon 2013,7(12):948–957. 10.1038/nphoton.2013.243
Article
Google Scholar
Noginov M, Lapine M, Podolskiy V, Kivshar Y: Focus issue: hyperbolic metamaterials. Opt. Express. 2013,21(12):14895–14897. 10.1364/OE.21.014895
Article
Google Scholar
Balmain KG, Luttgen A, Kremer PC: Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial. IEEE Antennas Wireless Propag. Lett. 2002, 1: 146–149. 10.1109/LAWP.2002.807565
Article
Google Scholar
Cortes CL, Newman W, Molesky S, Jacob Z: Quantum nanophotonics using hyperbolic metamaterials. J. Opt. 2012,14(6):063001. 10.1088/2040-8978/14/6/063001
Article
Google Scholar
Guo Y, Newman W, Cortes CL, Jacob Z: Applications of hyperbolic metamaterial substrates. Adv. OptoElectron. 2012, 2012: 1–9. 10.1155/2012/452502
Article
Google Scholar
Noginov MA, Li H, Barnakov YA, Dryden D, Nataraj G, Zhu G, Bonner CE, Mayy M, Jacob Z, Narimanov EE: Controlling spontaneous emission with metamaterials. Opt. Lett. 2010,35(11):1863–1865. 10.1364/OL.35.001863
Article
Google Scholar
Jacob Z, Kim J, Naik G, Boltasseva A, Narimanov E, Shalaev V: Engineering photonic density of states using metamaterials. Appl. Phys. B Lasers Opt. 2010, 100: 215–218. 10.1007/s00340-010-4096-5
Article
Google Scholar
Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, Stacy AM, Zhang X: Optical negative refraction in bulk metamaterials of nanowires. Science 2008,321(5891):930. 10.1126/science.1157566
Article
Google Scholar
Hoffman AJ, Alekseyev L, Howard SS, Franz KJ, Wasserman D, Podolskiy VA, Narimanov EE, Sivco DL, Gmachl C: Negative refraction in semiconductor metamaterials. Nat. Mater. 2007,6(12):946–950. 10.1038/nmat2033
Article
Google Scholar
Liu Z, Lee H, Xiong Y, Sun C, Zhang X: Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 2007,315(5819):1686. 10.1126/science.1137368
Article
Google Scholar
Yao J, Yang X, Yin X, Bartal G, Zhang X: Three-dimensional nanometer-scale optical cavities of indefinite medium. Proc. Natl. Acad. Sci. 2011,108(28):11327. 10.1073/pnas.1104418108
Article
Google Scholar
Jacob Z, Smolyaninov II, Narimanov EE: Broadband purcell effect: radiative decay engineering with metamaterials. Appl. Phys. Lett. 2012,100(18):181105–181105–4. 10.1063/1.4710548
Article
Google Scholar
Iorsh I, Poddubny A, Orlov A, Belov P, Kivshar YS: Spontaneous emission enhancement in metal–dielectric metamaterials. Phys. Lett. A. 2012,376(3):185–187. 10.1016/j.physleta.2011.11.001
Article
Google Scholar
Poddubny AN, Belov PA, Kivshar YS: Spontaneous radiation of a finite-size dipole emitter in hyperbolic media. Phys. Rev. A 2011,84(2):023807. 10.1103/PhysRevA.84.023807
Article
Google Scholar
Potemkin AS, Poddubny AN, Belov PA, Kivshar YS: Green function for hyperbolic media. Phys. Rev. A 2012,86(2):023848. 10.1103/PhysRevA.86.023848
Article
Google Scholar
Poddubny AN, Belov PA, Kivshar YS: Purcell effect in wire metamaterials. Phys. Rev. B 2013,87(3):035136. 10.1103/PhysRevB.87.035136
Article
Google Scholar
Guo Y, Cortes CL, Molesky S, Jacob Z: Broadband super-Planckian thermal emission from hyperbolic metamaterials. Appl. Phys. Lett. 2012,101(13):131106–131106–5. 10.1063/1.4754616
Article
Google Scholar
Biehs S-A, Tschikin M, Ben-Abdallah P: Hyperbolic metamaterials as an analog of a blackbody in the near field. Phys. Rev. Lett. 2012,109(10):104301. 10.1103/PhysRevLett.109.104301
Article
Google Scholar
Nefedov IS, Simovski CR: Giant radiation heat transfer through micron gaps. Phys. Rev. B 2011,84(19):195459. 10.1103/PhysRevB.84.195459
Article
Google Scholar
Smith DR, Schurig D: Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett. 2003,90(7):077405. 10.1103/PhysRevLett.90.077405
Article
Google Scholar
Noginov M, Barnakov YA, Zhu G, Tumkur T, Li H, Narimanov E: Bulk photonic metamaterial with hyperbolic dispersion. Appl. Phys. Lett. 2009, 94: 151105. 10.1063/1.3115145
Article
Google Scholar
Korobkin D, Neuner B III, Fietz C, Jegenyes N, Ferro G, Shvets G: Measurements of the negative refractive index of sub-diffraction waves propagating in an indefinite permittivity medium. Opt. Exp. 2010,18(22):22734–22746. 10.1364/OE.18.022734
Article
Google Scholar
Xiong Y, Liu Z, Sun C, Zhang X: Two-dimensional imaging by far-field superlens at visible wavelengths. Nano Lett. 2007,7(11):3360–3365. 10.1021/nl0716449
Article
Google Scholar
Naik GV, Kim J, Boltasseva A: Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express 2011,1(6):1090–1099. 10.1364/OME.1.001090
Article
Google Scholar
Lu D, Liu Z: Hyperlenses and metalenses for far-field super-resolution imaging. Nat. Commun. 2012, 3: 1205.
