J.G. Breman, D.A. Henderson, Diagnosis and management of smallpox. N. Engl. J. Med. 346, 1300–1308 (2002). https://doi.org/10.1056/NEJMra020025
Article
Google Scholar
A.J. Pollard, E.M. Bijker, A guide to vaccinology: from basic principles to new developments. Nat. Rev. Immunol. 21, 83 (2020). https://doi.org/10.1038/s41577-020-00479-7
Article
CAS
Google Scholar
J. Craigie, F.O. Wishart, The complement-fixation reaction in variola. Can. Public Heal. J. 27, 371–379 (1936)
Google Scholar
H.F. Zulfiqar, A. Javed, B. Sumbal, Q. Afroze, A.K. Akbar, T. Nadeem, M.A. Rana, Z.A. Nazar, I.A. Nasir, T. Husnain, HIV diagnosis and treatment through advanced technologies. Front. Public Heal. 5, 32 (2017). https://doi.org/10.3389/fpubh.2017.00032
Article
Google Scholar
L.J. Stockman, R. Bellamy, P. Garner, SARS: systematic review of treatment effects. PLoS Med. 3, e343 (2006). https://doi.org/10.1371/journal.pmed.0030343
Article
CAS
Google Scholar
A. Zumla, D.S. Hui, S. Perlman, Middle East respiratory syndrome. Lancet 386, 995–1007 (2015). https://doi.org/10.1016/S0140-6736(15)60454-8
Article
Google Scholar
P. Kiiza, S. Mullin, K. Teo, N.K.J. Adhikari, R.A. Fowler, Treatment of Ebola-related critical illness. Intensive Care Med. 46, 285–297 (2020). https://doi.org/10.1007/s00134-020-05949-z
Article
Google Scholar
F. Krammer, SARS-CoV-2 vaccines in development. Nature 586, 516–527 (2020). https://doi.org/10.1038/s41586-020-2798-3
Article
CAS
Google Scholar
B. Hu, H. Guo, P. Zhou, Z.L. Shi, Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 19, 141–154 (2021). https://doi.org/10.1038/s41579-020-00459-7
Article
CAS
Google Scholar
Z. Tang, X. Zhang, Y. Shu, M. Guo, H. Zhang, W. Tao, Insights from nanotechnology in COVID-19 treatment. Nano Today 36, 101019 (2021). https://doi.org/10.2217/nnm-2021-0004
Article
CAS
Google Scholar
Y. Ge, S. Li, S. Wang, R. Moore (eds.), Nanomedicine: principles and perspectives (Springer, New York, 2014)
Google Scholar
H.H. Lara, N.V. Ayala-Nuñez, L. Ixtepan-Turrent, C. Rodriguez-Padilla, Mode of antiviral action of silver nanoparticles against HIV-1. J. Nanobiotechnol. 8, 1 (2010). https://doi.org/10.1186/1477-3155-8-1
Article
CAS
Google Scholar
S. Galdiero, A. Falanga, M. Vitiello, M. Cantisani, V. Marra, M. Galdiero, Silver nanoparticles as potential antiviral agents. Molecules 16, 8894–8918 (2011). https://doi.org/10.3390/molecules16108894
Article
CAS
Google Scholar
T.T.N. Dung, V.N. Nam, T.T. Nhan, T.T.B. Ngoc, L.Q. Minh, B.T.T. Nga, D.V. Quang, Silver nanoparticles as potential antiviral agents against African swine fever virus. Mater. Res. Express. (2020). https://doi.org/10.1088/2053-1591/ab6ad8
Article
Google Scholar
M.J. Molaei, Carbon quantum dots and their biomedical and therapeutic applications: a review. RSC Adv. 9, 6460–6481 (2019). https://doi.org/10.1039/C8RA08088G
Article
CAS
Google Scholar
R. Das, R. Bandyopadhyay, P. Pramanik, Carbon quantum dots from natural resource: a review. Mater. Today Chem. 8, 96–109 (2018). https://doi.org/10.1016/j.mtchem.2018.03.003
Article
CAS
Google Scholar
P. Namdari, B. Negahdari, A. Eatemadi, Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed. Pharmacother. 87, 209–222 (2017). https://doi.org/10.1016/j.biopha.2016.12.108
Article
CAS
Google Scholar
D. Ting, N. Dong, L. Fang, J. Lu, J. Bi, S. Xiao, H. Han, Multisite inhibitors for enteric coronavirus: antiviral cationic carbon dots based on curcumin. ACS Appl. Nano Mater. 1, 5451–5459 (2018). https://doi.org/10.1021/acsanm.8b00779
Article
CAS
Google Scholar
A. Łoczechin, K. Séron, A. Barras, E. Giovanelli, S. Belouzard, Y.T. Chen, N. Metzler-Nolte, R. Boukherroub, J. Dubuisson, S. Szunerits, Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Appl. Mater. Interfaces. 11, 42964–42974 (2019). https://doi.org/10.1021/acsami.9b15032
Article
CAS
Google Scholar
T. Tong, H. Hu, J. Zhou, S. Deng, X. Zhang, W. Tang, L. Fang, S. Xiao, J. Liang, Glycyrrhizic-acid-based carbon dots with high antiviral activity by multisite inhibition mechanisms. Small 16, 1906206 (2020). https://doi.org/10.1002/smll.201906206
Article
CAS
Google Scholar
J. Belza, A. Opletalová, K. Poláková, Carbon dots for virus detection and therapy. Microchim. Acta 188, 1 (2021). https://doi.org/10.1007/s00604-021-05076-6
Article
CAS
Google Scholar
A. Barras, Q. Pagneux, F. Sane, Q. Wang, R. Boukherroub, D. Hober, S. Szunerits, High efficiency of functional carbon nanodots as entry inhibitors of herpes simplex virus type 1. ACS Appl. Mater. Interfaces. 8, 9004–9013 (2016). https://doi.org/10.1021/acsami.6b01681
Article
CAS
Google Scholar
S. Huang, J. Gu, J. Ye, B. Fang, S. Wan, C. Wang, U. Ashraf, Q. Li, X. Wang, L. Shao, Y. Song, X. Zheng, F. Cao, S. Cao, Benzoxazine monomer derived carbon dots as a broad-spectrum agent to block viral infectivity. J Colloid Interface Sci. 542, 198–206 (2019). https://doi.org/10.1016/j.jcis.2019.02.010
Article
CAS
Google Scholar
J.E. Jones, V. Le Sage, S.S. Lakdawala, Viral and host heterogeneity and their effects on the viral life cycle. Nat. Rev. Microbiol. 19, 272–282 (2020). https://doi.org/10.1038/s41579-020-00449-9
Article
CAS
Google Scholar
D.S. Dimitrov, Virus entry: molecular mechanisms and biomedical applications. Nat. Rev. Microbiol. 2, 109–122 (2004). https://doi.org/10.1038/nrmicro817
Article
CAS
Google Scholar
W. Cao, T. Li, COVID-19: towards understanding of pathogenesis. Cell Res. 30, 367–369 (2020). https://doi.org/10.1038/s41422-020-0327-4
Article
CAS
Google Scholar
S. Payne, Viruses: from understanding to investigation (Academic Press, 2017), Chapter 9—viral pathogenesis. p. 87–95. https://doi.org/10.1016/B978-0-12-803109-4.00009-X.
B. Rockx, T. Kuiken, S. Herfst, T. Bestebroer, M.M. Lamers, B.B.O. Munnink, D. de Meulder, G. van Amerongen, J. van den Brand, N.M.A. Okba, D. Schipper, P. van Run, L. Leijten, R. Sikkema, E. Verschoor, B. Verstrepen, W. Bogers, J. Langermans, C. Drosten, M. F. van Vlissingen, R. Fouchier, R. de Swart, M. Koopmans, B.L. Haagmans, Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 368, 1012–1015 (2020). https://doi.org/10.1126/science.abb7314.
