S.K. Krishnan, E. Singh, P. Singh, M. Meyyappan, H.S. Nalwa, A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 9, 8778–8781 (2019). https://doi.org/10.1039/c8ra09577a
Article
CAS
Google Scholar
N. Wongkaew, M. Simsek, C. Griesche, A.J. Baeumner, Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: recent progress, applications, and future perspective. Chem. Rev. 119, 120–194 (2019). https://doi.org/10.1021/acs.chemrev.8b00172
Article
CAS
Google Scholar
M.H. Asif, A. Razaq, N. Akbar, B. Danielsson, I. Sultana, Facile synthesis of multisegment Au/Ni/Au nanowire for high performance electrochemical glucose sensor. Mater. Res. Express. 6, 95028 (2019)
CAS
Google Scholar
R. Asmatulu, Z. Veisi, M.N. Uddin, A. Mahapatro, Highly sensitive and reliable electrospun polyaniline nanofiber based biosensor as a robust platform for COX-2 enzyme detections. Fibers Polym. 20, 966–974 (2019). https://doi.org/10.1007/s12221-019-1096-x
Article
CAS
Google Scholar
Y. Niu, H. Xie, G. Luo, W. Weng, C. Ruan, G. Li, W. Sun, Electrochemical performance of myoglobin based on TiO2-doped carbon nanofiber decorated electrode and its applications in biosensing. RSC Adv. 9, 4480–4487 (2019). https://doi.org/10.1039/c8ra07910b
Article
CAS
Google Scholar
R. Patel, P. Zaveri, A. Mukherjee, P.K. Agarwal, P. More, N.S. Munshi, Development of fluorescent protein-based biosensing strains: a new tool for the detection of aromatic hydrocarbon pollutants in the environment. Ecotoxicol. Environ. Saf. 182, 109450 (2019). https://doi.org/10.1016/j.ecoenv.2019.109450
Article
CAS
Google Scholar
M. Dhawane, A. Deshpande, R. Jain, P. Dandekar, Colorimetric point-of-care detection of cholesterol using chitosan nanofibers. Sensors Actuators, B Chem. 281, 72–79 (2019). https://doi.org/10.1016/j.snb.2018.10.060
Article
CAS
Google Scholar
F. Hassan, C. Gentry-weeks, M. Reynolds, Y.V. Li, Study on microstructure and mechanical properties of polydiacetylene composite biosensors. J. Appl. Polym. Sci. 47877, 1–14 (2019). https://doi.org/10.1002/app.47877
Article
CAS
Google Scholar
P. Mengarda, F.A.L. Dias, J.V.C. Peixoto, R. Osiecki, M.F. Bergamini, L.H. Marcolino, Determination of lactate levels in biological fluids using a disposable ion-selective potentiometric sensor based on polypyrrole films. Sensors Actuators B Chem. 126, 663 (2019)
Google Scholar
S. Dantism, D. Röhlen, T. Selmer, T. Wagner, P. Wagner, M.J. Schöning, Quantitative differential monitoring of the metabolic activity of Corynebacterium glutamicum cultures utilizing a light-addressable potentiometric sensor system. Biosens. Bioelectron. 139, 111332 (2019)
CAS
Google Scholar
P. Vizzini, M. Braidot, J. Vidic, M. Manzano, Electrochemical and optical biosensors for the detection of campylobacter and listeria: an update look. Micromachines. 10, 500 (2019)
Google Scholar
C. Banbury, J.J.S. Rickard, S. Mahajan, P. GoldbergOppenheimer, Tuneable metamaterial-like platforms for surface-enhanced raman scattering via three-dimensional block co-polymer-based nanoarchitectures. ACS Appl. Mater. Interfaces. 11, 14437–14444 (2019)
CAS
Google Scholar
Y. Jiang, D.-W. Sun, H. Pu, Q. Wei, Ultrasensitive analysis of kanamycin residue in milk by SERS-based aptasensor. Talanta 197, 151–158 (2019)
CAS
Google Scholar
Z. Rezaei, M. Mahmoudifard, Pivotal role of electrospun nanofibers in microfluidic diagnostic systems—a review. J. Mater. Chem. B. 7, 4602–4619 (2019). https://doi.org/10.1039/c9tb00682f
Article
CAS
Google Scholar
J. Zhang, F. Zhang, J. Song, L. Liu, Y. Si, J. Yu, B. Ding, Electrospun flexible nanofibrous membranes for oil/water separation. J. Mater. Chem. A. 7, 20075–20102 (2019). https://doi.org/10.1039/c9ta07296a
Article
CAS
Google Scholar
T. Tite, E.A. Chiticaru, J.S. Burns, M. Ioniţă, Impact of nano-morphology, lattice defects and conductivity on the performance of graphene based electrochemical biosensors. J. Nanobiotechnol. 17, 1–22 (2019). https://doi.org/10.1186/s12951-019-0535-6
Article
CAS
Google Scholar
G. Park, S. Kim, S. Chae, H. Han, T.H. Le, K.S. Yang, M. Chang, H. Kim, H. Yoon, Combining SWNT and graphene in polymer nanofibers: a route to unique carbon precursors for electrochemical capacitor electrodes. Langmuir 35, 3077–3086 (2019). https://doi.org/10.1021/acs.langmuir.8b03766
Article
CAS
Google Scholar
E. Correa, M.E. Moncada, O.D. Gutiérrez, C.A. Vargas, V.H. Zapata, Characterization of polycaprolactone/rGO nanocomposite scaffolds obtained by electrospinning. Mater. Sci. Eng. C 103, 109773 (2019). https://doi.org/10.1016/j.msec.2019.109773
Article
CAS
Google Scholar
B. SuganyaBharathi, T. Stalin, Cerium oxide and peppermint oil loaded polyethylene oxide/graphene oxide electrospun nanofibrous mats as antibacterial wound dressings. Mater. Today Commun. 21, 100664 (2019). https://doi.org/10.1016/j.mtcomm.2019.100664
Article
CAS
Google Scholar
D.G. Prajapati, B. Kandasubramanian, Progress in the development of intrinsically conducting polymer composites as biosensors. Macromol. Chem. Phys. 220, 1–26 (2019). https://doi.org/10.1002/macp.201800561
Article
CAS
Google Scholar
J. Avossa, R. Paolesse, C. Di Natale, E. Zampetti, G. Bertoni, F. De Cesare, G. Scarascia-Mugnozza, A. Macagnano, Electrospinning of polystyrene/polyhydroxybutyrate nanofibers doped with porphyrin and graphene for chemiresistor gas sensors. Nanomaterials. 9, 280 (2019). https://doi.org/10.3390/nano9020280
Article
CAS
Google Scholar
J.-H. Lee, S. Park, J.-W. Choi, Electrical property of graphene and its application to electrochemical biosensing. Nanomaterials. 9, 297 (2019). https://doi.org/10.3390/nano9020297
Article
CAS
Google Scholar
J. Sengupta, C.M. Hussain, Graphene and its derivatives for analytical lab on chip platforms. TrAC 114, 326–337 (2019). https://doi.org/10.1016/j.trac.2019.03.015
Article
CAS
Google Scholar
S. Muniandy, S.J. Teh, K.L. Thong, A. Thiha, I.J. Dinshaw, C.W. Lai, F. Ibrahim, B.F. Leo, Carbon nanomaterial-based electrochemical biosensors for foodborne bacterial detection. Crit. Rev. Anal. Chem. (2019). https://doi.org/10.1080/10408347.2018.1561243