Google Scholar
Naik GV, Boltasseva A: Semiconductors for plasmonics and metamaterials. Phys. Status Solidi (RRL) 2010,4(10):295–297. 10.1002/pssr.201004269
Article
Google Scholar
Molesky S, Dewalt CJ, Jacob Z: High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. Opt. Express 2013,21(S1):A96-A110. 10.1364/OE.21.000A96
Article
Google Scholar
Guo Y, Jacob Z: Thermal hyperbolic metamaterials. Opt. Express 2013,21(12):15014–15019. 10.1364/OE.21.015014
Article
Google Scholar
Boltasseva A, Atwater HA: Low-loss plasmonic metamaterials. Science 2011,331(6015):290. 10.1126/science.1198258
Article
Google Scholar
Greffet JJ, Carminati R, Joulain K, Mulet JP, Mainguy S, Chen Y: Coherent emission of light by thermal sources. Nature 2002,416(6876):61–64. 10.1038/416061a
Article
Google Scholar
Taubner T, Korobkin D, Urzhumov Y, Shvets G, Hillenbrand R: Near-field microscopy through a SiC superlens. Science 2006,313(5793):1595–1595. 10.1126/science.1131025
Article
Google Scholar
Iorsh IV, Mukhin IS, Shadrivov IV, Belov PA, Kivshar YS: Hyperbolic metamaterials based on multilayer graphene structures. Phys. Rev. B 2013,87(7):075416. 10.1103/PhysRevB.87.075416
Article
Google Scholar
DaSilva AM, Chang Y-C, Norris T, MacDonald AH: Enhancement of photonic density of states in finite graphene multilayers. Phys. Rev. B 2013,88(19):195411. 10.1103/PhysRevB.88.195411
Article
Google Scholar
Othman MAK, Guclu C, Capolino F: Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption. Opt. Express 2013,21(6):7614–7632. 10.1364/OE.21.007614
Article
Google Scholar
Othman MAK, Guclu C, Capolino F: Graphene–dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition. J. Nanophoton 2013,7(1):073089–073089. 10.1117/1.JNP.7.073089
Article
Google Scholar
Andryieuski A, Lavrinenko AV, Chigrin DN: Graphene hyperlens for terahertz radiation. Phys. Rev. B 2012,86(12):121108. 10.1103/PhysRevB.86.121108
Article
Google Scholar
Dickson W, Wurtz G, Evans P, O’Connor D, Atkinson R, Pollard R, Zayats A: Dielectric-loaded plasmonic nanoantenna arrays: a metamaterial with tuneable optical properties. Phys. Rev. B 2007,76(11):115411. 10.1103/PhysRevB.76.115411
Article
Google Scholar
Kanungo J, Schilling J: Experimental determination of the principal dielectric functions in silver nanowire metamaterials. Appl. Phys. Lett. 2010, 97: 021903. 10.1063/1.3462311
Article
Google Scholar
Casse B, Lu W, Huang Y, Gultepe E, Menon L, Sridhar S: Super-resolution imaging using a three-dimensional metamaterials nanolens. Appl. Phys. Lett. 2010, 96: 023114. 10.1063/1.3291677
Article
Google Scholar
Chen W, Thoreson MD, Ishii S, Kildishev AV, Shalaev VM: Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer. Opt. Express 2010,18(5):5124–5134. 10.1364/OE.18.005124
Article
Google Scholar
Nagpal P, Lindquist NC, Oh S-H, Norris DJ: Ultrasmooth patterned metals for plasmonics and metamaterials. Science 2009,325(5940):594–597. 10.1126/science.1174655
Article
Google Scholar
Liu H, Wang B, Leong ES, Yang P, Zong Y, Si G, Teng J, Maier SA: Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer. ACS Nano 2010,4(6):3139–3146. 10.1021/nn100466p
Article
Google Scholar
Krishnamoorthy HNS, Jacob Z, Narimanov E, Kretzschmar I, Menon VM: Topological transitions in metamaterials. Science 2012,336(6078):205–209. 10.1126/science.1219171
Article