S. Acharya, The COVID-19 pandemic: theories to therapies. Adv. Infect. Dis. 10, 16–28 (2020). https://doi.org/10.4236/aid.2020.103003
Article
Google Scholar
K.P. Hui, M. Cheung, K. Lai, K. Ng, J.C. Ho, M. Peiris, J.M. Nicholls, M.C. Chan, Role of epithelial-endothelial cell interaction in the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Clin Infect Dis. 74, 199–209 (2022). https://doi.org/10.1093/cid/ciab406
Article
Google Scholar
S. Lukassen, R.L. Chua, T. Trefzer, N.C. Kahn, M.A. Schneider, T. Muley, H. Winter, M. Meister, C. Veith, A.W. Boots, B.P. Hennig, M. Kreuter, C. Conrad, R. Eils, SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. Embo J. 39, 105–114 (2020). https://doi.org/10.15252/embj.20105114
Article
CAS
Google Scholar
P. Mehta, D.F. McAuley, M. Brown, E. Sanchez, R.S. Tattersall, J.J. Manson, COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395, 1033–1034 (2020). https://doi.org/10.1016/S0140-6736(20)30628-0
Article
CAS
Google Scholar
P. Liise-anne, A. Cassadevall, Pathogenesis of COVID-19 from the perspective of the damage-response framework. MBio 11, e01175-e1220 (2021). https://doi.org/10.1128/mBio.01175-20
Article
Google Scholar
E.J. Giamarellos-Bourboulis, M.G. Netea, N. Rovina, K. Akinosoglou, A. Antoniadou, N. Antonakos, G. Damoraki, T. Gkavogianni, M.E. Adami, P. Katsaounou, M. Ntaganou, M. Kyriakopoulou, G. Dimopoulos, I. Koutsodimitropoulos, D. Velissaris, P. Koufargyris, A. Karageorgos, K. Katrini, V. Lekakis, M. Lupse, A. Kotsaki, G. Renieris, D. Theodoulou, V. Panou, E. Koukaki, N. Koulouris, C. Gogos, A. Koutsoukou, Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 27, 992-1000.e3 (2020). https://doi.org/10.1016/j.chom.2020.04.009
Article
CAS
Google Scholar
M.R. Benzigar, R. Bhattacharjee, M. Baharfar, G. Liu, Current methods for diagnosis of human coronaviruses: pros and cons. Anal. Bioanal. Chem. 413, 2311–2330 (2021). https://doi.org/10.1007/s00216-020-03046-0
Article
CAS
Google Scholar
E. Sheikhzadeh, V. Beni, M. Zourob, Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 230, 122026 (2021). https://doi.org/10.1016/j.talanta.2020.122026
Article
CAS
Google Scholar
X. Wang, L.H. Liu, O. Ramström, M. Yan, Engineering nanomaterial surfaces for biomedical applications. Exp Biol Med. 234, 1128–1139 (2009). https://doi.org/10.3181/0904-mr-134
Article
CAS
Google Scholar
T. Yadavalli, D. Shukla, Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. Nanomedicine 13, 219–230 (2017). https://doi.org/10.1016/j.nano.2016.08.016
Article
CAS
Google Scholar
B. Negahdari, M. Darvishi, A.A. Saeedi, Gold nanoparticles and hepatitis B virus. Artif Cells Nanomed Biotechnol. 47, 469–474 (2019). https://doi.org/10.1080/21691401.2018.1546185
Article
CAS
Google Scholar
F. Li, Y. Li, J. Feng, Z. Gao, H. Lv, X. Ren, Q. Wei, Facile synthesis of MoS(2)@Cu(2)O-Pt nanohybrid as enzyme-mimetic label for the detection of the Hepatitis B surface antigen. Biosens Bioelectron. 100, 512–518 (2018). https://doi.org/10.1016/j.bios.2017.09.048
Article
CAS
Google Scholar
D. Xi, X. Luo, Q. Lu, K. Yao, Z. Liu, Q. Ning, The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes. J Nanopart Res. 10, 393–400 (2008). https://doi.org/10.1007/s11051-007-9263-1
Article
CAS
Google Scholar
Z. Jia, Y. Ma, L. Yang, C. Guo, N. Zhou, M. Wang, L. He, Z. Zhang, NiCo(2)O(4) spinel embedded with carbon nanotubes derived from bimetallic NiCo metal-organic framework for the ultrasensitive detection of human immune deficiency virus-1 gene. Biosens Bioelectron. 133, 55–63 (2019). https://doi.org/10.1016/j.bios.2019.03.030
Article
CAS
Google Scholar
L.A.A. Chunduri, A. Kurdekar, M.K. Haleyurgirisetty, E.P. Bulagonda, V. Kamisetti, I.K. Hewlett, Femtogram level sensitivity achieved by surface engineered silica nanoparticles in the early detection of HIV infection. Sci. Rep. 7, 7149 (2017). https://doi.org/10.1038/s41598-017-07299-1
Article
CAS
Google Scholar
I. Zehbe, G. Hacker, H. Su, C. Hauser-Kronberger, J. Hainfeld, R. Tubbs, Sensitive in situ hybridization with catalyzed reporter deposition, streptavidin-Nanogold, and silver acetate autometallography: detection of single-copy human papillomavirus. Am. J. Pathol. 150, 1553–1561 (1997)
CAS
Google Scholar
S.F. Hormozi, N. Vasei, M. Aminianfar, M. Darvishi, A.A. Saeedi, Antibiotic resistance in patients suffering from nosocomial infections in Besat Hospital. Eur. J. Transl. Myol. 28, 7594 (2018). https://doi.org/10.4081/ejtm.2018.7594
Article
Google Scholar
J. Griffin, A.K. Singh, D. Senapati, P. Rhodes, K. Mitchell, B. Robinson, E. Yu, P.C. Ray, Size-and distance-dependent nanoparticle surface-energy transfer (NSET) method for selective sensing of hepatitis C virus RNA. Chem. Eur. J. 15, 342–351 (2009). https://doi.org/10.1002/chem.200801812
Article
CAS
Google Scholar
Y.C. Cao, R. Jin, C.A. Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002). https://doi.org/10.1126/science.297.5586.1536
Article
CAS
Google Scholar
Y. Orooji, H. Sohrabi, N. Hemmat, F. Oroojalian, B. Baradaran, A. Mokhtarzadeh, M. Mohaghegh, H. Karimi-Maleh, An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano-Micro Lett. 13, 18 (2020). https://doi.org/10.1007/s40820-020-00533-y
Article
CAS
Google Scholar
P. Moitra, M. Alafeef, K. Dighe, M.B. Frieman, D. Pan, Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano 14, 7617–7627 (2020). https://doi.org/10.1021/acsnano.0c03822
Article
CAS
Google Scholar
L. Chen, H. Wei, Y. Guo, Z. Cui, Z. Zhang, X.E. Zhang, Gold nanoparticle enhanced immuno-PCR for ultrasensitive detection of Hantaan virus nucleocapsid protein. J. Immunol Methods. 346, 64–70 (2009). https://doi.org/10.1016/j.jim.2009.05.007
Article
CAS
Google Scholar
M.K. Tsang, W. Ye, G. Wang, J. Li, M. Yang, J. Hao, Ultrasensitive detection of ebola virus oligonucleotide based on upconversion nanoprobe/nanoporous membrane system. ACS Nano 10, 598–605 (2016). https://doi.org/10.1021/acsnano.5b05622
Article
CAS
Google Scholar
L. Sepunaru, B.J. Plowman, S.V. Sokolov, N.P. Young, R.G. Compton, Rapid electrochemical detection of single influenza viruses tagged with silver nanoparticles. Chem. Sci. 7, 3892–3899 (2016). https://doi.org/10.1039/C6SC00412A
Article
CAS
Google Scholar
L. Farzin, S. Sadjadi, A. Sheini, E. Mohagheghpour, A nanoscale genosensor for early detection of COVID-19 by voltammetric determination of RNA-dependent RNA polymerase (RdRP) sequence of SARS-CoV-2 virus. Mikrochim Acta. 188, 121 (2021). https://doi.org/10.1007/s00604-021-04773-6
Article
CAS
Google Scholar
A. Peh, S. Li, Dengue virus detection using impedance measured across nanoporous alumina membrane. Biosens. Bioelectron. 42, 391–396 (2013). https://doi.org/10.1016/j.bios.2012.10.054
Article
CAS
Google Scholar
R. Wu, X. Xing, M. Corredig, B. Meng, M.W. Griffiths, Concentration of hepatitis A virus in milk using protamine-coated iron oxide (Fe(3)O(4)) magnetic nanoparticles. Food Microbiol. 84(103236), 103236 (2019). https://doi.org/10.1016/j.fm.2019.05.020
Article
CAS
Google Scholar
T.L. Kamikawa, M.G. Mikolajczyk, M. Kennedy, P. Zhang, W. Wang, D.E. Scott, E.C. Alocilja, Nanoparticle-based biosensor for the detection of emerging pandemic influenza strains. Biosens Bioelectron. 26, 1346–1352 (2010). https://doi.org/10.1016/j.bios.2010.07.047
Article
CAS
Google Scholar
C. Altay, R.H. Senay, E. Eksin, G. Congur, A. Erdem, S. Akgol, Development of amino functionalized carbon coated magnetic nanoparticles and their application to electrochemical detection of hybridization of nucleic acids. Talanta 164, 175–182 (2017). https://doi.org/10.1016/j.talanta.2016.11.012