Article
Google Scholar
Y. Song, Y. Luo, C. Zhu, H. Li, D. Du, Y. Lin, Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosens. Bioelectron. 76, 195–212 (2016). https://doi.org/10.1016/j.bios.2015.07.002
Article
CAS
Google Scholar
A. Liang, X. Jiang, X. Hong, Y. Jiang, Z. Shao, D. Zhu, Recent developments concerning the dispersion methods and mechanisms of graphene. Coatings. 8, 33 (2018). https://doi.org/10.3390/coatings8010033
Article
CAS
Google Scholar
Y. Guo, X. Yang, K. Ruan, J. Kong, M. Dong, J. Zhang, J. Gu, Z. Guo, Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites. ACS Appl. Mater. Interfaces. 11, 25465–25473 (2019). https://doi.org/10.1021/acsami.9b10161
Article
CAS
Google Scholar
L.A. Mercante, V.P. Scagion, F.L. Migliorini, L.H.C. Mattoso, D.S. Correa, Electrospinning-based (bio)sensors for food and agricultural applications: a review. TrAC 91, 91–103 (2017). https://doi.org/10.1016/j.trac.2017.04.004
Article
CAS
Google Scholar
M. Zhang, Y. Li, Z. Su, G. Wei, Recent advances in the synthesis and applications of graphene–polymer nanocomposites. Polym. Chem. 6, 6107–6124 (2015)
CAS
Google Scholar
M.M. Abdel-Mottaleb, A. Khalil, S. Karim, T.A. Osman, A. Khattab, High performance of PAN/GO-ZnO composite nanofibers for photocatalytic degradation under visible irradiation. J. Mech. Behav. Biomed. Mater. 96, 118–124 (2019)
CAS
Google Scholar
J.K.Y. Lee, N. Chen, S. Peng, L. Li, L. Tian, N. Thakor, S. Ramakrishna, Polymer-based composites by electrospinning: preparation and functionalization with nanocarbons. Prog. Polym. Sci. 86, 40–84 (2018)
CAS
Google Scholar
S. DemiroğluMustafov, A.K. Mohanty, M. Misra, M.Ö. Seydibeyoğlu, Fabrication of conductive Lignin/PAN carbon nanofiber with enhanced graphene for the modified electrode. Carbon N. Y. 147, 262–275 (2019). https://doi.org/10.1016/j.carbon.2019.02.058
Article
CAS
Google Scholar
M.E. Darzi, S.I. Golestaneh, M. Kamali, G. Karimi, Thermal and electrical performance analysis of co-electrospun-electrosprayed PCM nanofiber composites in the presence of graphene and carbon fiber powder. Renew. Energy. 135, 719–728 (2019). https://doi.org/10.1016/j.renene.2018.12.028
Article
CAS
Google Scholar
S. Jiang, Y. Chen, G. Duan, C. Mei, A. Greiner, S. Agarwal, Electrospun nanofiber reinforced composites: a review. Polym. Chem. 9, 2685–2720 (2018). https://doi.org/10.1039/c8py00378e
Article
CAS
Google Scholar
X. Lu, M. Li, H. Wang, C. Wang, Advanced electrospun nanomaterials for highly efficient electrocatalysis. Inorg. Chem. Front. (2019). https://doi.org/10.1039/c9qi00799g
Article
Google Scholar
Q. Liu, Z. Chen, X. Pei, C. Guo, K. Teng, Y. Hu, Z. Xu, X. Qian, Review: applications, effects and the prospects for electrospun nanofibrous mats in membrane separation. J. Mater. Sci. (2019). https://doi.org/10.1007/s10853-019-04012-7
Article
Google Scholar
D.H. Reneker, A.L. Yarin, Electrospinning jets and polymer nanofibers. Polymer (Guildf). 49, 2387–2425 (2008)
CAS
Google Scholar
S.S. Ray, S.-S. Chen, C.-W. Li, N.C. Nguyen, H.T. Nguyen, A comprehensive review: electrospinning technique for fabrication and surface modification of membranes for water treatment application. RSC Adv. 6, 85495–85514 (2016). https://doi.org/10.1039/C6RA14952A
Article
CAS
Google Scholar
A. Haider, S. Haider, I.-K. Kang, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 11, 1165–1188 (2018)
CAS
Google Scholar
J. Xue, T. Wu, Y. Dai, Y. Xia, U. States, Electrospinning and electrospun nano fibers: methods, materials, and applications. Chem. Rev. (2019). https://doi.org/10.1021/acs.chemrev.8b00593
Article
Google Scholar
C. Wang, J. Wang, L. Zeng, Z. Qiao, X. Liu, H. Liu, J. Zhang, J. Ding, Fabrication of electrospun polymer nanofibers with diverse morphologies. Molecules (2019). https://doi.org/10.3390/molecules24050834
Article
Google Scholar
L. Wang, G. Yang, S. Peng, J. Wang, W. Yan, S. Ramakrishna, One-dimensional nanomaterials toward electrochemical sodium-ion storage applications via electrospinning. Energy Storage Mater. (2019). https://doi.org/10.1016/j.ensm.2019.09.036
Article
Google Scholar
Y. Sun, S. Cheng, W. Lu, Y. Wang, P. Zhang, Q. Yao, Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization. RSC Adv. 9, 25712–25729 (2019). https://doi.org/10.1039/C9RA05012D
Article
CAS
Google Scholar
Y. Huang, J. Song, C. Yang, Y. Long, H. Wu, Scalable manufacturing and applications of nanofibers. Mater. Today 28, 98–113 (2019). https://doi.org/10.1016/j.mattod.2019.04.018
Article
CAS
Google Scholar
R.K. Mishra, P. Mishra, K. Verma, A. Mondal, R.G. Chaudhary, M.M. Abolhasani, S. Loganathan, Electrospinning production of nanofibrous membranes. Springer Int. Publ. (2018). https://doi.org/10.1007/s10311-018-00838-w
Article
Google Scholar
S. Kumar, K. Chatterjee, Comprehensive review on the use of graphene-based substrates for regenerative medicine and biomedical devices. ACS Appl. Mater. Interfaces. 8, 26431–26457 (2016). https://doi.org/10.1021/acsami.6b09801
Article
CAS
Google Scholar
Y.-C. Kong, P.-R. Wu, J.-W. Dong, H.-L. Ding, Z. Liu, Z.-L. Cheng, Oxalic acid assisted expansion–reduction exfoliation of graphene oxide into graphene nanosheets. Mater. Lett. 231, 51–55 (2018)
CAS
Google Scholar
Y. Che, G. Zhang, Y. Zhang, X. Cao, M. Cao, Y. Yu, H. Dai, J. Yao, Solution-processed graphene phototransistor functionalized with P3HT/graphene bulk heterojunction. Opt. Commun. 425, 161–165 (2018)
CAS
Google Scholar
S.F. Braga, V.R. Coluci, S.B. Legoas, R. Giro, D.S. Galvão, R.H. Baughman, Structure and dynamics of carbon nanoscrolls. Nano Lett. 4, 881–884 (2004)
CAS
Google Scholar
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science (80−) 306, 666–669 (2004)
CAS
Google Scholar
K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)
CAS
Google Scholar
K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature. 438, 197 (2005)
CAS
Google Scholar