Google Scholar
Pollard R, Murphy A, Hendren W, Evans P, Atkinson R, Wurtz G, Zayats A, Podolskiy VA: Optical nonlocalities and additional waves in epsilon-near-zero metamaterials. Phys. Rev. Lett. 2009,102(12):127405. 10.1103/PhysRevLett.102.127405
Article
Google Scholar
Smith DR, Vier DC, Koschny T, Soukoulis CM: Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E. 2005,71(3):036617. 10.1103/PhysRevE.71.036617
Article
Google Scholar
Stockman MI: Spaser action, loss compensation, and stability in plasmonic systems with gain. Phys. Rev. Lett. 2011,106(15):156802. 10.1103/PhysRevLett.106.156802
Article
Google Scholar
Chebykin AV, Orlov AA, Vozianova AV, Maslovski SI, Kivshar YS, Belov PA: Nonlocal effective medium model for multilayered metal-dielectric metamaterials. Phys. Rev. B 2011,84(11):115438. 10.1103/PhysRevB.84.115438
Article
Google Scholar
Alù A, Silveirinha MG, Salandrino A, Engheta N: Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B 2007,75(15):155410. 10.1103/PhysRevB.75.155410
Article
Google Scholar
Silveirinha M, Engheta N: Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Phys. Rev. Lett. 2006,97(15):157403. 10.1103/PhysRevLett.97.157403
Article
Google Scholar
Elser J, Podolskiy VA, Salakhutdinov I, Avrutsky I: Nonlocal effects in effective-medium response of nanolayered metamaterials. Appl. Phys. Lett. 2007,90(19):191109–191109. 10.1063/1.2737935
Article
Google Scholar
Kidwai O, Zhukovsky SV, Sipe JE: Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations. Phys. Rev. A 2012,85(5):053842. 10.1103/PhysRevA.85.053842
Article
Google Scholar
Schilling J: Uniaxial metallo-dielectric metamaterials with scalar positive permeability. Phys. Rev. E. 2006,74(4):046618. 10.1103/PhysRevE.74.046618
Article
Google Scholar
Zhukovsky SV, Kidwai O, Sipe JE: Physical nature of volume plasmon polaritons in hyperbolic metamaterials. Opt. Express 2013,21(12):14982–14987. 10.1364/OE.21.014982
Article
Google Scholar
Orlov AA, Voroshilov PM, Belov PA, Kivshar YS: Engineered optical nonlocality in nanostructured metamaterials. Phys. Rev. B 2011,84(4):045424. 10.1103/PhysRevB.84.045424
Article
Google Scholar
Felsen LB, Marcuvitz N: Radiation and scattering of waves. Piscataway. NJ:, IEEE press; (1994).
Book
Google Scholar
Ramakrishna SA, Pendry JB, Wiltshire MCK, Stewart WJ: Imaging the near field. J. Mod. Opt. 2003,50(9):1419–1430. 10.1080/09500340308235215
Article
Google Scholar
Salandrino A, Engheta N: Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B 2006,74(7):75103. 10.1103/PhysRevB.74.075103
Article
Google Scholar
Smolyaninov II, Hung YJ, Davis CC: Magnifying superlens in the visible frequency range. Science 2007,315(5819):1699. 10.1126/science.1138746
Article
Google Scholar
Jacob Z, Narimanov EE: Optical hyperspace for plasmons: Dyakonov states in metamaterials. Appl. Phys. Lett. 2008, 93: 221109. 10.1063/1.3037208
Article
Google Scholar
Kildishev AV, Chettiar UK, Jacob Z, Shalaev VM, Narimanov EE: Materializing a binary hyperlens design. Appl. Phys. Lett. 2009,94(7):071102–071102. 10.1063/1.3081403
Article
Google Scholar
Kildishev AV, Narimanov EE: Impedance-matched hyperlens. Opt. Lett. 2007,32(23):3432–3434. 10.1364/OL.32.003432
Article
Google Scholar
Narimanov E, Smolyaninov I: Beyond Stefan-Boltzmann Law: Thermal Hyper-Conductivity. (2012).