Article
CAS
Google Scholar
S. Jeong, E. González-Grandío, N. Navarro, R.L. Pinals, F. Ledesma, D. Yang, M.P. Landry, Extraction of viral nucleic acids with carbon nanotubes increases SARS-CoV-2 quantitative reverse transcription polymerase chain reaction detection sensitivity. ACS Nano 15, 10309 (2021). https://doi.org/10.1021/acsnano.1c02494
Article
CAS
Google Scholar
D.V. Quy, N.M. Hieu, P.T. Tra, N.H. Nam, N.H. Hai, N.T. Son, P.T. Nghia, N.T. van Anh, T.T. Hong, N.H. Luong, Synthesis of silica-coated magnetic nanoparticles and application in the detection of pathogenic viruses. J. Nanomater. 2013, 603940 (2013). https://doi.org/10.1155/2013/603940
Article
CAS
Google Scholar
I.M. Khoris, A.B. Ganganboina, T. Suzuki, E.Y. Park, Self-assembled chromogen-loaded polymeric cocoon for respiratory virus detection. Nanoscale 13, 388–396 (2021). https://doi.org/10.1039/d0nr06893d
Article
CAS
Google Scholar
S. Islam, S. Shukla, V.K. Bajpai, Y.K. Han, Y.S. Huh, A. Kumar, A. Ghosh, S. Gandhi, A smart nanosensor for the detection of human immunodeficiency virus and associated cardiovascular and arthritis diseases using functionalized graphene-based transistors. Biosens Bioelectron. 126, 792–799 (2019). https://doi.org/10.1016/j.bios.2018.11.041
Article
CAS
Google Scholar
L. Singh, H.G. Kruger, G.E.M. Maguire, T. Govender, R. Parboosing, The role of nanotechnology in the treatment of viral infections. Ther. Adv. Infect Dis. 4, 105–131 (2017). https://doi.org/10.1177/2049936117713593
Article
CAS
Google Scholar
E. Bekerman, S. Einav, Infectious disease. Combating emerging viral threats. Science. 348, 282–283 (2015). https://doi.org/10.1126/science.aaa3778
Article
CAS
Google Scholar
M. Nasrollahzadeh, M. Sajjadi, G.J. Soufi, S. Iravani, R.S. Varma, Nanomaterials and nanotechnology-associated innovations against viral infections with a focus on coronaviruses. Nanomater. 10, 1072 (2020). https://doi.org/10.3390/nano10061072
Article
CAS
Google Scholar
V. Lysenko, V. Lozovski, M. Lokshyn, Y.V. Gomeniuk, A. Dorovskih, N. Rusinchuk, Y. Pankivska, O. Povnitsa, S. Zagorodnya, V. Tertykh, Nanoparticles as antiviral agents against adenoviruses. Adv. Nat. Sci. Nanosci. Nanotechnol. 9, 25021 (2018)
Article
Google Scholar
C. Weiss, M. Carriere, L. Fusco, I. Capua, J.A. Regla-Nava, M. Pasquali, J.A. Scott, F. Vitale, M.A. Unal, C. Mattevi, D. Bedognetti, A. Merkoçi, E. Tasciotti, A. Yilmazer, Y. Gogotsi, F. Stellacci, L.G. Delogu, Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS Nano 14, 6383–6406 (2020). https://doi.org/10.1021/acsnano.0c03697
Article
CAS
Google Scholar
T. Qin, R. Ma, Y. Yin, X. Miao, S. Chen, K. Fan, J. Xi, Q. Liu, Y. Gu, Y. Yin, J. Hu, X. Liu, D. Peng, L. Gao, Catalytic inactivation of influenza virus by iron oxide nanozyme. Theranostics. 9, 6920–6935 (2019). https://doi.org/10.7150/thno.35826
Article
CAS
Google Scholar
Y. Abo-Zeid, N.S.M. Ismail, G.R. McLean, N.M. Hamdy, A molecular docking study repurposes FDA approved iron oxide nanoparticles to treat and control COVID-19 infection. Eur J Pharm Sci. 153, 105465 (2020). https://doi.org/10.1016/j.ejps.2020.105465
Article
CAS
Google Scholar
H. Ghaffari, A. Tavakoli, A. Moradi, A. Tabarraei, F. Bokharaei-Salim, M. Zahmatkeshan, M. Farahmand, D. Javanmard, S.J. Kiani, M. Esghaei, V. Pirhajati-Mahabadi, S.H. Monavari, A. Ataei-Pirkooh, Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: another emerging application of nanomedicine. J Biomed Sci. 26, 70 (2019). https://doi.org/10.1186/s12929-019-0563-4
Article
CAS
Google Scholar
P. Di Gianvincenzo, M. Marradi, O.M. Martínez-Avila, L.M. Bedoya, J. Alcamí, S. Penadés, Gold nanoparticles capped with sulfate-ended ligands as anti-HIV agents. Bioorg. Med. Chem Lett. 20, 2718–2721 (2010). https://doi.org/10.1016/j.bmcl.2010.03.079
Article
CAS
Google Scholar
D. Xiang, Y. Zheng, W. Duan, X. Li, J. Yin, S. Shigdar, M.L. O’Connor, M. Marappan, X. Zhao, Y. Miao, B. Xiang, C. Zheng, Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. Int J Nanomed. 8, 4103–4113 (2013). https://doi.org/10.2147/ijn.S53622
Article
Google Scholar
Y. Mori, T. Ono, Y. Miyahira, V.Q. Nguyen, T. Matsui, M. Ishihara, Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res. Lett. 8, 1–6 (2013). https://doi.org/10.1186/1556-276X-8-93
Article
CAS
Google Scholar
D. Baram-Pinto, S. Shukla, N. Perkas, A. Gedanken, R. Sarid, Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug. Chem. 20, 1497–1502 (2009). https://doi.org/10.1021/bc900215b
Article
CAS
Google Scholar
L. Lu, R.W. Sun, R. Chen, C.K. Hui, C.M. Ho, J.M. Luk, G.K. Lau, C.M. Che, Silver nanoparticles inhibit hepatitis B virus replication. Antivir. Ther. 13, 253 (2008)
CAS
Google Scholar
Y.N. Chen, Y.H. Hsueh, C.T. Hsieh, D.Y. Tzou, P.L. Chang, Antiviral activity of graphene-silver nanocomposites against non-enveloped and enveloped viruses. Int. J. Env. Res Public Heal. 13, 430 (2016). https://doi.org/10.3390/ijerph13040430
Article
CAS
Google Scholar
A.R. Deokar, A.P. Nagvenkar, I. Kalt, L. Shani, Y. Yeshurun, A. Gedanken, R. Sarid, Graphene-based “Hot Plate” for the capture and destruction of the herpes simplex virus type 1. Bioconjug. Chem. 28, 1115–1122 (2017). https://doi.org/10.1021/acs.bioconjchem.7b00030
Article
CAS
Google Scholar
Y. Du, S. Guo, Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale 8, 2532 (2016). https://doi.org/10.1039/c5nr07579c
Article
CAS
Google Scholar
X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126, 12736 (2004). https://doi.org/10.1021/ja040082h
Article
CAS
Google Scholar
K.J. Mintz, Y. Zhou, R.M. Leblanc, Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale 11, 4634 (2019). https://doi.org/10.1039/c8nr10059d
Article
CAS
Google Scholar
H. Feng, Z. Qian, Functional carbon quantum dots: a versatile platform for chemosensing and biosensing. Chem. Rec. 18, 491 (2018). https://doi.org/10.1002/tcr.201700055
Article
CAS
Google Scholar
F. Yuan, T. Yuan, L. Sui, Z. Wang, Z. Xi, Y. Li, X. Li, L. Fan, Z. Tan, A. Chen, M. Jin, S. Yang, Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 9, 2249 (2018). https://doi.org/10.1038/s41467-018-04635-5
Article
CAS
Google Scholar
P. Devi, S. Saini, K.H. Kim, The advanced role of carbon quantum dots in nanomedical applications. Biosens. Bioelectron. 141, 111158 (2019). https://doi.org/10.1016/j.bios.2019.02.059
Article
CAS
Google Scholar
N. Tejwan, A.K. Saini, A. Sharma, T.A. Singh, N. Kumar, J. Das, Metal-doped and hybrid carbon dots: a comprehensive review on their synthesis and biomedical applications. J. Control. Release. 330, 132–150 (2021). https://doi.org/10.1016/j.jconrel.2020.12.023
Article
CAS
Google Scholar
C. Ji, Y. Zhou, R.M. Leblanc, Z. Peng, Recent developments of carbon dots in biosensing: a review. ACS Sensors. 5, 2724–2741 (2020). https://doi.org/10.1021/acssensors.0c01556
Article
CAS
Google Scholar
R. Soltani, S. Guo, A. Bianco, C. Ménard-Moyon, Carbon nanomaterials applied for the treatment of inflammatory diseases: preclinical evidence. Adv. Ther. 3, 2000051 (2020). https://doi.org/10.1002/adtp.202000051
Article
CAS
Google Scholar
C. Xia, S. Zhu, T. Feng, M. Yang, B. Yang, Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots. Adv. Sci. 6, 1901316 (2019). https://doi.org/10.1002/advs.201901316
Article
CAS
Google Scholar
V. Georgakilas, J.A. Perman, J. Tucek, R. Zboril, Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 115, 4744 (2015). https://doi.org/10.1021/cr500304f
Article
CAS
Google Scholar