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)
CAS
Google Scholar
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science (80−) 321, 385–388 (2008)
CAS
Google Scholar
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010). https://doi.org/10.1002/adma.201001068
Article
CAS
Google Scholar
X. Zhu, Y. Liu, P. Li, Z. Nie, J. Li, Applications of graphene and its derivatives in intracellular biosensing and bioimaging. Analyst. 141, 4541–4553 (2016). https://doi.org/10.1039/c6an01090c
Article
CAS
Google Scholar
T.P. Dasari Shareena, D. McShan, A.K. Dasmahapatra, P.B. Tchounwou, A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett. 10, 1–34 (2018). https://doi.org/10.1007/s40820-018-0206-4
Article
CAS
Google Scholar
S. Kumar, S.D. Bukkitgar, S. Singhratibha, V. Singh, K.R. Reddy, N.P. Shetti, C. Venkata Reddy, V. Sadhu, S. Naveen, Electrochemical sensors and biosensors based on graphene functionalized with metal oxide nanostructures for healthcare applications. ChemistrySelect. 4, 5322–5337 (2019). https://doi.org/10.1002/slct.201803871
Article
CAS
Google Scholar
D.G. Papageorgiou, I.A. Kinloch, R.J. Young, Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater Sci. 90, 75–127 (2017). https://doi.org/10.1016/j.pmatsci.2017.07.004
Article
CAS
Google Scholar
S.K. Yadav, J.W. Cho, Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Appl. Surf. Sci. 266, 360–367 (2013)
CAS
Google Scholar
W. Tong, Y. Zhang, L. Yu, X. Luan, Q. An, Q. Zhang, F. Lv, P.K. Chu, B. Shen, Z. Zhang, Novel method for the fabrication of flexible film with oriented arrays of graphene in poly (vinylidene fluoride-co-hexafluoropropylene) with low dielectric loss. J. Phys. Chem. C 118, 10567–10573 (2014)
CAS
Google Scholar
M. Yi, Z. Shen, A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A. 3, 11700–11715 (2015)
CAS
Google Scholar
R.S. Edwards, K.S. Coleman, Graphene synthesis: relationship to applications. Nanoscale. 5, 38–51 (2013)
CAS
Google Scholar
K. Javed, M. Oolo, N. Savest, A. Krumme, A review on graphene-based electrospun conductive nanofibers, supercapacitors, anodes, and cathodes for lithium-ion batteries. Crit. Rev. Solid State Mater. Sci. (2018). https://doi.org/10.1080/10408436.2018.1492367
Article
Google Scholar
S. Garain, S. Jana, T.K. Sinha, D. Mandal, Design of in situ poled Ce3+-doped electrospun PVDF/graphene composite nanofibers for fabrication of nanopressure sensor and ultrasensitive acoustic nanogenerator. ACS Appl. Mater. Interfaces. 8, 4532–4540 (2016). https://doi.org/10.1021/acsami.5b11356
Article
CAS
Google Scholar
S. Priyadarsini, S. Mohanty, S. Mukherjee, S. Basu, M. Mishra, Graphene and graphene oxide as nanomaterials for medicine and biology application. J. Nanostruct. Chem. 8, 123–137 (2018). https://doi.org/10.1007/s40097-018-0265-6
Article
CAS
Google Scholar
I. Khalil, S. Rahmati, N. MuhdJulkapli, W.A. Yehye, Graphene metal nanocomposites—recent progress in electrochemical biosensing applications. J. Ind. Eng. Chem. 59, 425–439 (2018). https://doi.org/10.1016/j.jiec.2017.11.001
Article
CAS
Google Scholar
A.T. Lawal, Graphene-based nano composites and their applications. A review. Biosens. Bioelectron. 141, 111384 (2019). https://doi.org/10.1016/j.bios.2019.111384
Article
CAS
Google Scholar
I.I. Bobrinetskiy, N.Z. Knezevic, Graphene-based biosensors for on-site detection of contaminants in food. Anal. Methods 10, 5061–5070 (2018). https://doi.org/10.1039/c8ay01913d
Article
CAS
Google Scholar
N. Chauhan, T. Maekawa, D.N.S. Kumar, Graphene based biosensors—Accelerating medical diagnostics to new-dimensions. J. Mater. Res. 32, 2860–2882 (2017). https://doi.org/10.1557/jmr.2017.91
Article
CAS
Google Scholar
T. Terse-Thakoor, S. Badhulika, A. Mulchandani, Graphene based biosensors for healthcare. J. Mater. Res. 32, 2905–2929 (2017). https://doi.org/10.1557/jmr.2017.175
Article
CAS
Google Scholar
P. Suvarnaphaet, S. Pechprasarn, Graphene-based materials for biosensors: a review. Sensors (2017). https://doi.org/10.3390/s17102161
Article
Google Scholar
J. Peña-Bahamonde, H.N. Nguyen, S.K. Fanourakis, D.F. Rodrigues, Recent advances in graphene-based biosensor technology with applications in life sciences. J. Nanobiotechnol. 16, 1–17 (2018). https://doi.org/10.1186/s12951-018-0400-z
Article
CAS
Google Scholar
A.T. Lawal, Progress in utilisation of graphene for electrochemical biosensors. Biosens. Bioelectron. 106, 149–178 (2018). https://doi.org/10.1016/j.bios.2018.01.030
Article
CAS
Google Scholar
G. Gnana Kumar, G. Amala, S.M. Gowtham, Recent advancements, key challenges and solutions in non-enzymatic electrochemical glucose sensors based on graphene platforms. RSC Adv. 7, 36949–36976 (2017). https://doi.org/10.1039/c7ra02845h
Article
CAS
Google Scholar
S. Cinti, F. Arduini, Graphene-based screen-printed electrochemical (bio) sensors and their applications: efforts and criticisms. Biosens. Bioelectron. 89, 107–122 (2017)
CAS
Google Scholar
C. Zhang, Z. Zhang, Q. Yang, W. Chen, Graphene-based electrochemical glucose sensors: fabrication and sensing properties. Electroanalysis 30, 2504–2524 (2018). https://doi.org/10.1002/elan.201800522
Article
CAS
Google Scholar
H. Song, X. Zhang, Y. Liu, Z. Su, Developing graphene-based nanohybrids for electrochemical sensing. Chem. Rec. 19, 534–549 (2019). https://doi.org/10.1002/tcr.201800084
Article
CAS
Google Scholar
X. Bo, M. Zhou, L. Guo, Electrochemical sensors and biosensors based on less aggregated graphene. Biosens. Bioelectron. 89, 167–186 (2017). https://doi.org/10.1016/j.bios.2016.05.002
Article
CAS
Google Scholar
C.I.L. Justino, A.R. Gomes, A.C. Freitas, A.C. Duarte, T.A.P. Rocha-Santos, Graphene based sensors and biosensors. TrAC 91, 53–66 (2017). https://doi.org/10.1016/j.trac.2017.04.003
Article
CAS
Google Scholar
T.T. Tung, M.J. Nine, M. Krebsz, T. Pasinszki, C.J. Coghlan, D.N.H. Tran, D. Losic, Recent advances in sensing applications of graphene assemblies and their composites. Adv. Funct. Mater. 27, 1–57 (2017). https://doi.org/10.1002/adfm.201702891