Google Scholar
Narimanov E, Noginov MA, Li H, Barnakov Y: Darker than Black: Radiation-absorbing Metamaterial. (2010).
Google Scholar
Lounis B, Orrit M: Single-photon sources. Rep. Prog. Phys. 2005, 68: 1129. 10.1088/0034-4885/68/5/R04
Article
Google Scholar
Kim J, Drachev VP, Jacob Z, Naik GV, Boltasseva A, Narimanov EE, Shalaev VM: Improving the radiative decay rate for dye molecules with hyperbolic metamaterials. Opt. Express 2012, 20: 8100–8116. 10.1364/OE.20.008100
Article
Google Scholar
Khurgin JB, Sun G, Soref RA: Practical limits of absorption enhancement near metal nanoparticles. Appl. Phys. Lett. 2009,94(7):071103–071103. 10.1063/1.3081631
Article
Google Scholar
Gérard J-M, Gayral B: Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities. J. Lightwave Technol. 1999,17(11):2089–2095. 10.1109/50.802999
Article
Google Scholar
Tumkur TU, Gu L, Kitur JK, Narimanov EE, Noginov MA: Control of absorption with hyperbolic metamaterials. Appl. Phys. Lett. 2012,100(16):161103–161103. 10.1063/1.4703931
Article
Google Scholar
Sun G, Khurgin JB, Soref RA: Practical enhancement of photoluminescence by metal nanoparticles. Appl. Phys. Lett. 2009,94(10):101103–101103. 10.1063/1.3097025
Article
Google Scholar
Tanaka K, Plum E, Ou JY, Uchino T, Zheludev NI: Multifold enhancement of quantum dot luminescence in plasmonic metamaterials. Phys. Rev. Lett. 2010,105(22):227403. 10.1103/PhysRevLett.105.227403
Article
Google Scholar
Sun G, Khurgin JB, Soref RA: Practicable enhancement of spontaneous emission using surface plasmons. Appl. Phys. Lett. 2007, 90: 111107. 10.1063/1.2539745
Article
Google Scholar
Newman WD, Cortes CL, Jacob Z: Enhanced and directional single-photon emission in hyperbolic metamaterials. JOSA B 2013,30(4):766–775. 10.1364/JOSAB.30.000766
Article
Google Scholar
Babinec TM, Hausmann B, Khan M, Zhang Y, Maze JR, Hemmer PR, Loncar M: A diamond nanowire single-photon source. Nat. Nanotechnol. 2010,5(3):195. 10.1038/nnano.2010.6
Article
Google Scholar
Esteban R, Teperik TV, Greffet JJ: Optical patch antennas for single photon emission using surface plasmon resonances. Phys. Rev. Lett. 2010,104(2):26802. 10.1103/PhysRevLett.104.026802
Article
Google Scholar
Kidwai O, Zhukovsky SV, Sipe JE: Dipole radiation near hyperbolic metamaterials: applicability of effective-medium approximation. Opt. Lett. 2011,36(13):2530–2532. 10.1364/OL.36.002530
Article
Google Scholar
Yan W, Wubs M, Mortensen NA: Hyperbolic metamaterials: Nonlocal response regularizes broadband supersingularity. Phys. Rev. B 2012,86(20):205429. 10.1103/PhysRevB.86.205429
Article
Google Scholar
Jun YC, Pala R, Brongersma ML: Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits†. J. Phys. Chem. C 2009,114(16):7269–7273. 10.1021/jp9083376
Article
Google Scholar
Ford G, Weber W: Electromagnetic interactions of molecules with metal surfaces. Phys. Rep. 1984,113(4):195–287. 10.1016/0370-1573(84)90098-X
Article
Google Scholar
Chance RR, Prock A, Silbey R: Molecular fluorescence and energy transfer near interfaces. Adv. Chem. Phys. 1978,37(1):65.
Google Scholar
Bergman DJ, Stockman MI: Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 2003,90(2):27402. 10.1103/PhysRevLett.90.027402
Article
Google Scholar
Cortes CL, Jacob Z: Photonic analog of a van Hove singularity in metamaterials. Phys. Rev. B 2013,88(4):045407. 10.1103/PhysRevB.88.045407
Article
Google Scholar
Scheel S, Buhmann S: Macroscopic quantum electrodynamics - Concepts and applications. Acta. Physica. Slovaca 2008,58(5):675–809. Reviews and Tutorials
Google Scholar