T. Atabaev, Doped carbon dots for sensing and bioimaging applications: a minireview. Nanomaterials 8, 342 (2018). https://doi.org/10.3390/nano8050342
Article
CAS
Google Scholar
B. Wang, J. Yu, L. Sui, S. Zhu, Z. Tang, B. Yang, S. Lu, Rational design of multi-color-emissive carbon dots in a single reaction system by hydrothermal. Adv. Sci. 8, 2001453 (2021). https://doi.org/10.1002/advs.202001453
Article
CAS
Google Scholar
A. Cayuela, C. Carrillo-Carrión, M.L. Soriano, W.J. Parak, M. Valcárcel, One-step synthesis and characterization of N-doped carbon nanodots for sensing in organic media. Anal. Chem. 88, 3178 (2016). https://doi.org/10.1021/acs.analchem.5b04523
Article
CAS
Google Scholar
H. Ming, Z. Ma, Y. Liu, K. Pan, H. Yu, F. Wang, Z. Kang, Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalt. Trans. 41, 9526 (2012). https://doi.org/10.1039/c2dt30985h
Article
CAS
Google Scholar
S. Fang, Y. Xia, K. Lv, Q. Li, J. Sun, M. Li, Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4. Appl. Catal. B Environ. 185, 225 (2016). https://doi.org/10.1016/j.apcatb.2015.12.025
Article
CAS
Google Scholar
A. Sciortino, N. Mauro, G. Buscarino, L. Sciortino, R. Popescu, R. Schneider, G. Giammona, D. Gerthsen, M. Cannas, F. Messina, β-C3N4 nanocrystals: carbon dots with extraordinary morphological, structural, and optical homogeneity. Chem. Mater. 30, 1695 (2018). https://doi.org/10.1021/acs.chemmater.7b05178
Article
CAS
Google Scholar
L. Sciortino, A. Sciortino, R. Popescu, R. Schneider, D. Gerthsen, S. Agnello, M. Cannas, F. Messina, Tailoring the emission color of carbon dots through nitrogen-induced changes of their crystalline structure. J. Phys. Chem. C. 122, 19897 (2018). https://doi.org/10.1021/acs.jpcc.8b04514
Article
CAS
Google Scholar
S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, g-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: a review. J. Clean. Prod. 276, 124319 (2020). https://doi.org/10.1016/j.jclepro.2020.124319
Article
CAS
Google Scholar
Y. Yan, J. Gong, J. Chen, Z. Zeng, W. Huang, K. Pu, J. Liu, P. Chen, Recent advances on graphene quantum dots: from chemistry and physics to applications. Adv. Mater. 31, 1808283 (2019). https://doi.org/10.1002/adma.201808283
Article
CAS
Google Scholar
M.L. Liu, B.B. Chen, C.M. Li, C.Z. Huang, Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 21, 449 (2019). https://doi.org/10.1039/c8gc02736f
Article
CAS
Google Scholar
P. Tian, L. Tang, K.S. Teng, S.P. Lau, Graphene quantum dots from chemistry to applications. Mater. Today Chem. 10, 221 (2018). https://doi.org/10.1016/j.mtchem.2018.09.007
Article
CAS
Google Scholar
H. Tetsuka, R. Asahi, A. Nagoya, K. Okamoto, I. Tajima, R. Ohta, A. Okamoto, Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 24, 5333–5338 (2012). https://doi.org/10.1002/adma.201201930
Article
CAS
Google Scholar
X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, P. Chen, Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11, 1620–1636 (2015). https://doi.org/10.1002/smll.201402648
Article
CAS
Google Scholar
S. Tao, T. Feng, C. Zheng, S. Zhu, B. Yang, Carbonized polymer dots: a brand new perspective to recognize luminescent carbon-based nanomaterials. J. Phys. Chem. Lett. 10, 5182–5188 (2019). https://doi.org/10.1021/acs.jpclett.9b01384
Article
CAS
Google Scholar
J. Liu, D. Li, K. Zhang, M. Yang, H. Sun, B. Yang, One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for in vivo imaging. Small 14, 1703919 (2018). https://doi.org/10.1002/smll.201703919
Article
CAS
Google Scholar
J. Liu, R. Li, B. Yang, Carbon dots: a new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci. 6, 2179 (2020). https://doi.org/10.1021/acscentsci.0c01306
Article
CAS
Google Scholar
S. Zhu, Y. Song, J. Shao, X. Zhao, B. Yang, Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units. Angew. Chemie Int. Ed. 54, 14626–14637 (2015). https://doi.org/10.1002/anie.201504951
Article
CAS
Google Scholar
Y. Ru, L. Ai, T. Jia, X. Liu, S. Lu, Z. Tang, B. Yang, Recent advances in chiral carbonized polymer dots: from synthesis and properties to applications. Nano Today 34, 100953 (2020). https://doi.org/10.1016/j.apmt.2021.101050
Article
CAS
Google Scholar
S. Bhattacharyya, S.J. Henley, E. Mendoza, L. Gomez-Rojas, J. Allam, S.R.P. Silva, Resonant tunnelling and fast switching in amorphous-carbon quantum-well structures. Nat. Mater. 5, 19–22 (2006). https://doi.org/10.1038/nmat1551
Article
CAS
Google Scholar
R. Liu, D. Wu, S. Liu, K. Koynov, W. Knoll, Q. Li, An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chemie Int. Ed. 48, 4598–4601 (2009). https://doi.org/10.1002/anie.200900652
Article
CAS
Google Scholar
A.B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, M. Karakassides, E.P. Giannelis, Surface functionalized carbogenic quantum dots. Small 4, 455–458 (2008). https://doi.org/10.1002/smll.200700578
Article
CAS
Google Scholar
A. Pal, M.P. Sk, A. Chattopadhyay, Recent advances in crystalline carbon dots for superior application potential. Mater. Adv. 1, 525 (2020). https://doi.org/10.1039/d0ma00108b
Article
CAS
Google Scholar
N.V. Tepliakov, E.V. Kundelev, P.D. Khavlyuk, Y. Xiong, M.Y. Leonov, W. Zhu, A.V. Baranov, A.V. Fedorov, A.L. Rogach, I.D. Rukhlenko, Sp2-sp3-hybridized atomic domains determine optical features of carbon dots. ACS Nano 13, 10737 (2019). https://doi.org/10.1021/acsnano.9b05444
Article
CAS
Google Scholar
M.L. Liu, L. Yang, R.S. Li, B.B. Chen, H. Liu, C.Z. Huang, Large-scale simultaneous synthesis of highly photoluminescent green amorphous carbon nanodots and yellow crystalline graphene quantum dots at room temperature. Green Chem. 19, 3611 (2017). https://doi.org/10.1039/c7gc01236e
Article
CAS
Google Scholar
M.P. Ajith, S. Pardhiya, P. Rajamani, Carbon dots: an excellent fluorescent probe for contaminant sensing and remediation. Small (2022). https://doi.org/10.1002/smll.202105579
Article
Google Scholar
S.D. Hettiarachchi, R.M. Graham, K.J. Mintz, Y. Zhou, S. Vanni, Z. Peng, R.M. Leblanc, Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale 11, 6192 (2019). https://doi.org/10.1039/C8NR08970A
Article
CAS
Google Scholar
S. Kang, Y.K. Jeong, J.H. Ryu, Y. Son, W.R. Kim, B. Lee, K.H. Jung, K.M. Kim, Pulsed laser ablation based synthetic route for nitrogen-doped graphene quantum dots using graphite flakes. Appl. Surf. Sci. 506, 144998 (2020). https://doi.org/10.1016/j.apsusc.2019.144998
Article
CAS
Google Scholar
Y. Liu, S. Zhou, L. Fan, H. Fan, Synthesis of red fluorescent graphene quantum dot-europium complex composites as a viable bioimaging platform. Microchim. Acta. 183, 2605 (2016). https://doi.org/10.1007/s00604-016-1909-1
Article
CAS
Google Scholar
S. Kim, J.K. Seo, J.H. Park, Y. Song, Y.S. Meng, M.J. Heller, White-light emission of blue-luminescent graphene quantum dots by europium (III) complex incorporation. Carbon N. Y. 124, 479 (2017). https://doi.org/10.1016/j.carbon.2017.08.021
Article
CAS
Google Scholar
S. Maiti, S. Kundu, C.N. Roy, T.K. Das, A. Saha, Synthesis of excitation independent highly luminescent graphene quantum dots through perchloric acid oxidation. Langmuir 33, 14634 (2017). https://doi.org/10.1021/acs.langmuir.7b02611
Article
CAS
Google Scholar
S. Kalytchuk, L. Zdrazil, Z. Badura, M. Medved, M. Langer, M. Paloncyova, G. Zoppellaro, S.V. Kershaw, A.L. Rogach, M. Otyepka, Carbon dots detect water-to-ice phase transition and act as alcohol sensors via fluorescence turn-off/on mechanism. ACS Nano 15, 6582 (2021). https://doi.org/10.1021/acsnano.0c09781
Article
CAS
Google Scholar