Article
CAS
Google Scholar
A. Nag, A. Mitra, S.C. Mukhopadhyay, Graphene and its sensor-based applications: a review. Sensors Actuat. A Phys. 270, 177–194 (2018). https://doi.org/10.1016/j.sna.2017.12.028
Article
CAS
Google Scholar
L. Wang, A. Wu, G. Wei, Graphene-based aptasensors: from molecule-interface interactions to sensor design and biomedical diagnostics. Analyst. 143, 1526–1543 (2018). https://doi.org/10.1039/c8an00081f
Article
CAS
Google Scholar
D.P. Singh, C.E. Herrera, B. Singh, S. Singh, R.K. Singh, R. Kumar, Graphene oxide: an efficient material and recent approach for biotechnological and biomedical applications. Mater. Sci. Eng. C 86, 173–197 (2018). https://doi.org/10.1016/j.msec.2018.01.004
Article
CAS
Google Scholar
S. Taniselass, M.K.M. Arshad, S.C.B. Gopinath, Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosens. Bioelectron. 130, 276–292 (2019). https://doi.org/10.1016/j.bios.2019.01.047
Article
CAS
Google Scholar
W. Wang, H. Su, Y. Wu, T. Zhou, T. Li, Review-biosensing and biomedical applications of graphene: a review of current progress and future prospect. J. Electrochem. Soc. 166, B505–B520 (2019). https://doi.org/10.1149/2.1231906jes
Article
CAS
Google Scholar
C. Nie, L. Ma, S. Li, X. Fan, Y. Yang, C. Cheng, W. Zhao, C. Zhao, Recent progresses in graphene based bio-functional nanostructures for advanced biological and cellular interfaces. Nano Today. 26, 57–97 (2019). https://doi.org/10.1016/j.nantod.2019.03.003
Article
CAS
Google Scholar
G. Reina, J.M. González-Domínguez, A. Criado, E. Vázquez, A. Bianco, M. Prato, Promises, facts and challenges for graphene in biomedical applications. Chem. Soc. Rev. 46, 4400–4416 (2017). https://doi.org/10.1039/c7cs00363c
Article
CAS
Google Scholar
C.S. Park, H. Yoon, O.S. Kwon, Graphene-based nanoelectronic biosensors. J. Ind. Eng. Chem. 38, 13–22 (2016)
CAS
Google Scholar
S. Haar, A. Ciesielski, J. Clough, H. Yang, R. Mazzaro, F. Richard, S. Conti, N. Merstorf, M. Cecchini, V. Morandi, A supramolecular strategy to leverage the liquid-phase exfoliation of graphene in the presence of surfactants: unraveling the role of the length of fatty acids. Small 11, 1691–1702 (2015)
CAS
Google Scholar
H. Choi, K. Ahn, Y. Lee, S. Noh, H. Yoon, Free-standing, multilayered graphene/polyaniline-glue/graphene nanostructures for flexible, solid-state electrochemical capacitor application. Adv. Mater. Interfaces. 2, 1500117 (2015)
Google Scholar
Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 130, 5856–5857 (2008)
CAS
Google Scholar
C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43, 291–312 (2014)
CAS
Google Scholar
K.S. Novoselov, V.I. Fal, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490, 192 (2012)
CAS
Google Scholar
A. Vasilescu, A. Hayat, S. Gáspár, J.L. Marty, Advantages of carbon nanomaterials in electrochemical aptasensors for food analysis. Electroanalysis 30, 2–19 (2018). https://doi.org/10.1002/elan.201700578
Article
CAS
Google Scholar
M. Pumera, Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 39, 4146–4157 (2010)
CAS
Google Scholar
A. Ambrosi, C.K. Chua, A. Bonanni, M. Pumera, Electrochemistry of graphene and related materials. Chem. Rev. 114, 7150–7188 (2014)
CAS
Google Scholar
M. Pumera, Electrochemistry of graphene: new horizons for sensing and energy storage. Chem. Rec. 9, 211–223 (2009)
CAS
Google Scholar
M. Pumera, Electrochemistry of graphene, graphene oxide and other graphenoids. Electrochem. Commun. 36, 14–18 (2013)
CAS
Google Scholar
A. Kaplan, Z. Yuan, J.D. Benck, A. Govind Rajan, X.S. Chu, Q.H. Wang, M.S. Strano, Current and future directions in electron transfer chemistry of graphene. Chem. Soc. Rev. 46, 4530–4571 (2017). https://doi.org/10.1039/c7cs00181a
Article
CAS
Google Scholar
X. Wang, D. Gao, M. Li, H. Li, C. Li, X. Wu, B. Yang, CVD graphene as an electrochemical sensing platform for simultaneous detection of biomolecules. Sci. Rep. 7, 1–9 (2017). https://doi.org/10.1038/s41598-017-07646-2
Article
CAS
Google Scholar
T. Zhang, J. Liu, C. Wang, X. Leng, Y. Xiao, L. Fu, Synthesis of graphene and related two-dimensional materials for bioelectronics devices. Biosens. Bioelectron. 89, 28–42 (2017)
CAS
Google Scholar
M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, X. Wu, C. Berger, W.A. De Heer, Scalable templated growth of graphene nanoribbons on SiC. Nat. Nanotechnol. 5, 727 (2010)
CAS
Google Scholar
D.H. Lee, J.E. Kim, T.H. Han, J.W. Hwang, S. Jeon, S. Choi, S.H. Hong, W.J. Lee, R.S. Ruoff, S.O. Kim, Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films. Adv. Mater. 22, 1247–1252 (2010)
CAS
Google Scholar
X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science (80−) 324, 1312–1314 (2009)
CAS
Google Scholar
Y.I. Zhang, L. Zhang, C. Zhou, Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46, 2329–2339 (2013)
CAS
Google Scholar
I. Pasternak, M. Wesolowski, I. Jozwik, M. Lukosius, G. Lupina, P. Dabrowski, J.M. Baranowski, W. Strupinski, Graphene growth on Ge (100)/Si (100) substrates by CVD method. Sci. Rep. 6, 21773 (2016)
CAS
Google Scholar
J. Dabrowski, G. Lippert, J. Avila, J. Baringhaus, I. Colambo, Y.S. Dedkov, F. Herziger, G. Lupina, J. Maultzsch, T. Schaffus, Understanding the growth mechanism of graphene on Ge/Si (001) surfaces. Sci. Rep. 6, 31639 (2016)
CAS
Google Scholar
L. Baraton, Z.B. He, C.S. Lee, C.S. Cojocaru, M. Châtelet, J.-L. Maurice, Y.H. Lee, D. Pribat, On the mechanisms of precipitation of graphene on nickel thin films. EPL. 96, 46003 (2011)
Google Scholar
M. Losurdo, M.M. Giangregorio, P. Capezzuto, G. Bruno, Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 13, 20836–20843 (2011)
CAS
Google Scholar
J. Zhang, Z. Wang, T. Niu, S. Wang, Z. Li, W. Chen, Elementary process for CVD graphene on Cu (110): size-selective carbon clusters. Sci. Rep. 4, 4431 (2014)
Google Scholar
T. Niu, M. Zhou, J. Zhang, Y. Feng, W. Chen, Growth intermediates for CVD graphene on Cu (111): carbon clusters and defective graphene. J. Am. Chem. Soc. 135, 8409–8414 (2013)
CAS
Google Scholar
M. Liu, Y. Gao, Y. Zhang, Y. Zhang, D. Ma, Q. Ji, T. Gao, Y. Chen, Z. Liu, Single and polycrystalline graphene on Rh (111) following different growth mechanisms. Small 9, 1360–1366 (2013)
CAS
Google Scholar
A. Kordatos, N. Kelaidis, S.A. Giamini, J. Marquez-Velasco, E. Xenogiannopoulou, P. Tsipas, G. Kordas, A. Dimoulas, AB stacked few layer graphene growth by chemical vapor deposition on single crystal Rh (1 1 1) and electronic structure characterization. Appl. Surf. Sci. 369, 251–256 (2016)
CAS
Google Scholar
S. Yang, M.R. Lohe, K. Müllen, X. Feng, New-generation graphene from electrochemical approaches: production and applications. Adv. Mater. 28, 6213–6221 (2016)
CAS
Google Scholar
F. Li, H. Peng, D. Xia, J. Yang, K. Yang, F. Yin, W. Yuan, Highly sensitive, selective, and flexible NO2 chemiresistors based on multilevel structured three-dimensional reduced graphene oxide fiber scaffold modified with aminoanthroquinone moieties and Ag nanoparticles. ACS Appl. Mater. Interfaces. 11, 9309–9316 (2019). https://doi.org/10.1021/acsami.8b20462
Article
CAS
Google Scholar
J. Kim, L.J. Cote, F. Kim, W. Yuan, K.R. Shull, J. Huang, Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 132, 8180–8186 (2010)
CAS
Google Scholar
C. Cheng, S. Li, A. Thomas, N.A. Kotov, R. Haag, Functional graphene nanomaterials based architectures: biointeractions, fabrications, and emerging biological applications. Chem. Rev. 117, 1826–1914 (2017). https://doi.org/10.1021/acs.chemrev.6b00520
Article
CAS
Google Scholar
M. Bacon, S.J. Bradley, T. Nann, Graphene quantum dots. Part. Part. Syst. Charact. 31, 415–428 (2014)
CAS
Google Scholar
N. Suzuki, Y. Wang, P. Elvati, Z.-B. Qu, K. Kim, S. Jiang, E. Baumeister, J. Lee, B. Yeom, J.H. Bahng, Chiral graphene quantum dots. ACS Nano 10, 1744–1755 (2016)
CAS
Google Scholar
Y. Chong, Y. Ma, H. Shen, X. Tu, X. Zhou, J. Xu, J. Dai, S. Fan, Z. Zhang, The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials 35, 5041–5048 (2014)
CAS
Google Scholar
Q. Ye, L. Guo, D. Wu, B. Yang, Y. Tao, L. Deng, Y. Kong, Covalent functionalization of bovine serum albumin with graphene quantum dots for stereospecific molecular recognition. Anal. Chem. 91, 11864–11871 (2019). https://doi.org/10.1021/acs.analchem.9b02605
Article
CAS
Google Scholar
C. Cleeton, A. Keirouz, X. Chen, N. Radacsi, Electrospun nanofibers for drug delivery and biosensing. ACS Biomater. Sci. Eng. 5, 4183–4205 (2019). https://doi.org/10.1021/acsbiomaterials.9b00853
Article
CAS
Google Scholar
Y. Ding, W. Li, F. Zhang, Z. Liu, N. ZanjanizadehEzazi, D. Liu, H.A. Santos, Electrospun fibrous architectures for drug delivery, tissue engineering and cancer therapy. Adv. Funct. Mater. 29, 1–35 (2019). https://doi.org/10.1002/adfm.201802852
Article
CAS
Google Scholar
S. Jian, J. Zhu, S. Jiang, S. Chen, H. Fang, Y. Song, G. Duan, Y. Zhang, H. Hou, Nanofibers with diameter below one nanometer from electrospinning†. RSC Adv. 8, 4794–4802 (2018). https://doi.org/10.1039/c7ra13444d
Article
CAS
Google Scholar
C.T. Kenry, Lim, nanofiber technology: current status and emerging developments. Prog. Polym. Sci. 70, 1–17 (2017). https://doi.org/10.1016/j.progpolymsci.2017.03.002
Article
CAS
Google Scholar
N. Aliheidari, N. Aliahmad, M. Agarwal, H. Dalir, Electrospun nanofibers for label-free sensor applications. Sensors. 19, 3587 (2019). https://doi.org/10.3390/s19163587
Article
CAS
Google Scholar
A. Aydogdu, G. Sumnu, S. Sahin, A novel electrospun hydroxypropyl methylcellulose/polyethylene oxide blend nanofibers: morphology and physicochemical properties. Carbohydr. Polym. 181, 234–246 (2018). https://doi.org/10.1016/j.carbpol.2017.10.071
Article
CAS
Google Scholar
A. Nathani, C.S. Sharma, Electrospun mesoporous poly(styrene-block-methylmethacrylate) nanofibers as biosensing platform: effect of fibers porosity on sensitivity. Electroanalysis. 1, 8 (2019). https://doi.org/10.1002/elan.201800796
Article
CAS
Google Scholar
D. Silvestri, J. Mikšíček, S. Wacławek, R. Torres-Mendieta, V.V.T. Padil, M. Černík, Production of electrospun nanofibers based on graphene oxide/gum Arabic. Int. J. Biol. Macromol. 124, 396–402 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.243
Article
CAS
Google Scholar
R. Zhao, X. Lu, C. Wang, Electrospinning based all-nano composite materials: recent achievements and perspectives. Compos. Commun. 10, 140–150 (2018). https://doi.org/10.1016/j.coco.2018.09.005
Article
Google Scholar
M. Zhang, X. Zhao, G. Zhang, G. Wei, Z. Su, Electrospinning design of functional nanostructures for biosensor applications. J. Mater. Chem. B. 5, 1699–1711 (2017). https://doi.org/10.1039/c6tb03121h
Article
CAS
Google Scholar
H.J. Salavagione, M.A. Gómez-Fatou, P.S. Shuttleworth, G.J. Ellis, New perspectives on graphene/polymer fibers and fabrics for smart textiles: the relevance of the polymer/graphene interphase. Front. Mater. 5, 1–6 (2018). https://doi.org/10.3389/fmats.2018.00018
Article
Google Scholar
Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4, 1963–1970 (2010)
CAS
Google Scholar
N.A. Kumar, H.-J. Choi, Y.R. Shin, D.W. Chang, L. Dai, J.-B. Baek, Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors. ACS Nano 6, 1715–1723 (2012)
CAS
Google Scholar
Y. Si, E.T. Samulski, Synthesis of water soluble graphene. Nano Lett. 8, 1679–1682 (2008)
CAS
Google Scholar
Q. Wu, Y. Sun, H. Bai, G. Shi, High-performance supercapacitor electrodes based on graphene hydrogels modified with 2-aminoanthraquinone moieties. Phys. Chem. Chem. Phys. 13, 11193–11198 (2011)
CAS
Google Scholar
D. Cai, M. Song, Recent advance in functionalized graphene/polymer nanocomposites. J. Mater. Chem. 20, 7906–7915 (2010)
CAS
Google Scholar
T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3, 327 (2008)
CAS
Google Scholar
H. Li, W. Shi, X. Zeng, S. Huang, H. Zhang, X. Qin, Improved desalination properties of hydrophobic GO-incorporated PVDF electrospun nanofibrous composites for vacuum membrane distillation. Sep. Purif. Technol. 230, 115889 (2020). https://doi.org/10.1016/j.seppur.2019.115889