X. Sun, C. Wang, P. Li, Z. Shao, J. Xia, Q. Liu, F. Shen, Y. Fang, The facile synthesis of nitrogen and sulfur co-doped carbon dots for developing a powerful “on-off-on” fluorescence probe to detect glutathione in vegetables. Food Chem. 372, 131142 (2022). https://doi.org/10.1016/j.foodchem.2021.131142
Article
CAS
Google Scholar
S. Lu, L. Liu, H. Wang, W. Zhao, Z. Li, Z. Qu, J. Li, T. Sun, T. Wang, G. Sui, Synthesis of dual functional gallic-acid-based carbon dots for bioimaging and antitumor therapy. Biomater. Sci. 7, 3258 (2019). https://doi.org/10.1039/c9bm00570f
Article
CAS
Google Scholar
H. Dang, L.K. Huang, Y. Zhang, C.F. Wang, S. Chen, Large-scale ultrasonic fabrication of white fluorescent carbon dots. Ind. Eng. Chem. Res. 55, 5335 (2016). https://doi.org/10.1021/acs.iecr.6b00894
Article
CAS
Google Scholar
Z. Zhu, S. Wang, Y. Chang, D. Yu, Y. Jiang, Direct photodissociation of toluene molecules to photoluminescent carbon dots under pulsed laser irradiation. Carbon N. Y. 105, 416 (2016). https://doi.org/10.1016/j.carbon.2016.04.047
Article
CAS
Google Scholar
L. Tian, S. Yang, Y. Yang, J. Li, Y. Deng, S. Tian, P. He, G. Ding, X. Xie, Z. Wang, Green, simple and large scale synthesis of N-doped graphene quantum dots with uniform edge groups by electrochemical bottom-up synthesis. RSC Adv. 6, 82648 (2016). https://doi.org/10.1039/c6ra18695e
Article
CAS
Google Scholar
A. Sciortino, A. Cannizzo, F. Messina, Carbon nanodots: a review-from the current understanding of the fundamental photophysics to the full control of the optical response. C. 4, 67 (2018). https://doi.org/10.3390/c4040067
Article
CAS
Google Scholar
S. Tajik, Z. Dourandish, K. Zhang, H. Beitollahi, Q. Van Le, H.W. Jang, M. Shokouhimehr, Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Adv. 10, 15406 (2020). https://doi.org/10.1039/d0ra00799d
Article
CAS
Google Scholar
P. Zuo, X. Lu, Z. Sun, Y. Guo, H. He, A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim. Acta. 183, 519 (2016). https://doi.org/10.1007/s00604-015-1705-3
Article
CAS
Google Scholar
X. Tan, Y. Li, X. Li, S. Zhou, L. Fan, S. Yang, Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform. Chem. Commun. 51, 2544 (2015). https://doi.org/10.1039/c4cc09332a
Article
CAS
Google Scholar
N.R. Devi, T.H.V. Kumar, A.K. Sundramoorthy, Electrochemically exfoliated carbon quantum dots modified electrodes for detection of dopamine neurotransmitter. J. Electrochem. Soc. 165, 3112 (2018). https://doi.org/10.1149/2.0191812jes
Article
CAS
Google Scholar
J. Deng, Q. Lu, N. Mi, H. Li, M. Liu, M. Xu, L. Tan, Q. Xie, Y. Zhang, S. Yao, Electrochemical synthesis of carbon nanodots directly from alcohols. Chem. A Eur. J. 20, 4993–4999 (2014). https://doi.org/10.1002/chem.201304869
Article
CAS
Google Scholar
Y.P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, P.G. Luo, H. Yang, M.E. Kose, B. Chen, L.M. Veca, S.Y. Xie, Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756 (2006). https://doi.org/10.1021/ja062677d
Article
CAS
Google Scholar
H. Yu, X. Li, X. Zeng, Y. Lu, Preparation of carbon dots by non-focusing pulsed laser irradiation in toluene. Chem. Commun. 52, 819–822 (2015). https://doi.org/10.1039/C5CC08384B
Article
CAS
Google Scholar
L. Cui, X. Ren, J. Wang, M. Sun, Synthesis of homogeneous carbon quantum dots by ultrafast dual-beam pulsed laser ablation for bioimaging. Mater. Today Nano. 12, 100091 (2020). https://doi.org/10.1016/j.mtnano.2020.100091
Article
Google Scholar
P.P. Brisebois, M. Siaj, Harvesting graphene oxide–years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation. J. Mater. Chem. C. 8, 1517–1547 (2020). https://doi.org/10.1039/C9TC03251G
Article
CAS
Google Scholar
M. Pan, X. Xie, K. Liu, J. Yang, L. Hong, S. Wang, Fluorescent carbon quantum dots—synthesis, functionalization and sensing application in food analysis. Nanomaterials 10, 930 (2020). https://doi.org/10.3390/nano10050930
Article
CAS
Google Scholar
Q. Lu, C. Wu, D. Liu, H. Wang, W. Su, H. Li, Y. Zhang, S. Yao, A facile and simple method for synthesis of graphene oxide quantum dots from black carbon. Green Chem. 19, 900–904 (2017). https://doi.org/10.1039/C6GC03092K
Article
CAS
Google Scholar
N. Kushwaha, J. Mittal, S. Pandey, R. Kumar, High temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots. Int. J. Nano Dimension 9, 191–197 (2018)
CAS
Google Scholar
D.R.S. da Souza, L.D. Caminhas, J.P. de Mesquita, F.V. Pereira, Luminescent carbon dots obtained from cellulose. Mater. Chem. Phys. 203, 148 (2018). https://doi.org/10.1016/j.matchemphys.2017.10.001
Article
CAS
Google Scholar
Y. Liu, H. Gou, X. Huang, G. Zhang, K. Xi, X. Jia, Rational synthesis of highly efficient ultra-narrow red-emitting carbon quantum dots for NIR-II two-photon bioimaging. Nanoscale 12, 1589 (2020). https://doi.org/10.1039/c9nr09524a
Article
CAS
Google Scholar
S. Chahal, N. Yousefi, N. Tufenkji, Green synthesis of high quantum yield carbon dots from phenylalanine and citric acid: Role of stoichiometry and nitrogen doping. ACS Sustain. Chem. Eng. 8, 5566–5575 (2020). https://doi.org/10.1021/acssuschemeng.9b07463
Article
CAS
Google Scholar
T.V. de Medeiros, J. Manioudakis, F. Noun, J.R. Macairan, F. Victoria, R. Naccache, Microwave-assisted synthesis of carbon dots and their applications. J. Mater. Chem. C 7, 7175–7195 (2019). https://doi.org/10.1039/C9TC01640F
Article
Google Scholar
L. Fang, M. Wu, C. Huang, Z. Liu, J. Liang, H. Zhang, Industrializable synthesis of narrow-dispersed carbon dots achieved by microwave-assisted selective carbonization of surfactants and their applications as fluorescent nano-additives. J. Mater. Chem. A. 8, 21317–21326 (2020). https://doi.org/10.1039/D0TA07252D
Article
CAS
Google Scholar
P. Priecel, J.A. Lopez-Sanchez, Advantages and limitations of microwave reactors: from chemical synthesis to the catalytic valorization of biobased chemicals. ACS Sustain. Chem. Eng. 7, 3–21 (2018). https://doi.org/10.1021/acssuschemeng.8b03286
Article
CAS
Google Scholar
T.N.J.I. Edison, R. Atchudan, M.G. Sethuraman, J.J. Shim, Y.R. Lee, Microwave assisted green synthesis of fluorescent N-doped carbon dots: cytotoxicity and bio-imaging applications. J. Photochem. Photobiol. B Biol. 161, 154 (2016). https://doi.org/10.1016/j.jphotobiol.2016.05.017
Article
CAS
Google Scholar
W. Huang, X. Li, X. Sun, X. Ding, Y. Feng, Y. Tang, P. Zhou, L. Wang, Q. Zhang, Photoluminescence of graphene quantum dots enhanced by microwave post-treatment. Chem. Eng. J. 405, 126714 (2021). https://doi.org/10.1016/j.cej.2020.126714
Article
CAS
Google Scholar
N. Tejwan, S.K. Saha, J. Das, Multifaceted applications of green carbon dots synthesized from renewable sources. Adv. Colloid Interface Sci. 275, 102046 (2020). https://doi.org/10.1016/j.cis.2019.102046
Article
CAS
Google Scholar
H. Ding, S.-B. Yu, J.-S. Wei, H.-M. Xiong, Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10, 484 (2016). https://doi.org/10.1021/acsnano.5b05406
Article
CAS
Google Scholar
N. Papaioannou, M.M. Titirici, A. Sapelkin, Investigating the effect of reaction time on carbon dot formation, structure, and optical properties. ACS Omega 4, 21658 (2019). https://doi.org/10.1021/acsomega.9b01798
Article
CAS
Google Scholar
D. Qu, M. Zheng, L. Zhang, H. Zhao, Z. Xie, X. Jing, R.E. Haddad, H. Fan, Z. Sun, Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep. 4, 1 (2014). https://doi.org/10.1038/srep05294
Article
CAS
Google Scholar
S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362 (2015). https://doi.org/10.1039/c4cs00269e
Article
CAS
Google Scholar