Article
CAS
Google Scholar
F. Du, L. Sun, Z. Huang, Z. Chen, Z. Xu, G. Ruan, C. Zhao, Electrospun reduced graphene oxide/TiO2/poly(acrylonitrile-co-maleic acid) composite nanofibers for efficient adsorption and photocatalytic removal of malachite green and leucomalachite green. Chemosphere 239, 124764 (2020). https://doi.org/10.1016/j.chemosphere.2019.124764
Article
CAS
Google Scholar
X. Gu, Y. Li, R. Cao, S. Liu, C. Fu, S. Feng, C. Yang, W. Cheng, Y. Wang, Novel electrospun poly(lactic acid)/poly(butylene carbonate)/graphene oxide nanofiber membranes for antibacterial applications. AIP Adv. (2019). https://doi.org/10.1063/1.5100109
Article
Google Scholar
S. Parandeh, M. Kharaziha, F. Karimzadeh, An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper. Nano Energy. 59, 412–421 (2019). https://doi.org/10.1016/j.nanoen.2019.02.058
Article
CAS
Google Scholar
H. Stone, S. Lin, K. Mequanint, Preparation and characterization of electrospun rGO-poly(ester amide) conductive scaffolds. Mater. Sci. Eng. C 98, 324–332 (2019). https://doi.org/10.1016/j.msec.2018.12.122
Article
CAS
Google Scholar
S. Bahrami, A. Solouk, H. Mirzadeh, A.M. Seifalian, Electroconductive polyurethane/graphene nanocomposite for biomedical applications. Compos. Part B Eng. 168, 421–431 (2019). https://doi.org/10.1016/j.compositesb.2019.03.044
Article
CAS
Google Scholar
G. Ghaderi, H. Tavanai, M. Bazarganipour, Electrospun graphene oxide incorporated PAN nanofibers, before and after activation. Mater. Res. Express. 6, 105047 (2019)
CAS
Google Scholar
E. Maccaferri, L. Mazzocchetti, T. Benelli, A. Zucchelli, L. Giorgini, Morphology, thermal, mechanical properties and ageing of nylon 6,6/graphene nanofibers as Nano2 materials. Compos. Part B Eng. 166, 120–129 (2019). https://doi.org/10.1016/j.compositesb.2018.11.096
Article
CAS
Google Scholar
D.A. Samani, A. Doostmohammadi, M.R. Nilforoushan, H. Nazari, Electrospun polycaprolactone/graphene/baghdadite composite nanofibres with improved mechanical and biological properties. Fibers Polym. 20, 982–990 (2019). https://doi.org/10.1007/s12221-019-1161-5
Article
CAS
Google Scholar
S. Pan, Z. Qi, Q. Li, Y. Ma, C. Fu, S. Zheng, W. Kong, Q. Liu, X. Yang, Graphene oxide-PLGA hybrid nanofibres for the local delivery of IGF-1 and BDNF in spinal cord repair. Artif. Cells Nanomed. Biotechnol. 47, 651–664 (2019). https://doi.org/10.1080/21691401.2019.1575843
Article
CAS
Google Scholar
S.N. Banitaba, D. Semnani, E. Heydari-Soureshjani, B. Rezaei, A.A. Ensafi, Nanofibrous poly(ethylene oxide)-based structures incorporated with multi-walled carbon nanotube and graphene oxide as all-solid-state electrolytes for lithium ion batteries. Polym. Int. (2019). https://doi.org/10.1002/pi.5889
Article
Google Scholar
M. Jahan Biglari, R. Semnani Rahbar, M. Shabanian, H.A. Khonakdar, Novel composite nanofibers based on polyamide 66/graphene oxide- grafted aliphatic- aromatic polyamide: preparation and characterization. Polym. Plast. Technol. Eng. (2018). https://doi.org/10.1080/03602559.2018.1542712
Article
Google Scholar
J. Ren, Y.C. Woo, M. Yao, S. Lim, L.D. Tijing, H.K. Shon, Nanoscale zero-valent iron (nZVI) immobilization onto graphene oxide (GO)-incorporated electrospun polyvinylidene fluoride (PVDF) nanofiber membrane for groundwater remediation via gravity-driven membrane filtration. Sci. Total Environ. 688, 787–796 (2019). https://doi.org/10.1016/j.scitotenv.2019.05.393
Article
CAS
Google Scholar
Y.I. Choi, B.U. Hwang, M. Meeseepong, A. Hanif, S. Ramasundaram, T.Q. Trung, N.E. Lee, Stretchable and transparent nanofiber-networked electrodes based on nanocomposites of polyurethane/reduced graphene oxide/silver nanoparticles with high dispersion and fused junctions. Nanoscale. 11, 4015–4024 (2019). https://doi.org/10.1039/c8nr10170a
Article
CAS
Google Scholar
R. Weng, L. Sun, L. Jiang, N. Li, G. Ruan, J. Li, F. Du, Electrospun graphene oxide-doped nanofiber-based solid phase extraction followed by high-performance liquid chromatography for the determination of tetracycline antibiotic residues in food samples. Food Anal. Methods 12, 1594–1603 (2019). https://doi.org/10.1007/s12161-019-01495-7
Article
Google Scholar
C.L. Huang, H.H. Wu, Y.C. Jeng, W.Z. Liang, Electrospun graphene nanosheet-filled poly(trimethylene terephthalate) composite fibers: Effects of the graphene nanosheet content on morphologies, electrical conductivity, crystallization behavior, and mechanical properties. Polymers (2019). https://doi.org/10.3390/polym11010164
Article
Google Scholar
N.M. Aboamera, A. Mohamed, A. Salama, T.A. Osman, A. Khattab, An effective removal of organic dyes using surface functionalized cellulose acetate/graphene oxide composite nanofibers. Cellulose 25, 4155–4166 (2018). https://doi.org/10.1007/s10570-018-1870-8
Article
CAS
Google Scholar
A.H. Davoodi, S. Mazinani, F. Sharif, S.O. Ranaei-Siadat, GO nanosheets localization by morphological study on PLA-GO electrospun nanocomposite nanofibers. J. Polym. Res. 25, 16–19 (2018). https://doi.org/10.1007/s10965-018-1589-0
Article
CAS
Google Scholar
K. Ruan, Y. Guo, Y. Tang, Y. Zhang, J. Zhang, M. He, J. Kong, J. Gu, Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique. Compos. Commun. 10, 68–72 (2018). https://doi.org/10.1016/j.coco.2018.07.003
Article
Google Scholar
V. Ruiz, A. Pérez-Marquez, J. Maudes, H.J. Grande, N. Murillo, Enhanced photostability and sensing performance of graphene quantum dots encapsulated in electrospun polyacrylonitrile nanofibrous filtering membranes. Sensors Actuators B Chem. 262, 902–912 (2018). https://doi.org/10.1016/j.snb.2018.02.081
Article
CAS
Google Scholar
K. Javed, A. Krumme, M. Viirsalu, I. Krasnou, T. Plamus, V. Vassiljeva, E. Tarasova, N. Savest, A. Mere, V. Mikli, M. Danilson, T. Kaljuvee, S. Lange, Q. Yuan, P.D. Topham, C.M. Chen, A method for producing conductive graphene biopolymer nanofibrous fabrics by exploitation of an ionic liquid dispersant in electrospinning. Carbon N. Y. 140, 148–156 (2018). https://doi.org/10.1016/j.carbon.2018.08.034