Z. Gan, H. Xu, Y. Hao, Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale 8, 7794 (2016). https://doi.org/10.1039/c6nr00605a
Article
CAS
Google Scholar
H. Wang, C. Sun, X. Chen, Y. Zhang, V.L. Colvin, Q. Rice, J. Seo, S. Feng, S. Wang, W.W. Yu, Excitation wavelength independent visible color emission of carbon dots. Nanoscale 9, 1909 (2017). https://doi.org/10.1039/c6nr09200d
Article
CAS
Google Scholar
I.Y. Herbani, M.M. Suliyanti, Concentration effect on optical properties of carbon dots at room temperature. J. Lumin. 198, 215 (2018). https://doi.org/10.1016/j.jlumin.2018.02.012
Article
CAS
Google Scholar
Y.F. Wu, H.C. Wu, C.H. Kuan, C.J. Lin, L.W. Wang, C.W. Chang, T.W. Wang, Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Sci. Rep. 6, 1–12 (2016). https://doi.org/10.1038/srep21170
Article
CAS
Google Scholar
G. Buchs, D. Bercioux, L. Mayrhofer, O. Gröning, Confined electron and hole states in semiconducting carbon nanotube sub-10 nm artificial quantum dots. Carbon N. Y. 132, 304 (2018). https://doi.org/10.1016/j.carbon.2018.02.031
Article
CAS
Google Scholar
Y. Liu, H. Huang, W. Cao, B. Mao, Y. Liu, Z. Kang, Advances in carbon dots: from the perspective of traditional quantum dots. Mater. Chem. Front. 4, 1586 (2020). https://doi.org/10.1039/D0QM00090F
Article
CAS
Google Scholar
P. Zhao, L. Zhu, Dispersibility of carbon dots in aqueous and/or organic solvents. Chem. Commun. 54, 5401–5406 (2018). https://doi.org/10.1039/C8CC02279H
Article
CAS
Google Scholar
S. Singh, A. Pankaj, S. Mishra, K. Tewari, S.P. Singh, Cerium oxide-catalyzed chemical vapor deposition grown carbon nanofibers for electrochemical detection of Pb (II) and Cu (II). J. Environ. Chem. Eng. 7, 103250 (2019). https://doi.org/10.1016/j.jece.2019.103250
Article
CAS
Google Scholar
J. Lovrić, S.J. Cho, F.M. Winnik, D. Maysinger, Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem. Biol. 11, 1227 (2005). https://doi.org/10.1016/j.chembiol.2005.09.008
Article
CAS
Google Scholar
S. Moradi, K. Sadrjavadi, N. Farhadian, L. Hosseinzadeh, M. Shahlaei, Easy synthesis, characterization and cell cytotoxicity of green nano carbon dots using hydrothermal carbonization of Gum Tragacanth and chitosan bio-polymers for bioimaging. J. Mol. Liq. 259, 284 (2018). https://doi.org/10.1016/j.molliq.2018.03.054
Article
CAS
Google Scholar
R.V. Nair, R.T. Thomas, V. Sankar, H. Muhammad, M. Dong, S. Pillai, Rapid, acid-free synthesis of high-quality graphene quantum dots for aggregation induced sensing of metal ions and bioimaging. ACS Omega 2, 8051 (2017). https://doi.org/10.1021/acsomega.7b01262
Article
CAS
Google Scholar
H. Yao, W. Zhao, S. Zhang, X. Guo, Y. Li, B. Du, Dual-functional carbon dot-labeled heavy-chain ferritin for self-targeting bio-imaging and chemo-photodynamic therapy. J. Mater. Chem. B. 6, 3107 (2018). https://doi.org/10.1039/c8tb00118a
Article
CAS
Google Scholar
H. Wang, Y. Xie, X. Na, J. Bi, S. Liu, L. Zhang, M. Tan, Fluorescent carbon dots in baked lamb: formation, cytotoxicity and scavenging capability to free radicals. Food Chem. 286, 405 (2019). https://doi.org/10.1016/j.foodchem.2019.02.034
Article
CAS
Google Scholar
Q. Jia, X. Zheng, J. Ge, W. Liu, H. Ren, S. Chen, Y. Wen, H. Zhang, J. Wu, P. Wang, Synthesis of carbon dots from Hypocrella bambusae for bimodel fluorescence/photoacoustic imaging-guided synergistic photodynamic/photothermal therapy of cancer. J. Colloid Interface Sci. 526, 302 (2018). https://doi.org/10.1016/j.jcis.2018.05.005
Article
CAS
Google Scholar
K. Qu, J. Wang, J. Ren, X. Qu, Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine. Chem. A Eur. J. 19, 7243 (2013). https://doi.org/10.1002/chem.201300042
Article
CAS
Google Scholar
Y.S. He, C.G. Pan, H.X. Cao, M.Z. Yue, L. Wang, G.X. Liang, Highly sensitive and selective dual-emission ratiometric fluorescence detection of dopamine based on carbon dots-gold nanoclusters hybrid. Sens. Actuators B Chem. 265, 371 (2018). https://doi.org/10.1016/j.snb.2018.03.080
Article
CAS
Google Scholar
L. Yang, W. Deng, C. Cheng, Y. Tan, Q. Xie, S. Yao, Fluorescent immunoassay for the detection of pathogenic bacteria at the single-cell level using carbon dots-encapsulated breakable organosilica nanocapsule as labels. ACS Appl. Mater. Interfaces. 10, 3441–3448 (2018). https://doi.org/10.1021/acsami.7b18714
Article
CAS
Google Scholar
Z. Peng, E.H. Miyanji, Y. Zhou, J. Pardo, S.D. Hettiarachchi, S. Li, P.L. Blackwelder, I. Skromne, R.M. Leblanc, Carbon dots: promising biomaterials for bone-specific imaging and drug delivery. Nanoscale 9, 17533–17543 (2017). https://doi.org/10.1039/C7NR05731H
Article
CAS
Google Scholar
T. Feng, X. Ai, G. An, P. Yang, Y. Zhao, Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 10, 4410 (2016). https://doi.org/10.1021/acsnano.6b00043
Article
CAS
Google Scholar
X.W. Hua, Y.W. Bao, F.G. Wu, Fluorescent carbon quantum dots with intrinsic nucleolus-targeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery. ACS Appl. Mater. Interfaces. 10, 10664 (2018). https://doi.org/10.1021/acsami.7b19549
Article
CAS
Google Scholar
S. Singh, A. Mishra, R. Kumari, K.K. Sinha, M.K. Singh, P. Das, Carbon dots assisted formation of DNA hydrogel for sustained release of drug. Carbon N. Y. 114, 169 (2017). https://doi.org/10.1016/j.carbon.2016.12.020
Article
CAS
Google Scholar
C. Chen, J. Wang, Optical biosensors: an exhaustive and comprehensive review. Analyst. 145, 1605–1628 (2020). https://doi.org/10.1039/c9an01998g
Article
CAS
Google Scholar
I.Y. Goryacheva, A.V. Sapelkin, G.B. Sukhorukov, Carbon nanodots: mechanisms of photoluminescence and principles of application. TrAC 90, 27 (2017). https://doi.org/10.1016/j.trac.2017.02.012
Article
CAS
Google Scholar
U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Quantum dots versus organic dyes as fluorescent labels. Nat. Methods. 5, 763 (2008). https://doi.org/10.1038/nmeth.1248
Article
CAS
Google Scholar
S.S. Liang, L. Qi, R.L. Zhang, M. Jin, Z.Q. Zhang, Ratiometric fluorescence biosensor based on CdTe quantum and carbon dots for double strand DNA detection. Sens. Actuators B Chem. (2017). https://doi.org/10.1016/j.snb.2017.01.032
Article
Google Scholar
J.S. Lee, H. Kim, W.R. Algar, Thiol-ligand-Catalyzed quenching and etching in mixtures of colloidal quantum dots and silver nanoparticles. J. Phys. Chem. C. 121, 28566–28575 (2017). https://doi.org/10.1021/acs.jpcc.7b10381
Article
CAS
Google Scholar
Y. Zhao, R. Tong, F. Xia, Y. Peng, Current status of optical fiber biosensor based on surface plasmon resonance. Biosens. Bioelectron. 142, 111505 (2019). https://doi.org/10.1016/j.bios.2019.111505
Article
CAS
Google Scholar
O.J. Achadu, K. Takemura, I.M. Khoris, E.Y. Park, Plasmonic/magnetic molybdenum trioxide and graphitic carbon nitride quantum dots-based fluoroimmunosensing system for influenza virus. Sens. Actuators B Chem. 321, 128494 (2020). https://doi.org/10.1016/j.snb.2020.128494
Article
CAS
Google Scholar
O.J. Achadu, D.X. Lioe, K. Kagawa, S. Kawahito, E.Y. Park, Fluoroimmunoassay of influenza virus using sulfur-doped graphitic carbon nitride quantum dots coupled with Ag 2 S nanocrystals. Mikrochim. Acta. 187, 1 (2020). https://doi.org/10.1007/s00604-020-04433-1
Article
CAS
Google Scholar
I.S. Kucherenko, O.O. Soldatkin, S.V. Dzyadevych, A.P. Soldatkin, Electrochemical biosensors based on multienzyme systems: main groups, advantages and limitations–a review. Anal. Chim. Acta. 1111, 114–131 (2020). https://doi.org/10.1016/j.aca.2020.03.034
Article
CAS
Google Scholar