Article
CAS
Google Scholar
A. Gebrekrstos, G. Madras, S. Bose, Piezoelectric response in electrospun poly(vinylidene fluoride) fibers containing fluoro-doped graphene derivatives. ACS Omega. 3, 5317–5326 (2018). https://doi.org/10.1021/acsomega.8b00237
Article
CAS
Google Scholar
A. Pavinatto, L.A. Mercante, M.H.M. Facure, R.B. Pena, R.C. Sanfelice, L.H.C. Mattoso, D.S. Correa, Ultrasensitive biosensor based on polyvinylpyrrolidone/chitosan/reduced graphene oxide electrospun nanofibers for 17α – Ethinylestradiol electrochemical detection. Appl. Surf. Sci. 458, 431–437 (2018). https://doi.org/10.1016/j.apsusc.2018.07.035
Article
CAS
Google Scholar
H. Abdali, A. Ajji, Preparation of electrospun nanocomposite nanofibers of polyaniline/poly(methyl methacrylate) with amino-functionalized graphene. Polymers (Basel). 9, 453 (2017). https://doi.org/10.3390/polym9090453
Article
CAS
Google Scholar
X. Wang, Y. Gao, X. Li, Y. Xu, J. Jiang, J. Hou, Q. Li, L.S. Turng, Selective localization of graphene oxide in electrospun polylactic acid/poly(ε-caprolactone) blended nanofibers. Polym. Test. 59, 396–403 (2017). https://doi.org/10.1016/j.polymertesting.2017.02.022
Article
CAS
Google Scholar
M.M. Abolhasani, K. Shirvanimoghaddam, M. Naebe, PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators. Compos. Sci. Technol. 138, 49–56 (2017). https://doi.org/10.1016/j.compscitech.2016.11.017
Article
CAS
Google Scholar
M. Heidari, H. Bahrami, M. Ranjbar-Mohammadi, Fabrication, optimization and characterization of electrospun poly(caprolactone)/gelatin/graphene nanofibrous mats. Mater. Sci. Eng. C 78, 218–229 (2017). https://doi.org/10.1016/j.msec.2017.04.095
Article
CAS
Google Scholar
M. Abbasipour, R. Khajavi, A.A. Yousefi, M.E. Yazdanshenas, F. Razaghian, The piezoelectric response of electrospun PVDF nanofibers with graphene oxide, graphene, and halloysite nanofillers: a comparative study. J. Mater. Sci.: Mater. Electron. 28, 15942–15952 (2017). https://doi.org/10.1007/s10854-017-7491-4
Article
CAS
Google Scholar
P. Sahatiya, S. Badhulika, One-step in situ synthesis of single aligned graphene-ZnO nanofiber for UV sensing. RSC Adv. 5, 82481–82487 (2015). https://doi.org/10.1039/c5ra15351d
Article
CAS
Google Scholar
J. He, M. Zhou, L. Wang, S. Zhao, Q. Wang, B. Ding, S. Cui, Electrospinning in situ synthesis of graphene-doped porous copper indium disulfide/carbon composite nanofibers for highly efficient counter electrode in dye-sensitized solar cells. Electrochim. Acta 215, 626–636 (2016)
CAS
Google Scholar
Y.-L. Huang, A. Baji, H.-W. Tien, Y.-K. Yang, S.-Y. Yang, C.-C.M. Ma, H.-Y. Liu, Y.-W. Mai, N.-H. Wang, Self-assembly of graphene onto electrospun polyamide 66 nanofibers as transparent conductive thin films. Nanotechnology. 22, 475603 (2011)
Google Scholar
M.V. Jose, B.W. Steinert, V. Thomas, D.R. Dean, M.A. Abdalla, G. Price, G.M. Janowski, Morphology and mechanical properties of Nylon 6/MWNT nanofibers. Polymer (Guildf). 48, 1096–1104 (2007)
CAS
Google Scholar
L.E. Jasso-Ramos, A. Ojeda-Hernández, C. Guerrero-Bermea, N.A. Garcia-Gómez, J. Manriquez, S. Sepulveda-Guzmán, R. Cruz-Silva, Simultaneous intercalated assembly of mesostructured hybrid carbon nanofiber/reduced graphene oxide and its use in electrochemical sensing. Nanotechnology. (2019). https://doi.org/10.1088/1361-6528/aae879
Article
Google Scholar
C. Shan, Y. Wang, S. Xie, H. Guan, M. Argueta, Y. Yue, Free-standing nitrogen-doped graphene-carbon nanofiber composite mats: electrospinning synthesis and application as anode material for lithium-ion batteries. J. Chem. Technol. Biotechnol. (2019). https://doi.org/10.1002/jctb.6114
Article
Google Scholar
X.-Y. Wang, A. Narita, K. Müllen, Precision synthesis versus bulk-scale fabrication of graphenes. Nat. Rev. Chem. 2, 1–10 (2017). https://doi.org/10.1038/s41570-017-0100
Article
CAS
Google Scholar
Z.Q. Feng, F. Wu, L. Jin, T. Wang, W. Dong, J. Zheng, Graphene nanofibrous foam designed as an efficient oil absorbent. Ind. Eng. Chem. Res. 58, 3000–3008 (2019). https://doi.org/10.1021/acs.iecr.8b05646
Article
CAS
Google Scholar
M. Soikkeli, K. Kurppa, M. Kainlauri, S. Arpiainen, A. Paananen, D. Gunnarsson, J.J. Joensuu, P. Laaksonen, M. Prunnila, M.B. Linder, Graphene biosensor programming with genetically engineered fusion protein monolayers. ACS Appl. Mater. Interfaces. 8, 8257–8264 (2016)
CAS
Google Scholar
P. Zhang, Y. Huang, X. Lu, S. Zhang, J. Li, G. Wei, Z. Su, One-step synthesis of large-scale graphene film doped with gold nanoparticles at liquid–air interface for electrochemistry and Raman detection applications. Langmuir 30, 8980–8989 (2014)
CAS
Google Scholar
V. Beachley, X. Wen, Polymer nanofibrous structures: fabrication, biofunctionalization, and cell interactions. Prog. Polym. Sci. 35, 868–892 (2010)
CAS
Google Scholar
H.S. Koh, T. Yong, C.K. Chan, S. Ramakrishna, Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials 29, 3574–3582 (2008)
CAS
Google Scholar
C. Liu, G. Shi, G. Wang, P. Mishra, S. Jia, X. Jiang, P. Zhang, Y. Dong, Z. Wang, Preparation and electrochemical studies of electrospun phosphorus doped porous carbon nanofibers. RSC Adv. 9, 6898–6906 (2019). https://doi.org/10.1039/c8ra10193k
Article
CAS
Google Scholar
C.S. Reddy, G. Murali, A.S. Reddy, S. Park, I. In, GO incorporated SnO2 nanotubes as fast response sensors for ethanol vapor in different atmospheres. J. Alloys Compd. 813, 152251 (2019). https://doi.org/10.1016/j.jallcom.2019.152251
Article
CAS
Google Scholar
N. Tambakoozadeh, M. Youssefi, D. Semnani, A composite polyaniline/graphene–coated polyamide6 nanofiber mat for electrochemical applications. Polym. Adv. Technol. (2019). https://doi.org/10.1002/pat.4714
Article
Google Scholar