E. Cesewski, B.N. Johnson, Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 159, 112214 (2020). https://doi.org/10.1016/j.bios.2020.112214
Article
CAS
Google Scholar
J. Rivnay, S. Inal, A. Salleo, R.M. Owens, M. Berggren, G.G. Malliaras, Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018). https://doi.org/10.1038/natrevmats.2017.86
Article
CAS
Google Scholar
S. Vigneshvar, C.C. Sudhakumari, B. Senthilkumaran, H. Prakash, Recent advances in biosensor technology for potential applications—an overview. Front. Bioeng. Biotechnol. 4, 11 (2016). https://doi.org/10.3389/fbioe.2016.00011
Article
CAS
Google Scholar
G. Wang, X. He, L. Wang, A. Gu, Y. Huang, B. Fang, B. Geng, X. Zhang, Non-enzymatic electrochemical sensing of glucose. Microchim. Acta. 180, 161 (2013). https://doi.org/10.1007/s00604-012-0923-1
Article
CAS
Google Scholar
X. Wang, L. Chen, X. Su, S. Ai, Electrochemical immunosensor with graphene quantum dots and apoferritin-encapsulated Cu nanoparticles double-assisted signal amplification for detection of avian leukosis virus subgroup. J. Biosens. Bioelectron. 47, 171 (2013). https://doi.org/10.1016/j.bios.2013.03.021
Article
CAS
Google Scholar
A.D. Chowdhury, K. Takemura, T.C. Li, T. Suzuki, E.Y. Park, Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection. Nat. Commun. 10, 1 (2019). https://doi.org/10.1038/s41467-019-11644-5
Article
CAS
Google Scholar
S.R. Ahmed, J. Mogus, R. Chand, E. Nagy, S. Neethirajan, Optoelectronic fowl adenovirus detection based on local electric field enhancement on graphene quantum dots and gold nanobundle hybrid. Biosens. Bioelectron. 103, 45 (2018). https://doi.org/10.1016/j.bios.2017.12.028
Article
CAS
Google Scholar
A. Kurdekar, L.A.A. Chunduri, E.P. Bulagonda, M.K. Haleyurgirisetty, V. Kamisetti, I.K. Hewlett, Comparative performance evaluation of carbon dot-based paper immunoassay on Whatman filter paper and nitrocellulose paper in the detection of HIV infection. Microfluid. Nanofluidics. 20, 1 (2016). https://doi.org/10.1007/s10404-016-1763-9
Article
CAS
Google Scholar
F. Lin, Y.W. Bao, F.G. Wu, Carbon dots for sensing and killing microorganisms. C J. Carbon Res. 5, 33 (2019). https://doi.org/10.3390/c5020033
Article
CAS
Google Scholar
T. Hoenen, A. Groseth, H. Feldmann, Therapeutic strategies to target the Ebola virus life cycle. Nat. Rev. Microbiol. 17, 593–606 (2019). https://doi.org/10.1038/s41579-019-0233-2
Article
CAS
Google Scholar
M.S. Maginnis, Virus-receptor interactions: the key to cellular invasion. J. Mol. Biol. (2018). https://doi.org/10.1016/j.jmb.2018.06.024
Article
Google Scholar
M.B. Battles, J.S. McLellan, Respiratory syncytial virus entry and how to block it. Nat. Rev. Microbiol. 17, 233–245 (2019). https://doi.org/10.1038/s41579-019-0149-x
Article
CAS
Google Scholar
M.Z. Fahmi, W. Sukmayani, S.Q. Khairunisa, A.M. Witaningrum, D.W. Indriati, M.Q.Y. Matondang, J.Y. Chang, T. Kotaki, M. Kameoka, Design of boronic acid-attributed carbon dots on inhibits HIV-1 entry. RSC Adv. 6, 92996 (2016). https://doi.org/10.1039/c6ra21062g
Article
CAS
Google Scholar
Y.Y. Aung, A.N. Kristanti, S.Q. Khairunisa, N. Nasronudin, M.Z. Fahmi, Inactivation of HIV-1 infection through integrative blocking with amino phenylboronic acid attributed carbon dots. ACS Biomater. Sci. Eng. 6, 4490–4501 (2020). https://doi.org/10.1021/acsbiomaterials.0c00508
Article
CAS
Google Scholar
A. Du Toit, The many faces of the HIV-1 spike. Nat. Rev. Microbiol. 12, 792 (2014). https://doi.org/10.1038/nrmicro3383
Article
CAS
Google Scholar
M.S. Cohen, Y.Q. Chen, M. McCauley, T. Gamble, M.C. Hosseinipour, N. Kumarasamy, J.G. Hakim, J. Kumwenda, B. Grinsztejn, J.H.S. Pilotto, S.V. Godbole, S. Mehendale, S. Chariyalertsak, B.R. Santos, K.H. Mayer, I.F. Hoffman, S.H. Eshleman, E. Piwowar-Manning, L. Wang, J. Makhema, L.A. Mills, G. De Bruyn, I. Sanne, J. Eron, J. Gallant, D. Havlir, S. Swindells, H. Ribaudo, V. Elharrar, D. Burns, T.E. Taha, K. Nielsen-Saines, D. Celentano, M. Essex, T.R. Fleming, Prevention of HIV-1 infection with early antiretroviral therapy. N. Engl. J. Med. 365, 493 (2011). https://doi.org/10.1056/NEJMoa1105243
Article
CAS
Google Scholar
A. Shmakova, D. Germini, Y. Vassetzky, HIV-1, HAART and cancer: a complex relationship. Int. J. Cancer. 146, 2666–2679 (2020). https://doi.org/10.1002/ijc.32730
Article
CAS
Google Scholar
R. Granich, S. Crowley, M. Vitoria, Y.R. Lo, Y. Souteyrand, C. Dye, C. Gilks, T. Guerma, K.M. De Cock, B. Williams, Highly active antiretroviral treatment for the prevention of HIV transmission. J. Int. AIDS Soc. 13, 1 (2010). https://doi.org/10.1186/1758-2652-13-1
Article
CAS
Google Scholar
M.E. Cilento, K.A. Kirby, S.G. Sarafianos, Avoiding drug resistance in hiv reverse transcriptase. Chem. Rev. 121, 3271–3296 (2021). https://doi.org/10.1021/acs.chemrev.0c00967
Article
CAS
Google Scholar
D. Iannazzo, A. Pistone, S. Ferro, L. De Luca, A.M. Monforte, R. Romeo, M.R. Buemi, C. Pannecouque, Graphene quantum dots based systems as HIV inhibitors. Bioconjug. Chem. 29, 3084 (2018). https://doi.org/10.1021/acs.bioconjchem.8b00448
Article
CAS
Google Scholar
E. Ju, T. Li, Z. Liu, S.R. da Silva, S. Wei, X. Zhang, X. Wang, S.J. Gao, Specific inhibition of viral MicroRNAs by carbon dots-mediated delivery of locked nucleic acids for therapy of virus-induced cancer. ACS Nano. 14, 476–487 (2020). https://doi.org/10.1021/acsnano.9b06333
Article
CAS
Google Scholar
L.J. Ming, A.C.Y. Yin, Therapeutic effects of glycyrrhizic acid. Nat. Prod. Commun. 8, 415 (2013). https://doi.org/10.1177/1934578x1300800335
Article
CAS
Google Scholar
C.J. Lin, L. Chang, H.W. Chu, H.J. Lin, P.C. Chang, R.Y.L. Wang, B. Unnikrishnan, J.Y. Mao, S.Y. Chen, C.C. Huang, High amplification of the antiviral activity of curcumin through transformation into carbon quantum dots. Small. 15, 1902641 (2019). https://doi.org/10.1002/smll.201902641
Article
CAS
Google Scholar
X.X. Yang, C.M. Li, Y.F. Li, J. Wang, C.Z. Huang, Synergistic antiviral effect of curcumin functionalized graphene oxide against respiratory syncytial virus infection. Nanoscale 9, 16086–16092 (2017). https://doi.org/10.1039/c7nr06520e
Article
CAS
Google Scholar
S. Huang, B. Li, U. Ashraf, Q. Li, X. Lu, X. Gao, M. Cui, M. Imran, J. Ye, F. Cao, Quaternized cationic carbon dots as antigen delivery systems for improving humoral and cellular immune responses. ACS Appl. Nano Mater. 3, 9449–9461 (2020). https://doi.org/10.1021/acsanm.0c02062
Article
CAS
Google Scholar
Y. Li, W. Liu, C. Sun, M. Zheng, J. Zhang, B. Liu, Y. Wang, Z. Xie, N. Xu, Hybrids of carbon dots with subunit B of ricin toxin for enhanced immunomodulatory activity. J. Colloid Interface Sci. 523, 226–233 (2018). https://doi.org/10.1016/j.jcis.2018.03.108
Article
CAS
Google Scholar
T. Du, J. Liang, N. Dong, L. Liu, L. Fang, S. Xiao, H. Han, Carbon dots as inhibitors of virus by activation of type I interferon response. Carbon N. Y. 110, 278 (2016). https://doi.org/10.1016/j.carbon.2016.09.032
Article
CAS
Google Scholar
F. McNab, K. Mayer-Barber, A. Sher, A. Wack, A. O’garra, Type I interferons in infectious disease. Nat. Rev. Immunol. 15, 87–103 (2015). https://doi.org/10.1038/nri3787
Article
CAS
Google Scholar
L.M. Snell, T.L. McGaha, D.G. Brooks, Type I interferon in chronic virus infection and cancer. Trends Immunol. 38, 542–557 (2017). https://doi.org/10.1016/j.it.2017.05.005
Article
CAS
Google Scholar
WHO Coronavirus (COVID-19) Dashboard | WHO Coronavirus (COVID-19) Dashboard With Vaccination Data, (n.d.). (WHO, 2021) https://covid19.who.int/. Accessed 5 Oct 2021.
WCW. Chan, Nano research for COVID-19. ACS Nano. 14, 3719 (2020). https://doi.org/10.1021/acsnano.0c02540.
W. Guan, Z. Ni, Y. Hu, W. Liang, C. Ou, J. He, L. Liu, H. Shan, C. Lei, D.S.C. Hui, B. Du, L. Li, G. Zeng, K.Y. Yuen, R. Chen, C. Tang, T. Wang, P. Chen, J. Xiang, S. Li, J.L. Wang, Z. Liang, Y. Peng, L. Wei, Y. Liu, Y.H. Hu, P. Peng, J.M. Wang, J. Liu, Z. Chen, G. Li, Z. Zheng, S. Qiu, J. Luo, C. Ye, S. Zhu, N. Zhong, Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382, 1708 (2020). https://doi.org/10.1056/NEJMoa2002032
Article
CAS
Google Scholar
H.W. Zhang, J. Yu, H.J. Xu, Y. Lei, Z.H. Pu, W.C. Dai, F. Lin, Y.L. Wang, X.L. Wu, L.H. Liu, Corona virus international public health emergencies: implications for radiology management. Acad. Radiol. 27, 463–467 (2020). https://doi.org/10.1016/j.acra.2020.02.003
Article
Google Scholar
P.B. van Kasteren, B. van der Veer, S. van den Brink, L. Wijsman, J. de Jonge, A. van den Brandt, R. Molenkamp, C.B.E.M. Reusken, A. Meijer, Comparison of seven commercial RT-PCR diagnostic kits for COVID-19. J. Clin. Virol. 128, 104412 (2020). https://doi.org/10.1016/j.jcv.2020.104412
Article
CAS
Google Scholar
B. Udugama, P. Kadhiresan, H.N. Kozlowski, A. Malekjahani, M. Osborne, V.Y.C. Li, H. Chen, S. Mubareka, J.B. Gubbay, W.C.W. Chan, Diagnosing COVID-19: the disease and tools for detection. ACS Nano. 14, 3822 (2020). https://doi.org/10.1021/acsnano.0c02624
Article
CAS
Google Scholar
O. Vandenberg, D. Martiny, O. Rochas, A. van Belkum, Z. Kozlakidis, Considerations for diagnostic COVID-19 tests. Nat. Rev. Microbiol. 19, 171–183 (2021). https://doi.org/10.1038/s41579-020-00461-z
Article
CAS
Google Scholar
K.K.W. To, O.T.Y. Tsang, W.S. Leung, A.R. Tam, T.C. Wu, D.C. Lung, C.C.Y. Yip, J.P. Cai, J.M.C. Chan, T.S.H. Chik, Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect. Dis. 20, 565–574 (2020). https://doi.org/10.1016/S1473-3099(20)30196-1
Article
CAS
Google Scholar
S. Alpdagtas, E. Ilhan, E. Uysal, M. Sengor, C.B. Ustundag, O. Gunduz, Evaluation of current diagnostic methods for COVID-19. APL Bioeng. 4, 41506 (2020). https://doi.org/10.1063/5.0021554
Article
CAS
Google Scholar
F. Xiang, X. Wang, X. He, Z. Peng, B. Yang, J. Zhang, Q. Zhou, H. Ye, Y. Ma, H. Li, Antibody detection and dynamic characteristics in patients with coronavirus disease 2019. Clin. Infect. Dis. 71, 1930–1934 (2020). https://doi.org/10.1093/cid/ciaa461
Article
CAS
Google Scholar
K.A. Madurani, S. Suprapto, M.Y. Syahputra, I. Puspita, A. Masudi, H.D. Rizqi, A.M. Hatta, J. Juniastuti, M.I. Lusida, F. Kurniawan, Recent development of detection methods for controlling COVID-19 outbreak. J. Electrochem. Soc. 168, 37511 (2021)
Article
CAS
Google Scholar
S.H. Qaddare, A. Salimi, Amplified fluorescent sensing of DNA usingensin luminescent carbon dots and AuNPs/GO as a sg platform: a novel coupling of FRET and DNA hybridization for homogeneous HIV-1 gene detection at femtomolar level. Biosens. Bioelectron. 89, 773–780 (2017). https://doi.org/10.1016/j.bios.2016.10.033
Article
CAS
Google Scholar
O.J. Achadu, F. Abe, F. Hossain, F. Nasrin, M. Yamazaki, T. Suzuki, E.Y. Park, Sulfur-doped carbon dots@ polydopamine-functionalized magnetic silver nanocubes for dual-modality detection of norovirus. Biosens. Bioelectron. 193, 113540 (2021). https://doi.org/10.1016/j.mtphys.2021.100576
Article
CAS
Google Scholar
J.L. Wu, W.P. Tseng, C.H. Lin, T.F. Lee, M.Y. Chung, C.H. Huang, S.Y. Chen, P.R. Hsueh, S.C. Chen, Four point-of-care lateral flow immunoassays for diagnosis of COVID-19 and for assessing dynamics of antibody responses to SARS-CoV-2. J. Infect. 81, 435 (2020). https://doi.org/10.1016/j.jinf.2020.06.023
Article
CAS
Google Scholar
L.D. Xu, Q. Zhang, S.N. Ding, J.J. Xu, H.Y. Chen, Ultrasensitive detection of severe fever with thrombocytopenia syndrome virus based on immunofluorescent carbon dots/SiO2 nanosphere-based lateral flow assay. ACS Omega 4, 21431–21438 (2019). https://doi.org/10.1021/acsomega.9b03130
Article
CAS
Google Scholar
Y. Li, P. Ma, Q. Tao, H.J. Krause, S. Yang, G. Ding, H. Dong, X. Xie, Magnetic graphene quantum dots facilitate closed-tube one-step detection of SARS-CoV-2 with ultra-low field NMR relaxometry. Sens. Actuators B Chem. 337, 129786 (2021). https://doi.org/10.1016/j.snb.2021.129786
Article
CAS
Google Scholar
Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations, (WHO, 2020), https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations. Accessed 5 Oct 2021.
P.K. Raghav, S. Mohanty, Are graphene and graphene-derived products capable of preventing COVID-19 infection? Med. Hypotheses. 144, 110031 (2020). https://doi.org/10.1016/j.mehy.2020.110031
Article
CAS
Google Scholar
H. Mohammed, A. Kumar, E. Bekyarova, Y.M. Al-Hadeethi, X. Zhang, M. Chen, S. Ansari, A. Cochis, L. Rimondini, Antimicrobial mechanisms and effectiveness of graphene and graphene-functionalized biomaterials. A scope rReview. Front. Bioeng. Biotechnol. 8, 465 (2020). https://doi.org/10.3389/fbioe.2020.00465
Article
Google Scholar
M. Zare, M. Sillanpää, S. Ramakrishna, Essential role of quantum science and nanoscience in antiviral strategies for COVID-19. Mater. Adv. 2, 2188 (2021). https://doi.org/10.1039/D1MA00060H
Article
CAS
Google Scholar
F. Alizadeh, A. Khodavandi, Systematic review and meta-analysis of the efficacy of nanoscale materials against coronaviruses-possible potential antiviral agents for SARS-CoV-2. IEEE Trans. Nanobiosci. 19, 485 (2020). https://doi.org/10.1109/TNB.2020.2997257
Article
Google Scholar
S. Li, Z. Guo, G. Zeng, Y. Zhang, W. Xue, Z. Liu, Polyethylenimine-modified fluorescent carbon dots as vaccine delivery system for intranasal immunization. ACS Biomater. Sci. Eng. 4, 142 (2018). https://doi.org/10.1021/acsbiomaterials.7b00370
Article
CAS
Google Scholar
J. Cheng, Y. Xu, D. Zhou, K. Liu, N. Geng, J. Lu, Y. Liu, J. Liu, Novel carbon quantum dots can serve as an excellent adjuvant for the gp85 protein vaccine against avian leukosis virus subgroup J in chickens. Poult. Sci. 98, 5315 (2019). https://doi.org/10.3382/ps/pez313
Article
CAS
Google Scholar