N. Zheng, Y. Song, L. Wang, J. Gao, Y. Wang, X. Dong, Improved electrical and mechanical properties for the reduced graphene oxide-decorated polymer nanofiber composite with a core-shell structure. Ind. Eng. Chem. Res. 58, 15470–15478 (2019). https://doi.org/10.1021/acs.iecr.9b01766
Article
CAS
Google Scholar
M. Gozutok, V. Sadhu, H.T. Sasmazel, Development of poly(vinyl alcohol) (PVA)/reduced graphene oxide (rGO) electrospun mats. J. Nanosci. Nanotechnol. 19, 4292–4298 (2019). https://doi.org/10.1166/jnn.2019.16290
Article
CAS
Google Scholar
H. Nazari, S. Azadi, S. Hatamie, M.S. Zomorrod, K. Ashtari, M. Soleimani, S. Hosseinzadeh, Fabrication of graphene-silver/polyurethane nanofibrous scaffolds for cardiac tissue engineering. Polym. Adv. Technol. 30, 2086–2099 (2019). https://doi.org/10.1002/pat.4641
Article
CAS
Google Scholar
M. Ionita, A.M. Pandele, L. Crica, L. Pilan, Improving the thermal and mechanical properties of polysulfone by incorporation of graphene oxide. Compos. Part B Eng. 59, 133–139 (2014)
CAS
Google Scholar
R. Rezaee, S. Nasseri, A.H. Mahvi, R. Nabizadeh, S.A. Mousavi, A. Rashidi, A. Jafari, S. Nazmara, Fabrication and characterization of a polysulfone-graphene oxide nanocomposite membrane for arsenate rejection from water. J. Environ. Heal. Sci. Eng. 13, 61 (2015)
Google Scholar
M. Yoonessi, Y. Shi, D.A. Scheiman, M. Lebron-Colon, D.M. Tigelaar, R.A. Weiss, M.A. Meador, Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects. ACS Nano 6, 7644–7655 (2012)
CAS
Google Scholar
I. Tseng, J. Chang, S. Huang, M. Tsai, Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposite film by addition of functionalized graphene oxide. Polym. Int. 62, 827–835 (2013)
CAS
Google Scholar
M. Yoonessi, J.R. Gaier, Highly conductive multifunctional graphene polycarbonate nanocomposites. ACS Nano 4, 7211–7220 (2010)
CAS
Google Scholar
G. Gedler, M. Antunes, V. Realinho, J.I. Velasco, Thermal stability of polycarbonate-graphene nanocomposite foams. Polym. Degrad. Stab. 97, 1297–1304 (2012)
CAS
Google Scholar
D. Zheng, G. Tang, H.-B. Zhang, Z.-Z. Yu, F. Yavari, N. Koratkar, S.-H. Lim, M.-W. Lee, In situ thermal reduction of graphene oxide for high electrical conductivity and low percolation threshold in polyamide 6 nanocomposites. Compos. Sci. Technol. 72, 284–289 (2012)
CAS
Google Scholar
H. Liu, L. Hou, W. Peng, Q. Zhang, X. Zhang, Fabrication and characterization of polyamide 6-functionalized graphene nanocomposite fiber. J. Mater. Sci. 47, 8052–8060 (2012)
CAS
Google Scholar
J. Bian, H.L. Lin, F.X. He, L. Wang, X.W. Wei, I.-T. Chang, E. Sancaktar, Processing and assessment of high-performance poly (butylene terephthalate) nanocomposites reinforced with microwave exfoliated graphite oxide nanosheets. Eur. Polym. J. 49, 1406–1423 (2013)
CAS
Google Scholar
H. Chen, C. Huang, W. Yu, C. Zhou, Effect of thermally reduced graphite oxide (TrGO) on the polymerization kinetics of poly (butylene terephthalate)(pCBT)/TrGO nanocomposites prepared by in situ ring-opening polymerization of cyclic butylene terephthalate. Polymer (Guildf). 54, 1603–1611 (2013)
CAS
Google Scholar
M. Gorji, A. Sadeghianmaryan, H. Rajabinejad, S. Nasherolahkam, X. Chen, Development of highly pH-sensitive hybrid membranes by simultaneous electrospinning of amphiphilic nanofibers reinforced with graphene oxide. J. Funct. Biomater. (2019). https://doi.org/10.3390/jfb10020023
Article
Google Scholar
H. Nosrati, R.S. Mamoory, F. Dabir, D.Q.S. Le, C.E. Bünger, M.C. Perez, M.A. Rodriguez, Effects of hydrothermal pressure on in situ synthesis of 3D graphene-hydroxyapatite nano structured powders. Ceram. Int. 45, 1761–1769 (2019)
CAS
Google Scholar
C. Zhang, F. Zhao, Y. He, Y. She, S. Hong, J. Ma, M. Wang, Z. Cao, T. Li, A.M.A. EI-Aty, J. Ping, Y. Ying, J. Wang, A disposable electrochemical sensor based on electrospinning of molecularly imprinted nanohybrid films for highly sensitive determination of the organotin acaricide cyhexatin. Microchim. Acta. (2019). https://doi.org/10.1007/s00604-019-3631-2
Article
Google Scholar
A. Macagnano, E. Zampetti, E. Kny, Electrospinning for high performance sensors (Springer, Berlin, 2015)
Google Scholar
S. Agarwal, A. Greiner, J.H. Wendorff, Functional materials by electrospinning of polymers. Prog. Polym. Sci. 38, 963–991 (2013). https://doi.org/10.1016/j.progpolymsci.2013.02.001
Article
CAS
Google Scholar
C.L. Zhang, S.H. Yu, Nanoparticles meet electrospinning: recent advances and future prospects. Chem. Soc. Rev. 43, 4423–4448 (2014). https://doi.org/10.1039/c3cs60426h
Article
CAS
Google Scholar
P. Zhang, X. Zhao, Y. Ji, Z. Ouyang, X. Wen, J. Li, Z. Su, G. Wei, Electrospinning graphene quantum dots into a nanofibrous membrane for dual-purpose fluorescent and electrochemical biosensors. J. Mater. Chem. B. 3, 2487–2496 (2015). https://doi.org/10.1039/c4tb02092h
Article
CAS
Google Scholar
T.S. Cabral, L.F. Sgobbi, J. Delezuk, R.S. Pessoa, A.O. Lobo, B.V.M. Rodrigues, Glucose sensing via a green and low-cost platform from electrospun poly (vinyl alcohol)/graphene quantum dots fibers. Mater. Today Proc. 14, 694–699 (2019). https://doi.org/10.1016/j.matpr.2019.02.008
Article
CAS
Google Scholar
H. Karimiyan, A. Uheida, M. Hadjmohammadi, M.M. Moein, M. Abdel-Rehim, Polyacrylonitrile/graphene oxide nanofibers for packed sorbent microextraction of drugs and their metabolites from human plasma samples. Talanta 201, 474–479 (2019). https://doi.org/10.1016/j.talanta.2019.04.027
Article
CAS
Google Scholar
H. Li, W. Zhang, Q. Ding, X. Jin, Q. Ke, Z. Li, D. Wang, C. Huang, Facile strategy for fabrication of flexible, breathable, and washable piezoelectric sensors via welding of nanofibers with multiwalled carbon nanotubes (MWCNTs). ACS Appl. Mater. Interfaces. (2019). https://doi.org/10.1021/acsami.9b10886
Article
Google Scholar
H. Ren, L. Zheng, G. Wang, X. Gao, Z. Tan, J. Shan, L. Cui, K. Li, M. Jian, L. Zhu, Y. Zhang, H. Peng, D. Wei, Z. Liu, Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors. ACS Nano 13, 5541–5548 (2019). https://doi.org/10.1021/acsnano.9b00395
Article
CAS
Google Scholar